999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

PHOTON-SUBTRACTED(-ADDED)THERMO VACUUM STATE AND THEIR APPLICATION IN JACOBI POLYNOMIALS

2015-11-14 07:09:48DAChengFANHongyi
巢湖學院學報 2015年3期

DA ChengFAN Hong-yi

(1 College of Mechanical and Electronic Engineering,Chaohu College,Chaohu Anhui 238000)

(2 Department of Material Science and Engineering,University of Science and Technology of China,Hefei Anhui 230026)

PHOTON-SUBTRACTED(-ADDED)THERMO VACUUM STATE AND THEIR APPLICATION IN JACOBI POLYNOMIALS

DA Cheng1FAN Hong-yi2

(1 College of Mechanical and Electronic Engineering,Chaohu College,Chaohu Anhui 238000)

(2 Department of Material Science and Engineering,University of Science and Technology of China,Hefei Anhui 230026)

We construct photon-subtracted(-added)thermo vacuum state by normalizing them. As their application we derive some new generating function formulas of Jacobi polynomials,which may be applied to study other problems in quantum mechanics.This will also stimulate the research of mathematical physics in the future.

photon-subtracted(-added)thermo vacuum state;Jacobi polynomials;generating function

1 Introduction

In nature most systems are immersed in a “thermal reservoir”,de-excitation and excitation processes are influenced by the exchange of energy between the reservoir and the system.The presence of the thermal reservoir maintains a certain number of excited quanta.In order to describe the thermal communication between systems and reservoirs more conveniently and the reservoir effect in a natural way,Takahashi and Umezawa invented Thermal Field Dynamics(TFD)theory[1].

TFD converts the evaluations of ensemble averages at nonzero temperature into equivalent expectation values with a pure state.This worthwhile convenience is at the expense of introducing a fictitious field(or a so-called tilde-conjugate field).Thus every state〉in the original real field space H is accompanied by a corresponding statein.A similar rule holds for operators:every operator b acting onhas an imageacting on,The thermal vacuum,k is the Boltzmann constant)is defined by the requirement.

Takahashi and Umezawa converted the statistical average at nonzero temperature T into equivalent expectation value with

where H is the Hamiltonian.For single-mode free bosons,H=ωb?b(h=1),the thermal vacuum is constructed as

where S(λ)is called the thermal operator(or thermal transformation,since it engenders the zero temperature vacuum to the thermal vacuum),

and can be disentangled as[2]

Under the S(λ)transformation,the operator b andbehave as

In the thermal field sense,the parameter λ is related to the number of thermalised photons by

This is in turn given by the Bose-Einstein distribution

Recently,the single-mode photon-subtracted squeezed state(PSSS)have been paid enough attention by both experimentalists and theoreticians due to its non-classical properties.Usually photo-detection for a squeezed light beam will give rise to such a state.In Ref.[3]the problem of what is the compact form of the normalization factor of PSSS has been solved,and the result shows that the normalization factor of PSSS is an r-order Legendre polynomial of the squeezing parameter,where r is the subtracted photon number.

An interesting question naturally arising,as the natural generalization of PSSS,can we construct photon-subtracted thermo vacuum state(PSTVS)and photon-added thermo vacuum state(PATVS)by normalizing them?The answer is affirmative;in Sec 2 we shall employ TFD to construct PSTVS and PATVS.As their applications,in Secs.3 and 4 of this work we shall derive some new generating functions of Jacobi Polynomials by virtue of the PSTVS and PATVS,respectively,which may be useful in studying other quantum mechanical problems.This approach is easier for physicists to accept and may be generalized to derive other special functions′properties,for example,some new properties of Legendre Polynomials can be obtained with the quantum optics method[4].

2 Construction of PSTVS and PATVS

The thermo vacuum state is given by

In summary,employing TFD we have constructed PSTVS and PATVS,which are the natural generalization of PSSS.In addition,we derive some new generating function formulas of Jacobi Polynomials via an approach in quantum optics theory,i.e.,utilizing PSTVS and PATVS.In turn,these new formulas may be applied to study other problems in quantum mechanics and stimulate the research of mathematical physics in the future.

[1]Takahashi Y.,Umezawa H.Thermo field dynamic[J].Collect.Phenom.,1975,(2):55-80.

[2]Umezawa H.,Matsumoto H.Tachiki M.,Thermo field dynamics and condensed states[M].North-Holland:Amsterdam,1982.

[3]Fan H.Y.,Hu L.Y.,XuX.X.Legendre Polynomials as the Normalization of Photon-Subtracted Squeezed States[J].Mod.Phys. Lett.A.,2009,(20):1597-1603.

[4]Zhang Z.X.,F(xiàn)an H.Y.Some Properties of States Engendered by the Excitations on a 2-Mode Squeezed Vacuum State[J]. Phys.Lett.A.,1993,(3):206-209.

[5]Buzek V.SU(1,1)Squeezing of SU(1,1)Generalized Coherent States[J].J.Mod.Opt.,1990,(3):303-316.

[6]Loudon R.,Knight P.L.Squeezed light[J].J.Mod.Opt.,1987,(34):709-759.

[7]Wolfgang P.S.Quantum Optics in Phase Space[M].Berlin:Wiley-VCH,2001.

[8]Glauber R.J.Coherent and Incoherent States of the Radiation Field[J].Phys.Rev.,1963,(131):2766-2788.

[9]Fan H.Y.Newton-Leibniz integration for ket-bra operators in quantum mechanics(V)-Deriving normally ordered bivariatenormal-distributionformofdensityoperatorsanddevelopingtheirphasespaceformalism[J].Ann.Phys.,2008,(6):1502-1528.

[10]Erdèlyi A.Higher Transcendental Functions,The Bateman Manuscript Project[M].New York:McGraw Hill,1953.

[11]Abramovitz M.Stegun I.Handbook of Mathematical Functions[M].New York:Dover Publications Inc,1965.

[12]Fan H.Y.Antinormal Expansion for Rotation Operators in the Schwinger Representation[J].Phys.Lett.A.,1988,(3):145-150.

陳 侃

O431.2 Document code:A Article ID:1672-2868(2015)03-0033-07

2014-12-10

Fund Project:Doctoral Scientific Research Foundation of Chaohu College(No.KYQD-201407)

Biography:DA Cheng(1974-),male,born in Tongcheng City,Anhui Province,College of Mechanical and Electronic Engineering,Chaohu College,lecturer,doctor,major in theoretical physics,quantum optics.

主站蜘蛛池模板: 天天综合亚洲| 日韩小视频在线播放| 欧美伦理一区| 69av免费视频| 欧美亚洲第一页| 国产欧美网站| 欧美第二区| 中文无码毛片又爽又刺激| 一级毛片不卡片免费观看| 亚洲欧美日韩视频一区| 国产99视频精品免费观看9e| 欧洲极品无码一区二区三区| 精品国产aⅴ一区二区三区| 一个色综合久久| 99九九成人免费视频精品| 喷潮白浆直流在线播放| 欧美精品亚洲精品日韩专区| 亚洲国产理论片在线播放| 国产网站免费| 九九热视频精品在线| 在线观看的黄网| 四虎成人在线视频| 小说区 亚洲 自拍 另类| 永久毛片在线播| 波多野结衣在线一区二区| 亚洲大尺码专区影院| 99久久这里只精品麻豆 | 欧美三级视频在线播放| 国产在线精品香蕉麻豆| 久久永久精品免费视频| 国产一区二区丝袜高跟鞋| 国内毛片视频| 亚洲品质国产精品无码| 67194亚洲无码| а∨天堂一区中文字幕| a亚洲天堂| 国产欧美视频在线观看| 91日本在线观看亚洲精品| 国产日本一线在线观看免费| 午夜国产大片免费观看| 热久久这里是精品6免费观看| 精品中文字幕一区在线| 久久久久亚洲精品无码网站| 波多野结衣的av一区二区三区| 国产成人精品高清在线| 久久黄色影院| 国产在线自乱拍播放| 欧美日本在线播放| 亚洲成a人在线观看| 国产亚洲高清在线精品99| 欧美日韩va| 国产综合日韩另类一区二区| 色噜噜在线观看| yjizz视频最新网站在线| 嫩草影院在线观看精品视频| JIZZ亚洲国产| 亚洲AV无码不卡无码| 国产成熟女人性满足视频| 欧美色视频网站| 九色最新网址| 欧美日韩精品综合在线一区| 欧美日韩中文字幕在线| 538国产在线| 国产精品成人免费视频99| 国产成人精品在线| 白丝美女办公室高潮喷水视频| 亚洲swag精品自拍一区| 午夜不卡视频| 亚洲日本中文字幕乱码中文| 日韩欧美一区在线观看| 日韩精品专区免费无码aⅴ| 日本人妻丰满熟妇区| 免费观看三级毛片| 特级欧美视频aaaaaa| 四虎成人在线视频| 秘书高跟黑色丝袜国产91在线 | 99精品国产自在现线观看| 国产日韩欧美视频| 91久久性奴调教国产免费| 亚洲中文字幕无码爆乳| 国产91九色在线播放| 国产自视频|