999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

PHOTON-SUBTRACTED(-ADDED)THERMO VACUUM STATE AND THEIR APPLICATION IN JACOBI POLYNOMIALS

2015-11-14 07:09:48DAChengFANHongyi
巢湖學院學報 2015年3期

DA ChengFAN Hong-yi

(1 College of Mechanical and Electronic Engineering,Chaohu College,Chaohu Anhui 238000)

(2 Department of Material Science and Engineering,University of Science and Technology of China,Hefei Anhui 230026)

PHOTON-SUBTRACTED(-ADDED)THERMO VACUUM STATE AND THEIR APPLICATION IN JACOBI POLYNOMIALS

DA Cheng1FAN Hong-yi2

(1 College of Mechanical and Electronic Engineering,Chaohu College,Chaohu Anhui 238000)

(2 Department of Material Science and Engineering,University of Science and Technology of China,Hefei Anhui 230026)

We construct photon-subtracted(-added)thermo vacuum state by normalizing them. As their application we derive some new generating function formulas of Jacobi polynomials,which may be applied to study other problems in quantum mechanics.This will also stimulate the research of mathematical physics in the future.

photon-subtracted(-added)thermo vacuum state;Jacobi polynomials;generating function

1 Introduction

In nature most systems are immersed in a “thermal reservoir”,de-excitation and excitation processes are influenced by the exchange of energy between the reservoir and the system.The presence of the thermal reservoir maintains a certain number of excited quanta.In order to describe the thermal communication between systems and reservoirs more conveniently and the reservoir effect in a natural way,Takahashi and Umezawa invented Thermal Field Dynamics(TFD)theory[1].

TFD converts the evaluations of ensemble averages at nonzero temperature into equivalent expectation values with a pure state.This worthwhile convenience is at the expense of introducing a fictitious field(or a so-called tilde-conjugate field).Thus every state〉in the original real field space H is accompanied by a corresponding statein.A similar rule holds for operators:every operator b acting onhas an imageacting on,The thermal vacuum,k is the Boltzmann constant)is defined by the requirement.

Takahashi and Umezawa converted the statistical average at nonzero temperature T into equivalent expectation value with

where H is the Hamiltonian.For single-mode free bosons,H=ωb?b(h=1),the thermal vacuum is constructed as

where S(λ)is called the thermal operator(or thermal transformation,since it engenders the zero temperature vacuum to the thermal vacuum),

and can be disentangled as[2]

Under the S(λ)transformation,the operator b andbehave as

In the thermal field sense,the parameter λ is related to the number of thermalised photons by

This is in turn given by the Bose-Einstein distribution

Recently,the single-mode photon-subtracted squeezed state(PSSS)have been paid enough attention by both experimentalists and theoreticians due to its non-classical properties.Usually photo-detection for a squeezed light beam will give rise to such a state.In Ref.[3]the problem of what is the compact form of the normalization factor of PSSS has been solved,and the result shows that the normalization factor of PSSS is an r-order Legendre polynomial of the squeezing parameter,where r is the subtracted photon number.

An interesting question naturally arising,as the natural generalization of PSSS,can we construct photon-subtracted thermo vacuum state(PSTVS)and photon-added thermo vacuum state(PATVS)by normalizing them?The answer is affirmative;in Sec 2 we shall employ TFD to construct PSTVS and PATVS.As their applications,in Secs.3 and 4 of this work we shall derive some new generating functions of Jacobi Polynomials by virtue of the PSTVS and PATVS,respectively,which may be useful in studying other quantum mechanical problems.This approach is easier for physicists to accept and may be generalized to derive other special functions′properties,for example,some new properties of Legendre Polynomials can be obtained with the quantum optics method[4].

2 Construction of PSTVS and PATVS

The thermo vacuum state is given by

In summary,employing TFD we have constructed PSTVS and PATVS,which are the natural generalization of PSSS.In addition,we derive some new generating function formulas of Jacobi Polynomials via an approach in quantum optics theory,i.e.,utilizing PSTVS and PATVS.In turn,these new formulas may be applied to study other problems in quantum mechanics and stimulate the research of mathematical physics in the future.

[1]Takahashi Y.,Umezawa H.Thermo field dynamic[J].Collect.Phenom.,1975,(2):55-80.

[2]Umezawa H.,Matsumoto H.Tachiki M.,Thermo field dynamics and condensed states[M].North-Holland:Amsterdam,1982.

[3]Fan H.Y.,Hu L.Y.,XuX.X.Legendre Polynomials as the Normalization of Photon-Subtracted Squeezed States[J].Mod.Phys. Lett.A.,2009,(20):1597-1603.

[4]Zhang Z.X.,F(xiàn)an H.Y.Some Properties of States Engendered by the Excitations on a 2-Mode Squeezed Vacuum State[J]. Phys.Lett.A.,1993,(3):206-209.

[5]Buzek V.SU(1,1)Squeezing of SU(1,1)Generalized Coherent States[J].J.Mod.Opt.,1990,(3):303-316.

[6]Loudon R.,Knight P.L.Squeezed light[J].J.Mod.Opt.,1987,(34):709-759.

[7]Wolfgang P.S.Quantum Optics in Phase Space[M].Berlin:Wiley-VCH,2001.

[8]Glauber R.J.Coherent and Incoherent States of the Radiation Field[J].Phys.Rev.,1963,(131):2766-2788.

[9]Fan H.Y.Newton-Leibniz integration for ket-bra operators in quantum mechanics(V)-Deriving normally ordered bivariatenormal-distributionformofdensityoperatorsanddevelopingtheirphasespaceformalism[J].Ann.Phys.,2008,(6):1502-1528.

[10]Erdèlyi A.Higher Transcendental Functions,The Bateman Manuscript Project[M].New York:McGraw Hill,1953.

[11]Abramovitz M.Stegun I.Handbook of Mathematical Functions[M].New York:Dover Publications Inc,1965.

[12]Fan H.Y.Antinormal Expansion for Rotation Operators in the Schwinger Representation[J].Phys.Lett.A.,1988,(3):145-150.

陳 侃

O431.2 Document code:A Article ID:1672-2868(2015)03-0033-07

2014-12-10

Fund Project:Doctoral Scientific Research Foundation of Chaohu College(No.KYQD-201407)

Biography:DA Cheng(1974-),male,born in Tongcheng City,Anhui Province,College of Mechanical and Electronic Engineering,Chaohu College,lecturer,doctor,major in theoretical physics,quantum optics.

主站蜘蛛池模板: 在线观看91香蕉国产免费| 97狠狠操| 久久久91人妻无码精品蜜桃HD| 免费看美女自慰的网站| 无码福利日韩神码福利片| 91精品免费久久久| 久久久久青草线综合超碰| 五月丁香在线视频| 色综合久久综合网| 精品福利网| 亚洲精品无码抽插日韩| 久久综合色88| 国产成+人+综合+亚洲欧美| а∨天堂一区中文字幕| 国产毛片基地| 亚洲欧美自拍视频| 国产欧美日韩免费| 欧洲欧美人成免费全部视频| 成人看片欧美一区二区| 国产成人无码AV在线播放动漫| 日韩视频精品在线| 思思99热精品在线| 日本一区高清| 成人精品视频一区二区在线| 久久精品人妻中文视频| 精品福利视频网| 国产v欧美v日韩v综合精品| 欧美激情,国产精品| 久久鸭综合久久国产| 九九这里只有精品视频| 国产亚洲精品在天天在线麻豆| 国产精品密蕾丝视频| 亚洲大尺度在线| 美女视频黄又黄又免费高清| 国模视频一区二区| 国产精品主播| 国内精品自在自线视频香蕉| 国产精品成人AⅤ在线一二三四| 伦精品一区二区三区视频| 亚洲看片网| 国产十八禁在线观看免费| 毛片久久网站小视频| 漂亮人妻被中出中文字幕久久| 欧美成人A视频| 国产91熟女高潮一区二区| 亚洲成人免费看| 国产精品无码AⅤ在线观看播放| 久草视频精品| 国产成人精品一区二区三区| 美女被操91视频| 精品国产免费第一区二区三区日韩| 色婷婷狠狠干| 国产视频一二三区| 青青极品在线| 欧美黄网在线| 午夜福利网址| 91色爱欧美精品www| 国产无码精品在线播放| 亚洲婷婷丁香| 亚洲最新地址| 在线看片中文字幕| 精品色综合| 综合亚洲色图| 久久婷婷五月综合色一区二区| 亚洲婷婷丁香| 日韩二区三区无| 人妻丰满熟妇AV无码区| 在线观看国产小视频| 青青草一区| 欧美成人A视频| 69视频国产| 欧美啪啪网| 日韩a级片视频| 日韩成人高清无码| 免费中文字幕一级毛片| 狠狠色婷婷丁香综合久久韩国| 久青草免费在线视频| 欧美翘臀一区二区三区| 国产一级无码不卡视频| 毛片基地美国正在播放亚洲| 免费AV在线播放观看18禁强制| 精品国产污污免费网站|