999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

PHOTON-SUBTRACTED(-ADDED)THERMO VACUUM STATE AND THEIR APPLICATION IN JACOBI POLYNOMIALS

2015-11-14 07:09:48DAChengFANHongyi
巢湖學院學報 2015年3期

DA ChengFAN Hong-yi

(1 College of Mechanical and Electronic Engineering,Chaohu College,Chaohu Anhui 238000)

(2 Department of Material Science and Engineering,University of Science and Technology of China,Hefei Anhui 230026)

PHOTON-SUBTRACTED(-ADDED)THERMO VACUUM STATE AND THEIR APPLICATION IN JACOBI POLYNOMIALS

DA Cheng1FAN Hong-yi2

(1 College of Mechanical and Electronic Engineering,Chaohu College,Chaohu Anhui 238000)

(2 Department of Material Science and Engineering,University of Science and Technology of China,Hefei Anhui 230026)

We construct photon-subtracted(-added)thermo vacuum state by normalizing them. As their application we derive some new generating function formulas of Jacobi polynomials,which may be applied to study other problems in quantum mechanics.This will also stimulate the research of mathematical physics in the future.

photon-subtracted(-added)thermo vacuum state;Jacobi polynomials;generating function

1 Introduction

In nature most systems are immersed in a “thermal reservoir”,de-excitation and excitation processes are influenced by the exchange of energy between the reservoir and the system.The presence of the thermal reservoir maintains a certain number of excited quanta.In order to describe the thermal communication between systems and reservoirs more conveniently and the reservoir effect in a natural way,Takahashi and Umezawa invented Thermal Field Dynamics(TFD)theory[1].

TFD converts the evaluations of ensemble averages at nonzero temperature into equivalent expectation values with a pure state.This worthwhile convenience is at the expense of introducing a fictitious field(or a so-called tilde-conjugate field).Thus every state〉in the original real field space H is accompanied by a corresponding statein.A similar rule holds for operators:every operator b acting onhas an imageacting on,The thermal vacuum,k is the Boltzmann constant)is defined by the requirement.

Takahashi and Umezawa converted the statistical average at nonzero temperature T into equivalent expectation value with

where H is the Hamiltonian.For single-mode free bosons,H=ωb?b(h=1),the thermal vacuum is constructed as

where S(λ)is called the thermal operator(or thermal transformation,since it engenders the zero temperature vacuum to the thermal vacuum),

and can be disentangled as[2]

Under the S(λ)transformation,the operator b andbehave as

In the thermal field sense,the parameter λ is related to the number of thermalised photons by

This is in turn given by the Bose-Einstein distribution

Recently,the single-mode photon-subtracted squeezed state(PSSS)have been paid enough attention by both experimentalists and theoreticians due to its non-classical properties.Usually photo-detection for a squeezed light beam will give rise to such a state.In Ref.[3]the problem of what is the compact form of the normalization factor of PSSS has been solved,and the result shows that the normalization factor of PSSS is an r-order Legendre polynomial of the squeezing parameter,where r is the subtracted photon number.

An interesting question naturally arising,as the natural generalization of PSSS,can we construct photon-subtracted thermo vacuum state(PSTVS)and photon-added thermo vacuum state(PATVS)by normalizing them?The answer is affirmative;in Sec 2 we shall employ TFD to construct PSTVS and PATVS.As their applications,in Secs.3 and 4 of this work we shall derive some new generating functions of Jacobi Polynomials by virtue of the PSTVS and PATVS,respectively,which may be useful in studying other quantum mechanical problems.This approach is easier for physicists to accept and may be generalized to derive other special functions′properties,for example,some new properties of Legendre Polynomials can be obtained with the quantum optics method[4].

2 Construction of PSTVS and PATVS

The thermo vacuum state is given by

In summary,employing TFD we have constructed PSTVS and PATVS,which are the natural generalization of PSSS.In addition,we derive some new generating function formulas of Jacobi Polynomials via an approach in quantum optics theory,i.e.,utilizing PSTVS and PATVS.In turn,these new formulas may be applied to study other problems in quantum mechanics and stimulate the research of mathematical physics in the future.

[1]Takahashi Y.,Umezawa H.Thermo field dynamic[J].Collect.Phenom.,1975,(2):55-80.

[2]Umezawa H.,Matsumoto H.Tachiki M.,Thermo field dynamics and condensed states[M].North-Holland:Amsterdam,1982.

[3]Fan H.Y.,Hu L.Y.,XuX.X.Legendre Polynomials as the Normalization of Photon-Subtracted Squeezed States[J].Mod.Phys. Lett.A.,2009,(20):1597-1603.

[4]Zhang Z.X.,F(xiàn)an H.Y.Some Properties of States Engendered by the Excitations on a 2-Mode Squeezed Vacuum State[J]. Phys.Lett.A.,1993,(3):206-209.

[5]Buzek V.SU(1,1)Squeezing of SU(1,1)Generalized Coherent States[J].J.Mod.Opt.,1990,(3):303-316.

[6]Loudon R.,Knight P.L.Squeezed light[J].J.Mod.Opt.,1987,(34):709-759.

[7]Wolfgang P.S.Quantum Optics in Phase Space[M].Berlin:Wiley-VCH,2001.

[8]Glauber R.J.Coherent and Incoherent States of the Radiation Field[J].Phys.Rev.,1963,(131):2766-2788.

[9]Fan H.Y.Newton-Leibniz integration for ket-bra operators in quantum mechanics(V)-Deriving normally ordered bivariatenormal-distributionformofdensityoperatorsanddevelopingtheirphasespaceformalism[J].Ann.Phys.,2008,(6):1502-1528.

[10]Erdèlyi A.Higher Transcendental Functions,The Bateman Manuscript Project[M].New York:McGraw Hill,1953.

[11]Abramovitz M.Stegun I.Handbook of Mathematical Functions[M].New York:Dover Publications Inc,1965.

[12]Fan H.Y.Antinormal Expansion for Rotation Operators in the Schwinger Representation[J].Phys.Lett.A.,1988,(3):145-150.

陳 侃

O431.2 Document code:A Article ID:1672-2868(2015)03-0033-07

2014-12-10

Fund Project:Doctoral Scientific Research Foundation of Chaohu College(No.KYQD-201407)

Biography:DA Cheng(1974-),male,born in Tongcheng City,Anhui Province,College of Mechanical and Electronic Engineering,Chaohu College,lecturer,doctor,major in theoretical physics,quantum optics.

主站蜘蛛池模板: 国产精品太粉嫩高中在线观看| 免费看a毛片| 亚洲无码精彩视频在线观看| 无码视频国产精品一区二区| 久久黄色影院| 欧美日韩中文国产| 久久久久无码精品| 国产精品9| 91在线日韩在线播放| 国产高清在线观看91精品| 婷婷亚洲视频| 日韩a级片视频| 五月天久久综合| 成人年鲁鲁在线观看视频| 精品国产网| 久久99精品久久久大学生| 国产免费人成视频网| 女人18毛片水真多国产| 伊在人亚洲香蕉精品播放 | 欧美激情,国产精品| 最新国产高清在线| 久久久久久久久久国产精品| 欧美午夜在线观看| 伊人中文网| 日本不卡在线播放| 国产原创第一页在线观看| 五月六月伊人狠狠丁香网| 老司机久久精品视频| 成人毛片免费在线观看| 久久精品aⅴ无码中文字幕 | 亚洲精品成人7777在线观看| 久久综合九色综合97婷婷| 无码综合天天久久综合网| 伊人久久大香线蕉影院| 国产欧美日韩免费| 熟女成人国产精品视频| 久久精品波多野结衣| 亚洲中文字幕手机在线第一页| 欧美激情一区二区三区成人| 久久久久无码国产精品不卡| 日韩A∨精品日韩精品无码| 亚洲伊人电影| 99re免费视频| 国产成人久久777777| 国产精品视频免费网站| 欧美一级在线| 久久免费精品琪琪| 91久久国产热精品免费| 国产成人亚洲毛片| 亚洲国产综合精品一区| 国产精品国产三级国产专业不| 欧美黄网在线| 欧美中文字幕无线码视频| 国产成人免费| 亚洲美女久久| 欧美久久网| 91免费国产高清观看| 国产午夜精品一区二区三| 色综合色国产热无码一| 国产一区二区三区日韩精品| 国产福利免费视频| 狠狠色丁香婷婷| 久久青草免费91线频观看不卡| 九月婷婷亚洲综合在线| 亚洲欧洲日本在线| 亚洲欧美极品| 中文字幕 日韩 欧美| 亚洲视频免费在线看| 中文字幕在线日韩91| 国产一区二区人大臿蕉香蕉| 热久久这里是精品6免费观看| 四虎亚洲精品| 美女无遮挡被啪啪到高潮免费| 五月婷婷综合色| 中国国产A一级毛片| 在线五月婷婷| 99视频在线免费观看| 美女潮喷出白浆在线观看视频| 真实国产精品vr专区| 欧美成人在线免费| 爽爽影院十八禁在线观看| 99re在线视频观看|