999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

PHOTON-SUBTRACTED(-ADDED)THERMO VACUUM STATE AND THEIR APPLICATION IN JACOBI POLYNOMIALS

2015-11-14 07:09:48DAChengFANHongyi
巢湖學院學報 2015年3期

DA ChengFAN Hong-yi

(1 College of Mechanical and Electronic Engineering,Chaohu College,Chaohu Anhui 238000)

(2 Department of Material Science and Engineering,University of Science and Technology of China,Hefei Anhui 230026)

PHOTON-SUBTRACTED(-ADDED)THERMO VACUUM STATE AND THEIR APPLICATION IN JACOBI POLYNOMIALS

DA Cheng1FAN Hong-yi2

(1 College of Mechanical and Electronic Engineering,Chaohu College,Chaohu Anhui 238000)

(2 Department of Material Science and Engineering,University of Science and Technology of China,Hefei Anhui 230026)

We construct photon-subtracted(-added)thermo vacuum state by normalizing them. As their application we derive some new generating function formulas of Jacobi polynomials,which may be applied to study other problems in quantum mechanics.This will also stimulate the research of mathematical physics in the future.

photon-subtracted(-added)thermo vacuum state;Jacobi polynomials;generating function

1 Introduction

In nature most systems are immersed in a “thermal reservoir”,de-excitation and excitation processes are influenced by the exchange of energy between the reservoir and the system.The presence of the thermal reservoir maintains a certain number of excited quanta.In order to describe the thermal communication between systems and reservoirs more conveniently and the reservoir effect in a natural way,Takahashi and Umezawa invented Thermal Field Dynamics(TFD)theory[1].

TFD converts the evaluations of ensemble averages at nonzero temperature into equivalent expectation values with a pure state.This worthwhile convenience is at the expense of introducing a fictitious field(or a so-called tilde-conjugate field).Thus every state〉in the original real field space H is accompanied by a corresponding statein.A similar rule holds for operators:every operator b acting onhas an imageacting on,The thermal vacuum,k is the Boltzmann constant)is defined by the requirement.

Takahashi and Umezawa converted the statistical average at nonzero temperature T into equivalent expectation value with

where H is the Hamiltonian.For single-mode free bosons,H=ωb?b(h=1),the thermal vacuum is constructed as

where S(λ)is called the thermal operator(or thermal transformation,since it engenders the zero temperature vacuum to the thermal vacuum),

and can be disentangled as[2]

Under the S(λ)transformation,the operator b andbehave as

In the thermal field sense,the parameter λ is related to the number of thermalised photons by

This is in turn given by the Bose-Einstein distribution

Recently,the single-mode photon-subtracted squeezed state(PSSS)have been paid enough attention by both experimentalists and theoreticians due to its non-classical properties.Usually photo-detection for a squeezed light beam will give rise to such a state.In Ref.[3]the problem of what is the compact form of the normalization factor of PSSS has been solved,and the result shows that the normalization factor of PSSS is an r-order Legendre polynomial of the squeezing parameter,where r is the subtracted photon number.

An interesting question naturally arising,as the natural generalization of PSSS,can we construct photon-subtracted thermo vacuum state(PSTVS)and photon-added thermo vacuum state(PATVS)by normalizing them?The answer is affirmative;in Sec 2 we shall employ TFD to construct PSTVS and PATVS.As their applications,in Secs.3 and 4 of this work we shall derive some new generating functions of Jacobi Polynomials by virtue of the PSTVS and PATVS,respectively,which may be useful in studying other quantum mechanical problems.This approach is easier for physicists to accept and may be generalized to derive other special functions′properties,for example,some new properties of Legendre Polynomials can be obtained with the quantum optics method[4].

2 Construction of PSTVS and PATVS

The thermo vacuum state is given by

In summary,employing TFD we have constructed PSTVS and PATVS,which are the natural generalization of PSSS.In addition,we derive some new generating function formulas of Jacobi Polynomials via an approach in quantum optics theory,i.e.,utilizing PSTVS and PATVS.In turn,these new formulas may be applied to study other problems in quantum mechanics and stimulate the research of mathematical physics in the future.

[1]Takahashi Y.,Umezawa H.Thermo field dynamic[J].Collect.Phenom.,1975,(2):55-80.

[2]Umezawa H.,Matsumoto H.Tachiki M.,Thermo field dynamics and condensed states[M].North-Holland:Amsterdam,1982.

[3]Fan H.Y.,Hu L.Y.,XuX.X.Legendre Polynomials as the Normalization of Photon-Subtracted Squeezed States[J].Mod.Phys. Lett.A.,2009,(20):1597-1603.

[4]Zhang Z.X.,F(xiàn)an H.Y.Some Properties of States Engendered by the Excitations on a 2-Mode Squeezed Vacuum State[J]. Phys.Lett.A.,1993,(3):206-209.

[5]Buzek V.SU(1,1)Squeezing of SU(1,1)Generalized Coherent States[J].J.Mod.Opt.,1990,(3):303-316.

[6]Loudon R.,Knight P.L.Squeezed light[J].J.Mod.Opt.,1987,(34):709-759.

[7]Wolfgang P.S.Quantum Optics in Phase Space[M].Berlin:Wiley-VCH,2001.

[8]Glauber R.J.Coherent and Incoherent States of the Radiation Field[J].Phys.Rev.,1963,(131):2766-2788.

[9]Fan H.Y.Newton-Leibniz integration for ket-bra operators in quantum mechanics(V)-Deriving normally ordered bivariatenormal-distributionformofdensityoperatorsanddevelopingtheirphasespaceformalism[J].Ann.Phys.,2008,(6):1502-1528.

[10]Erdèlyi A.Higher Transcendental Functions,The Bateman Manuscript Project[M].New York:McGraw Hill,1953.

[11]Abramovitz M.Stegun I.Handbook of Mathematical Functions[M].New York:Dover Publications Inc,1965.

[12]Fan H.Y.Antinormal Expansion for Rotation Operators in the Schwinger Representation[J].Phys.Lett.A.,1988,(3):145-150.

陳 侃

O431.2 Document code:A Article ID:1672-2868(2015)03-0033-07

2014-12-10

Fund Project:Doctoral Scientific Research Foundation of Chaohu College(No.KYQD-201407)

Biography:DA Cheng(1974-),male,born in Tongcheng City,Anhui Province,College of Mechanical and Electronic Engineering,Chaohu College,lecturer,doctor,major in theoretical physics,quantum optics.

主站蜘蛛池模板: 日本日韩欧美| 亚洲第一视频免费在线| 亚洲国产欧美国产综合久久| 久草中文网| 成人av专区精品无码国产| 久久一日本道色综合久久| …亚洲 欧洲 另类 春色| 国产精品自在在线午夜区app| 国产亚洲精品在天天在线麻豆| 99er精品视频| 狠狠干综合| 91久久夜色精品| 欧美在线黄| 又污又黄又无遮挡网站| 欧美a级在线| 久久久久国产精品免费免费不卡| 国产日韩欧美在线视频免费观看 | 国产91高跟丝袜| 亚洲中文字幕23页在线| 99视频免费观看| 国产美女久久久久不卡| 日本黄色a视频| 亚洲第一区欧美国产综合| 老色鬼久久亚洲AV综合| 亚洲天堂日韩av电影| 国产激情在线视频| 久久人体视频| 亚洲色欲色欲www在线观看| 国产精品不卡片视频免费观看| 国产高潮视频在线观看| 国产一区二区影院| 免费a级毛片视频| 91视频99| 天堂成人在线视频| 国产国模一区二区三区四区| 高清无码不卡视频| 久久精品这里只有精99品| 欧美色视频在线| 色婷婷成人| 欧美a网站| 在线欧美a| 亚洲欧美日韩精品专区| 黄色网在线| 国内99精品激情视频精品| 免费国产高清视频| 国产亚洲高清视频| 欧美自拍另类欧美综合图区| 无码内射在线| 国产精品永久久久久| 亚洲第一色视频| 国产在线拍偷自揄观看视频网站| 91在线精品麻豆欧美在线| 久久香蕉欧美精品| 亚洲高清在线播放| 亚洲欧洲日产国码无码av喷潮| 国模私拍一区二区三区| 午夜天堂视频| 亚洲—日韩aV在线| 国产午夜精品鲁丝片| 国产91av在线| 亚洲视频色图| 91无码网站| 欧美精品一二三区| 久久青草视频| 全色黄大色大片免费久久老太| 最新国产精品第1页| 美女啪啪无遮挡| 亚洲成A人V欧美综合| 91破解版在线亚洲| 国产不卡一级毛片视频| 国产青青操| 97成人在线视频| 亚洲系列中文字幕一区二区| 欧美激情成人网| 亚洲高清在线天堂精品| 在线精品自拍| 99久久性生片| av一区二区无码在线| 国产中文一区二区苍井空| 国产真实自在自线免费精品| 91在线精品麻豆欧美在线| 一级做a爰片久久毛片毛片|