999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

戶外噪聲相干預測模型及其工程應用

2015-11-19 08:40:04阮學云魏浩征李志遠安徽理工大學機械學院安徽淮南3001合肥工業大學噪聲與振動工程研究所安徽合肥30009
中國環境科學 2015年6期
關鍵詞:變壓器模型

阮學云,魏浩征,李志遠(1.安徽理工大學機械學院,安徽 淮南 3001;.合肥工業大學噪聲與振動工程研究所,安徽 合肥 30009)

戶外噪聲相干預測模型及其工程應用

阮學云1,2*,魏浩征2,李志遠2(1.安徽理工大學機械學院,安徽 淮南 232001;2.合肥工業大學噪聲與振動工程研究所,安徽 合肥 230009)

基于幾何衍射理論、相干虛源法等理論方法,提出一種適合于工程算法的戶外噪聲相干預測模型.該相干預測模型不僅能計算聲源在經過有限長聲屏障或多重聲屏障時,由于多條路徑衍射聲形成的相干聲場,還可計算聲源在屏障等界面之間經多次反射后,多個反射聲形成的相干聲場.應用該相干預測模型對某變電站電力變壓器周圍的相干聲場進行預測,通過與ISO9613-2標準算法、邊界元法與實測值進行對比,結果表明,該戶外噪聲相干預測模型能反映出聲波在不同位置處的波動性,比原有的ISO9613模型更接近測試結果,證明了所提理論模型的有效性,可應用于大范圍的戶外噪聲預測計算.

相干聲場;噪聲預測模型;衍射聲;反射聲;相干虛源法;工程算法

工業企業中如電廠、水泥廠等大型工程建設項目,在進行聲環境影響評價工作時需要進行大規模的輔助計算,目前國內企業多進口國外的通用噪聲預測軟件,如SoundPlan、Cadna/A等.而這些通用的戶外噪聲預測軟件均基于ISO9613-2標準[1],該標準前提條件就是基于互不相干聲源的能量疊加.然而在對某些工業企業如高壓直流換流站進行現場測試時發現,換流站內各主要噪聲源相同設備(如電容器、換流變壓器等)數量眾多,且鄰近布置,工作時噪聲輻射特性相同,因此存在大量相干聲源.由于目前ISO9613-2標準不考慮激勵聲源的相位信息,不僅對于不同聲源之間可能存在的干涉影響無法計算,而且對于同一聲源在傳播過程中,由于有限長屏障作用引起的多路徑衍射聲或由各反射面組成半開空間內的多次反射聲組成的相干聲場也不予考慮,因此針對聲源經過多重反射和多個衍射路徑到達的聲場區域,其預測結果往往誤差較大.

點聲源的戶外輻射傳播特性研究是研究戶外聲傳播的核心基礎,依據其理論基礎可分為基于聲場波動性的預測方法、幾何聲學預測模型,以及試驗和半經驗方法.戶外噪聲傳播中,由于聲線遇到障礙物和反射體會產生大量的衍射聲和反射聲,因此基于聲場波動性的預測主要是針對屏障的衍射和反射問題進行研究.波動理論作為經典方法最早主要用于計算室內聲場[2].該理論是嚴格準確的解析方法,目前僅在具有規則形狀的空間中才較容易實施.聲場波動方程包含兩個部分:一個對空間體積的積分,用于計入空間所有聲源的直達聲貢獻;和一個對空間所有邊界的面積分,用于計入邊界對聲場的散射貢獻.而對后者使用數值方法加以離散計算,即為邊界元法的基本原理[3-4].基于幾何聲學的計算方法,是聲場預測模型中最為簡便的方法,最早用于計算室內聲場,計算復雜度相對不高,且適用場合最為廣泛[5-6].在研究衍射聲場時,最早由Keller提出了幾何衍射理論(簡稱GTD)來描述聲衍射[7].在研究反射聲場時,1972年Gibbs和Jones首次提出使用虛聲源法模擬室內聲場.之后,Kuttruff等在此基礎上研究類似空間聲能量分布,但這些模型都沒有考慮考慮閉空間中各面反射聲波間的干涉現象,適用于空間中寬頻帶的聲場能量估計[8-10].但實際空間中,聲場的空間和頻率分布通常是起伏不定的,各面反射的聲波存在能察覺的干涉現象[11].1979年,Gensane最早進行了嘗試,提出了一種能考慮不同反射波之間聲壓干涉疊加的虛源法[12];Dance等[11]與Wang等[13]在1994年和2002年基于該理論分別研究了用于廠房空間和開放式辦公室內聲壓場的相干虛源法預測模型.1989年,Lemire等[14]對點聲源在閉空間內的聲傳播進行了研究,認為點聲源的每次界面聲反射為球面波,在此基礎上,提出了一種目前廣泛使用的相干虛源模型.2010年,陳妍等[15]在相干虛源模型基礎上對不同聲學邊界長空間內部聲場的相干模型進行了研究.對聲源經有限長屏障多路衍射或半開空間內多重反射組成的戶外相干聲場,至今還未見對其研究.目前用于實際計算戶外噪聲的主要是基于試驗和半經驗方法的工程算法,這主要是考慮其他理論算法相對復雜和費時,對一些復雜的因素如地貌環境、氣象環境等理論計算繁瑣且一般受約束于具體條件,而工程算法基于統計學的一些經驗公式,計算效率高,因此基于試驗和半經驗方法的工程算法目前得到了廣泛應用.其研究成果主要是給出了目前廣泛采用的ISO 9613-2標準算法,該算法對點聲源的戶外傳播給出了具體可操作的計算公式,因此較早就進行了軟件產業應用.ISO9613-2標準中對預測點倍頻帶聲壓級計算如下[1,16]

式中:Loct(r)為預測點等效倍頻帶聲壓級;Loct(W)為聲源(包含虛聲源)產生的倍頻帶聲功率級;Doct為聲源在倍頻帶上的指向性校正;Aoct為包含幾何發散、屏障與大氣吸收等引起的衰減之和.在目前的工程預測算法中點聲源的相位信息沒有得到反映,因此只能對聲場的能量疊加,不能進行聲場的相干疊加.

針對以上情況,本文基于幾何衍射理論、相干虛源法等理論方法,結合工程算法的特點,建立一種考慮相位的戶外噪聲相干預測模型,該模型主要對衍射和反射兩個主要戶外聲傳播方式進行研究,要求在保證一定預測精度的情況下,能最大的提高計算速度,滿足工程計算效率高的需求.

1 戶外噪聲相干預測模型

針對目前戶外噪聲預測算法中無法進行相干聲源的輻射聲場計算,且戶外聲傳播中屏障和反射面又普遍存在的實際情形,本文從考慮工程算法特點角度出發,分別對戶外噪聲傳播中的衍射聲和反射聲進行研究,提出一種考慮相位的戶外噪聲相干預測模型.

1.1 考慮相干的屏障衍射聲工程算法研究

目前屏障的衍射聲場理論嚴格解中,Hadden與Pierce基于幾何衍射理論(GTD)得到的楔形屏障附近的嚴格解和試驗結果吻合度很高,理論上無誤差,而且可以解決聲源或受聲點距離屏障任何位置處的衍射計算,但因其理論公式復雜,一直未能用于工程噪聲預測中.考慮戶外噪聲預測中,聲屏障多按薄屏障進行處理,本節就其剛性楔形屏障中的薄屏障進行研究,基于Hadden-Pierce嚴格理論解推導出一種考慮相干的屏障衍射聲簡化算法,該方法可避免原始方法中復雜的數值計算和奇異積分的處理過程,能極大提高計算效率.

1.1.1 Hadden-Pierce嚴格理論解 圖1為本理論中所用的剛性楔形體的聲衍射傳播幾何圖,采用圓柱體坐標體系(r,θ,z),其中剛性楔形邊沿著z方向,其中兩個楔形側邊所在的平面分別為θ=0 和θ=β,整個楔形變化角度為θ=0到θ=β(β>π).由圖1可看出,因本文討論的為薄屏障,對應的β=2π.

根據點聲源經過楔形體時不同衍射路徑,得到楔形體聲影區中受聲點的衍射聲場方程,見下式[17]:

其中:

式(2)中:V(ζi)為經楔形體兩個邊界產生的衍射聲,每項可表達為具體表達式:

其中A(ζi)為角函數,U(ζ)為單位階躍函數,表示為

式中:α與ε為表達聲源和受聲點相對屏障位置的幾何參數;r與r0分別表示受聲點和聲源到達屏障的距離;z和z0分別表示受聲點和聲源在z方向的坐標值;I(q)為積分函數;L定義為聲源S經定邊E1的衍射然后到達接受點R的總傳播最短衍射距離;k為聲源的波數;且i=,參數?定義為邊E1上衍射角為ζi的兩點之間距離,如圖2,可表示為

式中:Y為積分中間過渡變量:

圖2 參數R與ζi的幾何描述Fig.2 Geometric description of parameters?iand ζi

1.1.2 衍射聲場通用工程簡化算法 上節中給出了點聲源在經剛性楔形體衍射后,屏障附近任意受聲點的聲場表達式,尤其是給出了衍射項V(ζ)理論解,但由于理論解中含有積分項,不適合工程計算用.本文針對聲源和受聲點最常見的幾何位置,對位置幾何參數α進行假設,最后通過積分變量的轉化與分部積分對Hadden-Pierce嚴格理論解進行適合工程算法的簡化,并根據有限差分法給出了涉及的Fresnel函數近似統一表達式,從而給出了本文計算薄屏障衍射聲場的通用工程簡化算法.

式(5c)中積分上下限為有限值,q值變化范圍在0和1之間,但在求解時僅在kL≥1時為有限值,因此積分時存在數值波動大的情況,給計算帶來困難.為改變積分上下限,使其不受限制,將式(5c)積分變量簡單化,有利于數值求解.這里引入參數y代入變量?,具體表達式為:

根據式(7)和式(8),可得:

這里X為:

將式(10)中?代入式(6),可以很容易實現變量從q轉化為y,因此可轉化成一個簡便的表達式Fv,

式(12)中由于幾何參數都得以體現,積分變量明確,無需過多中間環節,易于數值求解.

式(5d)中參數α因包含了聲源頻率,聲源和受聲點與屏障之間距離,可作為重要幾何位置參數變量.為得到通用的簡化公式,這里假設α較大,即聲源和受聲點離屏障不是足夠近時;而角函數|A|可取任意值,即受聲點可取聲影區邊界附近或其他位置,事實上這種情況也為較為普遍.基于以上假設,很容易對式(12)進行簡化,根據kL=α/ε,進行分部積分,從而消除積分項,其中因子dq/dy可由式(11)得到.為避免|A|=π/2時存在求值困難,假設y=u2,可得到積分值為某個固定倍數關系的表達項為:

其中

這里f( P)與g( P)為輔助Fresnel函數,本文根據有限差分法給出了Fresnel函數近似的統一表達式為:

經以上計算,可得到Fv表達式為

考慮相位的屏障衍射工程算法經整理如下:

1.2 多重反射聲相干虛源法研究

除了屏障衍射聲外,在工業企業中多重反射主要主要發生在由地面、兩個有限長垂直屏障組成的半開空間內,其中各邊界為聲反射面或聲吸聲面.在前述研究反射聲場的方法中,由于Lemire提出的相干虛源模型的適應性廣,對研究聲場的封閉并無嚴格要求,本文在其研究基礎上,結合前節給出的衍射工程算法,提出一種半開空間聲場相干虛源預測模型.該模型能考慮每次反射時界面阻抗對反射波相位的影響和總場中不同聲波間的干涉影響,且通過得到反射面的每次實際正入射角而計算出來的反射系數更符合實際聲傳播,特別適合預測半開空間外較遠距離的聲傳播.

如圖3所示,側面1和側面2代表兩側屏障.W為兩個側面之間距離,H為側面1和側面2的高度.R和E1R、E2R分別表示受聲點和左右兩個側面上方繞射點.側面1、側面2、地面的歸一化導納為βi(i=1,2,3).

圖3 虛源構造示意Fig.3 Schematic of image source construction

根據虛聲源產生原理,當受聲點在半開空間外部右側時,左側虛聲源(m≤0)起作用,此時聲線在兩個屏障之間多次反射后,經過E2R衍射到達受聲點R.反之,當受聲點在半開空間外部左側時,聲線最后經過E1R衍射到達受聲點R.另外,本文半開空間地面為具有一定反射系數的平面,因此在EiR(i=1,2)點的繞射聲經地面反射后到達受聲點R,這里給出了虛受聲點R′.

半開空間的整個聲場是由聲源和所有虛源共同決定的,虛源是由聲源在各反射面的不停反射生成的,無窮多次的反射產生了無窮多個虛源,于是,總聲場可看成是由所有虛源的影響綜合決定的,可得受聲點的總聲壓為:

式中:A為點聲源的源強系數;k為聲源的波數;m、n( m∈(-∞,∞),n ∈[-1,0]分別為x、z方向虛聲源的位置參數;ISmn表示激勵聲源或虛源(后面統一簡稱虛源);IS00特指聲源本身;i( i∈[1,2])表示側面1或側面2;j( j∈[1,3])表示各側面(有限長屏障)3條衍射邊;dEij IS mn是虛聲源ISmn到衍射邊Eij的距離;QISmn為復數形式;是用于計算聲波從ISmn到達受聲點之間經過的所有反射界面的總聲反射系數;QEij為聲線經Eij邊繞射后到達地面的反射系數;dEij IS mn為虛源ISmn到側面衍射邊上EijR點的距離;D( ISmn)為虛聲源經衍射邊Eij到受聲點R的單衍射系數;D( ISmn,R)為虛聲源經衍射邊Ei到虛受聲點R'的單衍射系數,單衍射系數計算公式為[18]:

式中:E1表示衍射邊;φini與φd表示傳輸到該邊位置的初始聲場和接受點處的衍射聲場;Gf(S E1)表示三維空間中兩位置S和E1的間的自由場格林函數,即為E1處的直達聲;V(ζ)可采用前節計算屏障衍射聲場計算公式,見式(16).

Q1( m)表示所經過的側面的復數聲波系數,Q2( n)表示所經過的地面的復數聲波反射系數.對于反射面的單次反射系數Qi,Lemire認為可以使用一個無限大界面上球面波反射場的近似解來求取,即[19]:

式中:Rpi為第i個反射面上的平面波反射系數.

式中:θmn表示從虛源ISmn到受聲點的聲波傳輸路徑在該反射面上的正入射角;iβ表示第i個界面的法向比聲納.式(19)中F( w)為界面損耗系數,可表示為[20-21]:

式中:erfc為余補誤差函數;w是數值距離參數,與虛源的階數m、n,入射角θmn以及相應的邊界有關,定義為:

2 應用實例與分析

為驗證本文提出的戶外噪聲相干預測模型的計算效率和準確性,以處于半開空間內某一電力變壓器組為例,計算其周圍的相干聲場.

前文給出了點聲源在半開空間內激發的聲場預測公式,實際計算電力變壓器組戶外輻射噪聲前,須將單個變壓器表面劃分成若干個單元,每個單元相當于一個點聲源.電力變壓器組布局圖見圖4.

圖4 電力變壓器組布局Fig.4 Layout of power transformer group

對于如圖4所示的電力變壓器組,現場多為不同相的變壓器集中布置,一般為A相、B相、C相間隔分布,對于其中的單個變壓器,根據現場測試和縮尺比例模型試驗得到其表面單元點聲源相位隨機分布的特點,各劃分點聲源按不相干聲源進行計算;而對于不同相的變壓器,各相鄰變壓器之間電壓由于存在一定的相位差120°,噪聲又由于電壓信號(激勵信號)經過該線性系統的固定傳遞函數產生,因此對于某個確定的分析頻率,則可認為在各個相鄰變壓器相同位置處的噪聲(響應信號)相位差亦為120°,即等效點聲源相位相差120°,需按相干聲源進行計算.

2.1 變壓器組戶外噪聲計算模型

根據本文提出的相干虛源模型建立變壓器組戶外噪聲計算模型.該模型由3個變壓器組成,按照A相、B相、C相間隔分布,反射面由4個平行的防火墻與剛性地面組成.各個變壓器尺寸相同,其本體高度為4.6m,寬為4.0m,長為8.9m,防火墻高度為6.8m,長為15m,防火墻之間距離為7.5m.電力變壓器中的防火墻與地面均為剛性反射面.考慮變壓器模型區域對稱性,計算場點網格區域大小設置為100m×100m,網格間距為2m×2m,高度設為1.5m,覆蓋模型區域的1/4.為與各方法的模型計算結果對比,在計算場點網格的45°對角方向距電力變壓器組中心由近至遠設置了25個測點,每個測點高度為1.5m,各測點橫坐標間距為2m.電力變壓器組尺寸與現場測點分布圖如圖5所示.

圖5 電力變壓器組尺寸與測點分布Fig.5 The size of power transformer group and distribution of measurment points

圖6 電力變壓器組點聲源分布Fig.6 Point source distribution around power transformer group

根據聲源的相位分布特點,將各個變壓器分別離散成35個均勻分布的點聲源,各個變壓器聲源的總聲功率設為95dBA,根據電力變壓器現場噪聲頻譜中優勢頻率為100Hz,選擇點聲源的計算頻率亦為100Hz,實際上,本文的聲學模型同樣適用于類似變壓器組中存在其他不同優勢頻率時的噪聲計算.電力變壓器各表面單元劃分的點聲源分布與幾何尺寸見圖6.現場噪聲測試圖片如圖7所示,測試區域選擇為電力變壓器組相對集中的區域,附近無其他明顯噪聲源影響.

圖7 電力變壓器組組區域現場噪聲測試圖片Fig.7 The scene when measuring noise in the area of power transformer group

2.2 結果與討論

分別利用邊界元算法、基于ISO9613的Cadna/A預測軟件和本文提出的戶外噪聲相干預測模型進行噪聲網格地圖的繪制,結果如圖8~圖10所示.

圖8 基于邊界元計算的噪聲網格分布Fig.8 Noise distribution grid based on the boundary element method

由圖8~圖10可知,邊界元法與本算法因為考慮了相位,反應了相干聲場的波動性,可以看出有明顯的干涉條紋,而利用ISO9613標準的Cadna/A預測軟件則無明顯的干涉條紋,是因為其算法中沒有考慮相干影響,只是能量的疊加.同時對比邊界元法和本算法繪制的噪聲地圖,聲壓級對應的顏色分布趨勢相同,吻合度較高.而在計算時間上,應用本文提出的戶外噪聲相干預測模型耗時36.8min,而邊界元法耗時160h,可見本算法的計算時間大大縮短.

利用本文噪聲相干預測模型、邊界元法、基于ISO9613標準的Cadna/A預測軟件對場點網格的對角方向的25個測點進行計算,并將其計算結果與實測值進行對比,結果如圖11所示.這里值得注意的是實測的聲壓級為所有頻率段的噪聲值累加,因本文考察的是100Hz,因此要根據其1/3倍頻程頻譜提取出100Hz對應的聲壓級.

圖9 基于ISO9613的噪聲網格分布(Cadna/A)Fig.9 Noise distribution grid based on the ISO9613(Cadna/A)

圖10 本計算模型的噪聲網格分布Fig.10 Noise distribution grid based on the proposed model

由圖11可知,相比邊界元法及實測的噪聲值,本相干預測模型計算測點的噪聲值誤差均較小,除了個別點達到3dB,其他各點誤差均在2dB以內,尤其當測點處于遠場時,其聲壓級誤差更小.ISO9613標準計算的聲壓級值能反映隨著測點不斷遠離聲源,其聲壓級不斷降低的趨勢.當測點距離聲源較近時,ISO9613標準計算結果平均值要低于其他方法計算的聲壓值,考慮為相干虛源的疊加效果明顯所致;而當測點距離聲源較遠時,ISO9613標準計算相比其它兩種計算方法結果又偏大,造成這種原因是該算法中的鏡像虛源法未考慮多次反射時,聲線與邊界面入射角度的變化引起反射損失逐漸增大的實際情形,造成ISO9613計算值偏高,而本文提出的計算模型誤差較小,更適合較遠距離戶外聲場的計算.

圖11 三種方法計算測點的聲壓值與實測值的對比Fig.11 Comparisons between the directly measured sound pressure values and that calculated by the proposed model,by the boundary element method,and by the ISO 9613.

4 結語

基于幾何衍射理論、相干虛源法等理論方法,提出一種適合于工程算法的戶外噪聲相干預測模型.該相干預測模型中提出的薄屏障衍射簡化工程算法基于Hadden-Pierce嚴格理論解,為聲場波動理論下的解析解,具有較高的計算精度;而提出的多重反射下的戶外相干虛源模型不僅能考慮到剛性或吸聲反射邊界,而且能考慮多次反射后由于入射角的改變導致平面波反射系數的變化影響,更符合實際聲傳播.因此該相干預測模型不僅理論上能準確計算聲源在經過有限長聲屏障或多重聲屏障時,由于多條路徑衍射聲形成的相干聲場,還可理論計算聲源在屏障等界面之間經多次反射后再衍射,或多個反射聲形成的相干聲場.

應用本文提出的戶外噪聲相干預測模型對某變電站電力變壓器周圍的相干聲場進行預測,結果表明,該戶外噪聲相干預測模型能反映出聲波在不同位置處的波動性,比原有的ISO9613模型更接近測試結果,證明了所提理論模型的有效性,可應用于大范圍的戶外相干噪聲預測計算.

[1]ISO 9613-2: 1996,Acoustics- Attenuation of sound during propagation outdoors- Part 2: General method of calculation[S].International Standards Organization,Genève,Switzerland,1996.

[2]Kuttruff H.Room acoustics[M].Applied Science Publishers Limited,London,3rd edn,1991.

[3]Lacerda D L A,Wrobel L C,Mansur W J.A dual boundary element formulation for sound propagation around barriers over an impedance plane[J].Journal of Sound and Vibration,1997,202(4):235-247.

[4]Duhamel D.Efficient calculation of the three-dimensional sound pressure field around a noise barrier[J].Journal of Sound and Vibration,1996,197(2):547-571.

[5]LMS.Sysnoise user’s manual[R].version 5.6LMS Numerical Technologies,2003.

[6]吳碩賢,趙越喆.建筑聲學與環境聲學[M].北京:科學出版社,2003.

[7]Keller J B.Geometrical theory of diffraction[J].Journal of the Optical Society of America,1962,52(2):116-130.

[8]Bies D A,Hansen C H.Engineering noise control theory and practice[C]//E & FN SPON,London & New York,2nd ed,1996.

[9]Lindqvist E A.Sound attenuation in larger factory spaces[J].Acustica,1982,50(2):313-328.

[10]Dance S M,Shield B M.The complete image-source method for the prediction of sound distribution in non-diffuse enclosed spaces[J].Journal of Sound and Vibration,1997,201(3):473-489.

[11]Dance S M,Roberts J P,Shield B M.Computer prediction inserton loss due to a single barrier in a non-diffuse empty enclosed spaces[J].J.Building Acoustics,1994(1):125-136.

[12]Gensane M,Santon F.Prediction of sound fields inrooms of arbitrary shape: validity of the image sources method[J].Journal of sound and Vibration,1979,63(5):97-108.

[13]Wang C,Bradley J S.A mathematical model for a single screen barrier in open-plan offices[J].Applied Applied Acoustics,2002,63(6):849-866.

[14]Lemire G,Nicolas J.Aerial propagation of spherical sound waves in bounded spaces[J].Journal of the Acounstical Society of America,1989,86(5):1845-1853.

[15]陳 妍,劉嘉俊,邱小軍.不同聲學邊界長空間內聲場傳播的相干模型[J].南京大學學報(自然科學),2010,46(1):26-33.

[16]李 楠,馮 濤,李賢徽,等.交通噪聲地圖的聲源反演及修正計算[J].中國環境科學,2013,33(6):1081-1090.

[17]Pierce,A D.Diffraction of sound around corners and over wide barriers[J].JASA,1974,55(5):941-955.

[18]閔鶴群.開放式辦公室內的聲場預測方法研究[D].南京:南京大學,2010.

[19]Attenborough K,Hayek S I,Lawther J M.Propagation of sound above a porous half space[J].Journal of the Acoustical Society of America,1980,68(5):1493-1501.

[20]Briquet M,Filippi P.Diffraction of a spherical wave by an absorbing plane[J].J.Acoust.Soc.Am.,1977,61(2):640-646.

[21]Embleton T F W.Tutorial on sound propagation outdoors[J].J.Acoust.Soc.Am.,1996,100(4):31-48.

Model for predicting outdoor coherent noise and its engineering application.


RUAN Xue-yun1,2*,WEI Hao-zheng2,LI Zhi-yuan2(1.School of Mechanical Engineering,Anhui University of Science and Technology,Huainan 232001,China;2.Institute of Sound and Vibration Research,HeFei University of Technology,Hefei 230009,China).China Environmental Science,2015,35(6):1877~1884

A model for predicting outdoor coherent noise based on the geometric diffraction theory and coherent image source method was presented.The proposed model was suitable to be used in the engineering algorithm.By using the proposed model,not only the coherent sound field formed by multiple paths diffraction when sound waves gone through a finite length barrier or multiple barrier,but also that formed by multiple reflections between interfaces of barriers,could be calculated.The proposed model was experimentally used to predict the coherent sound field around a power transformer in a substation,and the results of the proposed model were respectively compared with that predicted by using the ISO9613-2,that calculated by using the boundary element method,and the directly measured values.The comparisons showed that the proposed model was valid and could be used for predicting outdoor noise in a wide range.Furthermore,the comparisons showed that the proposed model could reflect the fluctuations of sound waves at different locations,and could give predictions closer to the measured values than the ISO9613-2model.

coherent sound field;noise prediction model;acoustic diffraction;reflected sound;coherent image source method;engineering algorithm

X827

A

1000-6923(2015)06-1877-08

阮學云(1978-),男,安徽樅陽人,副教授,博士,主要從事機械系統動力學及低噪聲設計研究.發表論文20余篇.

2014-11-20

國家“十一五”科技支撐計劃(2006BAA02A21)

* 責任作者,副教授,ruanxueyun@163.com

猜你喜歡
變壓器模型
一半模型
理想變壓器的“三個不變”與“三個變”
重要模型『一線三等角』
重尾非線性自回歸模型自加權M-估計的漸近分布
開關電源中高頻變壓器的設計
3D打印中的模型分割與打包
一種不停電更換變壓器的帶電作業法
變壓器免維護吸濕器的開發與應用
FLUKA幾何模型到CAD幾何模型轉換方法初步研究
基于RFE-SA-SVM的變壓器故障診斷
主站蜘蛛池模板: 一级高清毛片免费a级高清毛片| 久久成人18免费| 456亚洲人成高清在线| 久久青草热| 欧美性爱精品一区二区三区| AV无码国产在线看岛国岛| 欧美三级自拍| 亚洲有码在线播放| 免费a级毛片视频| 国产精品久久久久久搜索| 国产精品大白天新婚身材| 中文字幕人妻av一区二区| 丁香五月激情图片| 久久99精品国产麻豆宅宅| 久久这里只精品热免费99| 国产精选小视频在线观看| 国产成人a在线观看视频| 色婷婷狠狠干| 亚洲无码视频图片| 在线国产三级| 亚洲视频三级| 亚洲乱码视频| 欧美国产菊爆免费观看| 国产白浆视频| 亚洲自拍另类| 免费看久久精品99| 欧美色综合网站| 日韩精品成人在线| 四虎在线观看视频高清无码| 国产精品成人第一区| 亚洲AV成人一区二区三区AV| 四虎永久免费地址在线网站 | 久久永久视频| 91激情视频| 久久精品亚洲专区| 亚洲乱码在线视频| 亚洲毛片一级带毛片基地| 午夜精品久久久久久久无码软件 | 国产人前露出系列视频| 一区二区三区四区精品视频 | 真实国产乱子伦高清| 欧美日韩中文字幕二区三区| 国产玖玖视频| 久久国产亚洲欧美日韩精品| 国产福利小视频在线播放观看| 国产乱子伦视频在线播放| 毛片在线播放网址| 一本大道视频精品人妻 | 97亚洲色综久久精品| 欧美在线导航| 日韩毛片免费| 国产h视频在线观看视频| 国产精品成人一区二区不卡| 国产日韩精品一区在线不卡 | 国内精品伊人久久久久7777人| 人禽伦免费交视频网页播放| 久久99国产综合精品1| 狠狠五月天中文字幕| 精品国产香蕉在线播出| 欧美乱妇高清无乱码免费| 狂欢视频在线观看不卡| av色爱 天堂网| 91综合色区亚洲熟妇p| 欧美亚洲激情| 91免费观看视频| 91av成人日本不卡三区| 免费毛片全部不收费的| 婷婷亚洲最大| 亚洲精品成人片在线播放| 久久网欧美| 日韩在线第三页| 台湾AV国片精品女同性| 毛片网站在线播放| 欧美午夜性视频| 十八禁美女裸体网站| 国产亚洲男人的天堂在线观看 | 久久国产乱子伦视频无卡顿| 国产91高清视频| 亚洲第一极品精品无码| 亚洲中文字幕23页在线| 中文字幕日韩丝袜一区| 亚洲日韩精品伊甸|