999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

加權Dirichlet空間上Toeplitz算子的緊性與Fredholm性質

2015-12-21 14:44:00錦,胡
廣州大學學報(自然科學版) 2015年6期
關鍵詞:普通高校數學

夏 錦,胡 坤

(廣州大學a.數學與信息科學學院;b.數學與交叉科學廣東普通高校重點實驗室,廣東廣州 510006)

夏錦a,胡坤b

(廣州大學a.數學與信息科學學院;b.數學與交叉科學廣東普通高校重點實驗室,廣東廣州510006)

利用對數加權Bloch空間和對數加權小Bloch空間,刻畫了加權Dirichlet空間上Toeplitz算子的有界性、緊性與Fredholm性質,討論了Toeplitz算子的譜性質,計算了Toeplitz算子的Fredholm指標.

加權Dirichlet空間;Toeplitz算子;緊性;Fredholm指標

1 Introduction and prelim inaries

We deal with compactness of Toeplitz,little Hankel and Hankel operators.The results of compactness of these operator on Dirichlet space D2,can be found in CAO[5],ZHAO[6].Herewe obtain some useful sufficient condition for compactness of Toeplitz,little Hankel and Hankel operators onOur proof is partly based on some estimates in connection with logarithmic weighted bounded mean oscillation which is similar to bounded mean oscillation in ZHU[3].More information of Toeplitz operators refers to Refs[7-13].

2 Bounded and com pact Toeplitz,little Hankel and Hankel operators

We first recall some results on bounded mean oscillation in Bergman metric,more facts and proof in Ref.[2].

The Bergman metric is also M?bius invariant:

be the Bergman metric disk with center z and radius r.It is well known that D(z,r)is a Euclidean disk with Euclidean center and radius

where s=tanh r∈(0,1).A functionφ∈L1is called

3 Fredholmness and index

A bounded linear operator A on a Banach space X is said to be Fredholm if both its kernel and cokernel are finite-dimensional;the index of a Fredholm operator is defined by

Ind A=dim ker A-dim coker A.

We also define thewinding number of a nonvanishing continuous function u(z)by

References:

[1]WANG X F,XIA J,CAO G F.Some properties of Toeplitz operators on Dirichlet space Dp[J].Acta Math Sci,2012,32(2):395-403.(in Chinese)

[2]ZHU K.Operator Theory on the Function spaces[M].New York:Marcel Dekker,1990.

[3]ZHU K.Multipliers of BMO in Bergman metrics with applications to Toeplitz operators[J].J Funct Anal,1989,87(1):31-50.

[4]TASKINEN J,VIRTANEN JA.Spectral theory of Toeplitz and Hankel operators on the Bergman space A1[J].New York J Math,2008,34:305-323.

[5]CAO G F.Fredholm properties of Toeplitz operators on Dirichlet spaces[J].Pacif JMath,1999,2:209-223.

[6]ZHAO L K.Hankel operators on the Dirichlet space[J].JMath Anal Appl,2009,352:767-772.

[7]B?TTCHER A,SILBERMANN B.Analysis of Toeplitz operators[M].Berlin:Springer Monographs in Mathematics,Springer-Verlag,2006.

[8]PAPADIMITRAKIS M,VIRTANEN JA.Hankel and Toeplitz transforms on H1:Continuity,compactness and Fredholm properties[J].Integr Eq Oper Theory,2008,61(4):573-591.

[9]COBURN L A.Singular integral operators and Toeplitz operators on odd spheres[J].Indian Univ Math J,1973/1974,23:433-439.

[10]MCDONALD G,SUNDBERG C.Fredholm properties of a class of Toeplitz operators on the ball[J].Indian Univ Math J,1977,26(3):567-576.

[11]DOUGLASR G.Banach algebraic techniques in operators theory(vol.128)[M].New York:Springer-Verlag,1971.

[12]UPMEIER H.Toeplitz operators and index Theory in several complex variables[M].Basel:Birkh?user,1996.

[13]CAO G F.Toeplitz operators and algebras on Dirichlet spaces[J].Chin Ann Math,2002,23B(3):385-396.

【責任編輯:周全】

date:2015-10-20;Revised date:2015-11-09

Com pact and Fredholm Toeplitz operators on weighted Dirichlet space

XIA Jina,HU Kunb

(a.School of Mathematics and Information Sciences;b.Key Laboratory of Mathematics and Interdisciplinary Sciences of the Guangdong Higher Education Institute,Guangzhou University,Guangzhou 510006,China)

In this paper,boundedness and compactness of the Toeplitz operators on the weighted Dirichlit space D1αare characterized with logarithmic weighted Bloch space and little logarithmic weighted Bloch space.The spectra properties of the Toeplitz operators are discussed.The Fredholm index of Toeplitz operators are computed.

weighted Dirichlet space;Toeplitz operator;compactness;Fredholm index

O 177 Document code:A

O 177

A

1671-4229(2015)06-0001-08

Biography:XIA Jin(1973-),female,associate professor,Ph.D.E-mail:2695931921@qq.com

猜你喜歡
普通高校數學
2018年—2020年部分普通高校(本科)在晉招生錄取統計表(不含2C)
我們愛數學
對普通高校體育教學改革的理論思辨
普通高校音樂教育教學改革探析
北方音樂(2017年4期)2017-05-04 03:40:25
簡論多球練習在普通高校網球訓練中的作用
運動(2016年7期)2016-12-01 06:34:28
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
普通高校健美操教學改革探討
人間(2015年19期)2016-01-04 12:46:56
數學也瘋狂
論普通高校國防教育課程體系的構建
主站蜘蛛池模板: 99热这里只有免费国产精品| 精品無碼一區在線觀看 | 中文字幕永久在线看| 精品无码一区二区三区电影| 国产成人精品无码一区二| 亚洲色图另类| a级毛片免费看| JIZZ亚洲国产| 色爽网免费视频| 亚洲精品成人7777在线观看| 国产成本人片免费a∨短片| 99人妻碰碰碰久久久久禁片| www.国产福利| 麻豆精品在线视频| 免费在线视频a| 久久无码高潮喷水| 欧美a网站| 中字无码av在线电影| 午夜毛片免费观看视频 | 欧美亚洲欧美区| 青青草原偷拍视频| 97成人在线视频| 亚洲A∨无码精品午夜在线观看| 国内精自视频品线一二区| 精品亚洲国产成人AV| 日韩中文精品亚洲第三区| 又黄又湿又爽的视频| 在线精品亚洲国产| 国产精品刺激对白在线| 日本道中文字幕久久一区| 青青操国产| 91成人在线观看| 亚洲最大在线观看| 国产精品深爱在线| 四虎影视库国产精品一区| 91国内视频在线观看| 成人免费午间影院在线观看| 久久国产高清视频| 看av免费毛片手机播放| 欧美啪啪网| 在线播放精品一区二区啪视频| 国产午夜福利在线小视频| 成人福利在线视频免费观看| 成人精品视频一区二区在线| 91精品啪在线观看国产91| 国产黄色片在线看| 国产尤物在线播放| 久久99热66这里只有精品一| 国产精品自在在线午夜| 国产欧美日韩另类精彩视频| 亚洲日韩高清无码| 真人高潮娇喘嗯啊在线观看| 欧美精品v欧洲精品| 美女扒开下面流白浆在线试听| 国产精品尤物铁牛tv | 91福利在线观看视频| 国产成人精品第一区二区| 国产网站免费观看| 日韩天堂网| V一区无码内射国产| 72种姿势欧美久久久大黄蕉| 亚洲无码A视频在线| 一级毛片在线直接观看| 深夜福利视频一区二区| 国产在线一区视频| 极品国产一区二区三区| 国产精品9| 人人爱天天做夜夜爽| 激情無極限的亚洲一区免费| 亚洲热线99精品视频| 99在线观看视频免费| 欧美翘臀一区二区三区| 欧美日韩国产一级| 精品国产网| 伊人激情综合| 国产手机在线小视频免费观看 | 久久久黄色片| 国产欧美亚洲精品第3页在线| 国产va在线观看免费| 日韩国产综合精选| 亚洲专区一区二区在线观看| 国产网友愉拍精品|