?
綜述
MicroRNAs通過BMP/TGF-β信號通路調節骨形成的研究進展
張靜龔逸明
(復旦大學附屬中山醫院口腔科,上海200032)
The Progress of microRNAs in Osteogenisis by Regulating BMP/TGF-β Signaling Pathway
ZHANGJingGONGYiming
DepartmentofStomatology,ZhongshanHospital,FudanUniversity,Shanghai200032,China
1microRNAs在骨形成中的作用
microRNAs(miRNAs)是一類內源性單鏈小分子(~22nt)非編碼RNA序列,通過抑制靶基因轉錄及下調蛋白表達在多種生理和病理過程中起到重要的調控作用[1]。越來越多的研究表明,miRNAs在干細胞工程中具有潛在的應用價值,同時參與并調節骨形成和骨重建[2],如:miR-96促進MC3T3-E1細胞成骨分化,而miR-125 b可以通過下調Cbfβ表達抑制C3H10T1/2 細胞增殖和成骨分化[3-4], miR-21過表達的骨髓間充質干細胞可以加速大鼠閉合性股骨骨折愈合[5],轉染miR-26a的脂肪來源干細胞結合羥基磷灰石(HA)支架能夠顯著促進大鼠脛骨骨缺損中的新骨形成,因此結合miR-26a的骨替代體在骨缺損修復中具有可觀的治療潛能[6]?;|干細胞具有自我更新和多分化潛能,在不同條件下可以分化多種細胞,包括成骨細胞、軟骨細胞和脂肪細胞[5]。miRNAs具有調節并決策基質干細胞分化方向的能力。過表達miRNA-22能夠抑制靶基因HDAC6,進而促進人脂肪來源基質干細胞成骨分化而抑制其成脂分化[7]。miR-146a過表達促進胎兒股骨干細胞成骨分化而抑制其成軟骨分化[8]。以上研究均表明,miRNAs具有嚴格的調控機制,在成骨分化及骨形成方面發揮重要的調節作用。
2骨形成蛋白/轉化生長因子β(BMP/TGF-β)信號通路調節骨形成
2.1BMP/TGF-β信號通路組成及作用機制BMP/TGF-β信號通路廣泛參與多種生物學過程,在哺乳類動物骨形成中起到重要的調控作用[9]。BMP/TGF-β信號轉導包括經典的Smads蛋白依賴的信號通路(包括BMP/TGF-β配體、受體和Smads)及不依賴Smads的非經典通路(如p38MAPKs)。經典的BMP/TGF-β信號通路首先與相應的BMP或TGF受體結合,分別激活Smad 1/5/8或Smad 2/3,磷酸化的Smad 1/5/8或Smad 2/3與Smad 4蛋白結合形成復合體,該復合體進入細胞核以直接或間接方式活化成骨特異性轉錄因子如(Runx2),繼而促進成骨分化和骨形成[9-10]。此外,BMP/TGF-β通路還可通過與其他成骨相關通路如 Wnt、MAPK、Notch、Hedgehog (Hh)等交互作用在骨組織代謝中發揮調節作用[11]。
2.2BMP/TGF-β信號通路對骨形成的影響BMP/TGF-β信號通路參與并精細調節骨形成過程,同時任何干擾BMP/TGF-β信號通路及相關調節因子的因素都可能造成骨形成障礙及發育不全。已有研究[12]表明, BMPs (BMP 2、BMP 4、BMP 6、BMP 7、BMP 9)能夠誘導干細胞成骨分化,促進骨和軟骨形成,在骨愈合、生物工程及再生醫學方面具有重要的應用潛能。其中,BMP 2和BMP 4缺失可導致小鼠四肢嚴重發育不全[13]。而TGF-β受體(TGFβR1和TGFβR2)的缺失造成小鼠長骨、軟骨缺陷;Smads蛋白如Smad 1敲除的小鼠則異位軟骨形成,成骨細胞增殖、分化受損[14-15]。
3miRNAs經BMP/TGF-β信號通路對骨形成的調控作用
3.1調節Smads蛋白Smads蛋白在經典的BMP/TGF-β信號通路中發揮重要的功能。Wu等[16]研究發現,在BMP 2誘導的成骨分化中,miR-30家族成員顯著下調;進一步研究表明,miR-30家族成員直接作用于Smad 1和Runx2,進而抑制骨形成。同樣,miR-199a可通過顯著抑制Smad 1的表達而抑制C3H10T1/2干細胞的早期軟骨分化[17]。而Li等[18]在BMP 2誘導的C2C12細胞成骨分化中發現,miR-133和miR-135表達下調,兩者分別作用于Runx2和Smad 5,協同抑制骨形成。miR-21通過抑制 Smad 7(BMP信號通路抑制劑),促進BMP 9誘導的小鼠多能細胞成骨分化[12]。Cheung等[8]發現,miR-146a過表達后,Smad 2/3下調,而Smad 2/3的抑制促進Smad 1/5/8上調,進而上調轉錄因子Runx2,促進胎兒股骨干細胞成骨分化,但軟骨相關基因SOX9表達下調,導致軟骨形成被抑制。
3.2調節BMPs及其受體miRNAs可以通過調節BMPs及其受體調控骨形成。Liao等[19]研究發現,BMP-2 和miR-148b共表達的脂肪來源干細胞可以促進其自身成骨分化,加速裸鼠顱骨缺損(直徑達 4 mm)的骨愈合和骨改建。在對Satb 2誘導小鼠骨髓基質干細胞成骨分化的研究中發現,miR-27表達下降而其靶基因BMP 2、 BMPR1A等升高,過表達miR-27則顯著抑制骨形成,說明miR-27可能通過BMP/TGF-β信號通路調節骨形成[20]。同樣,miR-140-5p 和miR-654-5p 可通過直接抑制靶點BMP-2的表達而抑制基質干細胞的成骨分化[21-22]。miR-542-3p 則可通過抑制BMP 7及其調控信號通路而抑制成骨細胞增殖和分化[23]。
miRNAs也可以通過調節BMP信號通路抑制因子調控骨形成。Zhang等[24]研究表明,miR-20a能下調抑制劑PPARγ、 Bambi 、 crim 1,進而增強BMP/Runx2 信號通路,促進人基質干細胞成骨分化。miR-15b直接作用于Smurf 1,通過抑制其降解成骨轉錄因子Runx2而促進成骨細胞分化[25]。
3.3調節TGF-β相關因子Mizuno等[26]發現,miR-210能夠促進BMP-4誘導的成骨細胞分化。其機制是: miR-210通過抑制ACVR1B的表達而抑制TGF-β/activin信號通路,從而促進ST2細胞骨形成。miR-29b 能直接下調TGFβ-3、 ACVR2A等成骨抑制因子,進而促進MC3T3細胞成骨分化[27]。miR-181a能通過抑制TGF-βI和TβR-I/Alk5而促進C2C12和MC3T3細胞成骨分化[28]。以上研究表明,多種miRNAs可以參與調節BMP/TGF-β信號通路而對骨形成起到重要的調控作用。
4小結
綜上所述,在骨形成這一復雜、精細的調控網絡中,miRNAs發揮著不可或缺的重要調節作用。miRNAs通過參與并調節BMP/TGF-β信號通路影響骨形成,但其僅限于細胞和動物實驗研究中,而臨床應用尚未得到證實。隨著研究的不斷深入,許多問題尚待解決:成骨相關miRNAs如何被啟動并作用于骨相關特異性轉錄因子? LncRNAs等非編碼RNAs是否參與調控骨形成過程?過表達或沉默的相關miRNAs對成骨調節的起效時間和維持時間及其在臨床骨缺損或發育異常上的應用如何?總之,miRNAs的研究還處于起步階段,其在骨形成方面及其他領域都需要進行更深入的研究和探索,進而更好地服務于臨床。
參考文獻
[ 1 ]Xu JF, Yang Gh, Pan XH, et al. Altered microRNA expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells[J]. PloS One,2014,9(12):e114627.
[ 2 ]Arfat Y, Xiao WZ, Ahmad M, et al. Role of micrornas in osteoblasts differentiation and bone disorders[J]. Curr Med Chem,2015,22(6): 748-758.
[ 3 ]Huang K, Fu J, Zhou W, et al. MicroRNA-125b regulates osteogenic differentiation of mesenchymal stem cells by targeting Cbfβ in vitro[J]. Biochimie,2014,102:47-55.
[ 4 ]Yang M, Pan Y, Zhou Y. miR-96 promotes osteogenic differentiation by suppressing HBEGF-EGFR signaling in osteoblastic cells[J]. FEBS Lett, 2014,588(24):4761-4768.
[ 5 ]Sun Y, Xu L, Huang S, et al. Mir-21 overexpressing mesenchymal stem cells accelerate fracture healing in a rat closed femur fracture model[J]. Biomed Res Int,2015:412327.
[ 6 ]Wang Z, Zhang D, Hu Z, et al. MicroRNA-26a-modified adipose-derived stem cells incorporated with a porous hydroxyapatite scaffold improve the repair of bone defects[J]. Mol Med Rep,2015,12:3345-3350.
[ 7 ]Huang S, Wang S, Bian C, et al. Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression[J]. Stem Cells Dev, 2012, 21(13): 2531-2540.
[ 8 ]Cheung KS, Sposito N, Stumpf PS, et al. MicroRNA-146a regulates human foetal femur derived skeletal stem cell differentiation by down-regulating SMAD2 and SMAD3[J]. PloS One,2014,9(6):e98063.
[ 9 ]Chen G, Deng C, Li YP. TGF-β and BMP signaling in osteoblast differentiation and bone formation[J]. Int J Biol Sci,2012,8(2):272.
[10]Rahman MS, Akhtar N, Jamil HM, et al. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation[J]. Bone Res,2015,3: 15005.
[11]Lin GL, Hankenson KD. Integration of BMP, Wnt, and notch signaling pathways inosteoblast differentiation[J]. J Cell Biochem,2011,112(12): 3491-3501.
[12]Song Q, Zhong L, Chen C, et al. miR-21 synergizes with BMP9 in osteogenic differentiation by activating the BMP9/Smad signaling pathway in murine multilineage cells[J]. Int J Mol Med,2015,36(6):1497-1506.
[13]Bandyopadhyay A, Tsuji K, Cox K, et al. Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis[J]. PLoS Genet,2006,2(12):e216.
[14]Matsunobu T, Torigoe K, Ishikawa M, et al. Critical roles of the TGF-β type I receptor ALK5 in perichondrial formation and function, cartilage integrity, and osteoblast differentiation during growth plate development[J]. Dev Biol,2009,332(2):325-338.
[15]Wang M, Jin H, Tang D, et al. Smad1 plays an essential role in bone development and postnatal bone formation[J]. Osteoarthr Cartilage,2011, 19(6):751-762.
[16]Wu T, Zhou H, Hong Y, et al. miR-30 family members negatively regulateosteoblast differentiation[J]. J Biol Chem,2012,287(10):7503-7511.
[17]Lin EA, Kong L, Bai XH, et al. miR-199a, a bone morphogenic protein 2-responsive microRNA, regulates chondrogenesis via direct targeting to Smad1[J]. J Biol Chem,2009,284(17):11326-11335.
[18]Li Z, Hassan MQ, Volinia S, et al. A microRNA signature for a BMP2-induced osteoblast lineage commitment program[J]. PNatl Acad Sci USA,2008,105(37):13906-13911.
[19]Liao YH, Chang YH, Sung LY, et al. Osteogenic differentiation of adipose-derived stem cells and calvarial defect repair using baculovirus-mediated co-expression of BMP-2 and miR-148b[J]. Biomaterials,2014,35(18): 4901-4910.
[20]Gong Y, Xu F, Zhang L, et al.MicroRNA expression signature for Satb2-induced osteogenic differentiation in bone marrow stromal cells[J]. Mol Cell Biochem,2014,387(1-2):227-239.
[21]Hwang S, Park SK, Lee HY, et al. miR-140-5p suppresses BMP2-mediated osteogenesis in undifferentiated human mesenchymal stem cells[J]. FEBS Lett,2014,588(17):2957-2963.
[22]Wei JQ, Chen H, Zheng XF, et al. Hsa-miR-654-5p regulates osteogenic differentiation of human bone marrow mesenchymal stem cells by repressing bone morphogenetic protein 2[J]. Journal of Southern Medical University, 2012,32(3): 291-295.
[23]Kureel J, Dixit M, Tyagi AM, et al. miR-542-3p suppresses osteoblast cell proliferation and differentiation, targets BMP-7 signaling and inhibits bone formation[J]. Cell Death Dis,2014,5(2):e1050.
[24]Zhang JF, Fu WM, He ML, et al. MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling[J]. RNA Biol,2011,8(5):829-838.
[25]Vimalraj S, Partridge NC, Selvamurugan N. A Positive Role of MicroRNA‐15b on Regulation of Osteoblast Differentiation[J]. J Cell Physiol,2014,229(9):1236-1244.
[26]Mizuno Y, Tokuzawa Y, Ninomiya Y, et al. miR-210 promotes osteoblastic differentiation through inhibition of AcvR1b[J]. FEBS Lett,2009,583(13): 2263-2268.
[27]Li Z, Hassan MQ, Jafferji M, et al. Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation[J]. J Biol Chem,2009,284(23):15676-15684.
[28]Bhushan R, Grünhagen J, Becker J, et al. miR-181a promotes osteoblastic differentiation through repression of TGF-β signaling molecules[J]. Int J Biochem Cell B,2013,45(3):696-705.
中圖分類號R783
文獻標志碼A
通訊作者龔逸明,E-mail: gongymingi@aliyun.com