張義飛,畢琪,楊允菲,張忠輝,胡長群,楊雨春,趙珊珊,王相剛
(1.吉林省林業科學研究院,吉林 長春 130033;2.東北師大附屬中學,吉林 長春 130022;3.東北師范大學生命科學學院,
吉林 長春 130024;4.敦化市明星特產科技開發有限公司,吉林 敦化133000)
松嫩平原鹽堿化羊草群落中AM真菌物種資源及侵染率研究
張義飛1*,畢琪2,楊允菲3,張忠輝1,胡長群1,楊雨春1,趙珊珊1,王相剛4
(1.吉林省林業科學研究院,吉林 長春 130033;2.東北師大附屬中學,吉林 長春 130022;3.東北師范大學生命科學學院,
吉林 長春 130024;4.敦化市明星特產科技開發有限公司,吉林 敦化133000)
摘要:本研究在松嫩平原西部12個地區15個重度鹽堿化草地中,調查了羊草群落天然斑塊中AM真菌的種類和分布、AM真菌羊草根系的侵染能力及土壤pH值的影響。共分離出AM真菌4屬11種,其中球囊霉屬(Glomus)占總物種數的72.42%,在各調查樣點中出現頻度最高,其中摩西球囊霉(G. mossea)出現頻度達100.0%。土壤pH強烈抑制鹽堿化草地中羊草天然群落斑塊中AM真菌的物種豐富度,但對孢子密度的影響未達到顯著水平。AM真菌對羊草根系的侵染頻率和侵染強度顯著正相關。AM真菌對羊草根系的侵染頻率和侵染強度隨著AM物種數量的增加而增強,隨著土壤pH的增加而下降。在鹽堿化羊草地中存在較豐富的侵染羊草根系的AM真菌資源,研究結果為篩選和利用耐鹽堿AM真菌菌株以恢復和重建松嫩鹽堿化羊草草地生態系統提供了理論依據。
關鍵詞:叢枝菌根真菌;鹽堿化草地;羊草;土壤pH;物種豐富度
Arbuscular mycorrhizal fungi diversity in saline-alkalineLeymuschinensisgrasslands on the Songnen Plain
ZHANG Yi-Fei1*, BI Qi2, YANG Yun-Fei3, ZHANG Zhong-Hui1, HU Chang-Qun1, YANG Yu-Chun1, ZHAO Shan-Shan1, WANG Xiang-Gang4
1.JilinAcademyofForestryScience,Changchun130033,China; 2.HighSchoolAttachedtoNortheastNormalUniversity,Changchun130022,China; 3.SchoolofLifeScience,NortheastNormalUniversity,Changchun130024,China; 4.DunhuaStarLocalProductsTechnologyDevelopmentCo.Led.,Dunhua133000,China
Abstract:Arbuscular mycorrhizal fungi (AMF) are beneficial microorganisms, distributed widely in many different soil types. The investigation of species diversity of AMF in extreme environments is a rapidly developing area of research because of the potential benefits for ecosystem restoration. Screening for effective arbuscular mycorrhizal fungi species is regarded as an important approach to successful revegetation. The identification of arbuscular mycorrhizal species and their distribution were investigated in 15 natural saline-alkaline Leymus chinensis grasslands in 12 regions of the western Songnen Plain. The occurrence frequency, species richness and spore density were also investigated. The ability of AMF to infect roots of L. chinensis, including colonization rate and infection intensity, and the effect of soil pH were measured. In total, 11 species from 4 different families were identified; 72.4% of species belonged to Glomus. One species, G. mossea, was found at all sites. High soil pH strongly decreased AMF species richness in natural saline-alkaline communities of L. chinensis, but did not affect spore density. Disturbance of soil through erosion may be an important factor influencing spore density in soil because AMF spores were seldom detected in bare soil where the surface had been significantly disturbed. Root colonization rate was positively correlated with infection intensity. The infection of L. chinensis roots was increased with increasing AMF species richness, depressed by increasing soil pH. Our research indicated that there was an abundance of AMF species in saline-alkaline grassland able to infect roots of L. chinensis, and suggested approaches for screening saline-alkaline tolerant AMF species with the potential to help restore the degraded grassland ecosystem on the Songnen Plain.
Key words:arbuscular mycorrhizal fungi; saline-alkaline grassland; Leymus chinensis; soil pH; species richness
叢枝菌根(arbuscular mycorrhizal,AM)真菌是一類廣泛分布于土壤中的有益微生物[1-3]。由于進化歷程和生存條件的差異,不同區域的AM真菌己適應了當地環境條件和寄主植物,其種類和分布表現出地域和生境差異,形成豐富的種質資源[4-7]。近年來,在鹽堿地、退化草地、重金屬污染土壤、荒漠土地、工業污染區等極端生境中調查AM真菌資源成為研究熱點[8-10]。極端環境中的AM真菌因具有獨特的生物學特性,可能具有較高的應用價值,如利用AM真菌修復退化生態系統[11-14]。了解AM真菌的資源分布,是進一步開發利用該類微生物的基礎。
吉林西部草地位于松嫩草地西端,因過度開墾放牧及全球氣候變暖等因素的影響,該區草原生態系統嚴重退化,主要表現為不同程度的鹽堿化。羊草(Leymuschinensis)作為該區草地的優勢物種,其優勢地位隨鹽堿化程度的加深不斷下降,恢復難度也隨鹽堿化程度的加深而增加。人們發現土壤中缺乏AM真菌可能是某些植被恢復困難的原因之一[15],因此篩選適于土壤條件的AMF有效菌種對成功應用菌根技術恢復植被十分重要[16]。有研究表明,從鹽堿生境中篩選的AM菌種往往具有較高的耐鹽性和生長能力,這些具有高耐鹽能力的AM菌種,在促進重度鹽堿化草地的植被恢復中具有應用潛力[17]。因此,本研究在松嫩平原西部多個重度鹽堿化草地中,調查了羊草天然群落斑塊中AM真菌的種類和分布;AM真菌羊草根系的侵染能力及土壤pH值的影響,以期為篩選和利用耐鹽堿AM真菌菌株,恢復和重建松嫩鹽堿化羊草草地生態系統提供理論依據。
1材料與方法
2005年9月調查了吉林省西部12個地區15個群落(圖1,表1):松原地區的烏蘭圖嘎羊草群落、紅星牧場羊草群落、長嶺種馬場羊草群落、查干湖畔蒙古屯羊草群落、大遐牧場羊草群落、東三家子羊草群落和鹽堿化羊草群落,白城地區的姜家甸羊草群落和羊草+雜類草群落、通榆前程羊草群落、北大崗貝加爾針茅(Stipabaicalensis)+羊草群落和羊草+雜類草群落、鎮賚種羊場羊草群落、青山村羊草群落,內蒙古興安盟羊草群落。

圖1 采樣地點地理分布Fig.1 The distribution of investigation sites
選取當地羊草代表性群落,因選取的群落較為均勻一致,故取樣面積為25 cm×25 cm,3個重復樣方。移去羊草地上部后,去掉約2 cm厚的表土層。考慮到羊草根系的分布深度,取20~30 cm根系和土壤。挑出根系后即刻置于FAA固定液中備用。混勻土樣后取約2 kg土裝入袋中。記錄采樣人、采樣時間、地點、周圍環境等。
采用KOH透明-乳酸甘油酸性品紅染色法染色。首先將根系用蒸餾水沖洗2~3次,然后切成1 cm左右長度的根段。將根段放入10% KOH溶液中,水浴(90℃)60 min,蒸餾水沖洗2次。隨后放入堿性雙氧水中軟化20 min,水洗后在2%的鹽酸中酸化3~4 min。然后在90℃水浴鍋中用酸性品紅染色30 min。取出樣根,放在乳酸甘油(1∶1)中浸泡脫色。隨機選取50條根段,壓片,在顯微鏡下觀察每條根的侵染長度(以mm記錄),并記錄被侵染的根系數量。依據下列公式計算AM菌對羊草根系的侵染情況[18]:
侵染頻率(colonization rate,CR%)=(侵染根段數/總根段數)×100
侵染強度(infection intensity,II%)=(侵染根長/總根長)×100
采樣點Sampling site:烏蘭圖嘎 Wulantuga,紅星牧場 Hongxing Pasture,種馬場北甸子 North Meadow of Studhorse Farm,查干湖畔蒙古屯 Mongolia Village near Chagan Lake,大遐牧場 Daxia Pasture,東三家子 Dongsanjiazi,姜家甸 Jiangjiadian,通榆前程 Qiancheng of Tongyu,北大崗Beidagang,鎮賚種羊場 Zhenglai Stud Farm,青山村 Qingshan Village,興安盟 Hinggan League.
城市 City:長春 Changchun,哈爾濱 Harbin,烏蘭浩特 Ulanhot,白城 Baicheng,大慶 Daqing,吉林 Jilin.
河流 River:嫩江 Nenjing,松花江 Songhua River,第二松花江 Second Songhua River,西遼河 West Liaohe River.
圖標 Icon:采樣點 Sample spot,省會 Provincial capital,地級市 Prefecture-level city,河流、湖泊 River and lake,省界 Provincial boundary.
采用濕篩傾析-蔗糖離心法[19]。用四分法取20 g土樣,放入大燒杯中加水攪拌。靜置10 s后過篩。將篩出物裝入玻璃離心管中,以3000 r/min轉速離心3 min。離心后去掉上清液,加入50%蔗糖攪勻,再次以3000 r/min轉速離心1.5 min。上清液過400 目篩后獲得孢子。在體視顯微鏡下于培養皿內分格計數,測定孢子密度(spore density,SD)。
在體視顯微鏡下先觀察并記錄孢子的顏色、大小、連孢菌絲特征等。再用吸管挑取孢子于載玻片上,加浮載劑封片后在綜合顯微鏡下觀察并測定孢子的顏色、大小、孢壁顏色、類型、厚度、內含物性質等特征。使用Melzer’s試劑,觀察孢子的特異反應,對有代表性或特異性的特征進行拍照。最后根據 Schenck和Perez[20](1988)的“VA 菌根真菌鑒定手冊”,國際叢枝菌根真菌保藏中心(INVAM)網站上提供的物種描述,參閱鑒定材料和近幾年發表的新種、新記錄種等資料進行AM真菌種屬的檢索和鑒定。對于難以確定的種或可能的新種、新記錄種作單孢培養,在獲得大量同源孢子后,按照上述步驟重新進行鑒定。
依據調查數據,計算了AM真菌的出現頻度(F),即某菌種在所有樣點總體中的出現率[21];物種豐富度(SR),即統計某樣點60 g土壤中含有的AM真菌物種的數目[22];孢子密度(SD),即計數每20 g觀測土樣內所有AM真菌物種的孢子總數。
取10 g風干土,用10 mL去離子水浸泡(1∶1水土比),振蕩3 min后靜止30 min,取上清液測量pH值(PHS-3C型精密pH計)。
使用SPSS 19.0進行數據統計,SigmaPlot 10繪圖。采用線性回歸法,分析了侵染頻率與侵染強度之間的關系;土壤pH對物種豐富度、孢子密度、侵染頻率和侵染強度的影響;以及物種豐富度對侵染頻率和侵染強度的影響。孢子密度數據進行平方根轉換,以保證數據的正態分布。所有檢驗的顯著性水平為P=0.05。

表1 羊草根際土壤AM真菌資源調查地點信息
2結果與分析
從吉林省西部鹽堿化羊草天然群落的45個土樣中,共分離出AM真菌4屬11種。其中球囊霉屬(Glomus)8種,占總種數的72.42%;無梗囊霉屬(Acaulospora)1種,類球囊霉屬(Paraglomus)1種,盾巨孢囊霉屬(Scutellospora)1種,各個物種的地理分布見表2。
在所有調查樣點中,東三家子鹽堿化羊草草地的AM真菌物種豐度最小,只有1個物種。北大崗保護良好的貝加爾針茅+羊草草地中AM真菌物種豐度最大,在羊草根際土壤中鑒定出6個物種。在所有鑒定出的菌種中,球囊霉屬物種出現頻度最高,其中摩西球囊霉(G.mossea)出現在所有調查樣點中,頻度達100.0%,其次是近明球囊霉(G.claroideum)和地球囊霉(G.geosporum),頻度均為66.7%。球囊霉屬的微叢球囊霉(G.microaggregatum)和盾巨孢囊霉屬的透明盾巨孢囊霉(S.pellucida)的頻度最低,僅為 6.7%(表2)。各調查樣點的孢子密度變化較大,在6~280個/20 g土之間變化,其中東三家子鹽堿化羊草草地中的孢子密度最低,姜家甸的羊草+雜類草群落中的孢子密度最高,各樣點孢子密度平均值為(98.55±13.53)個/20 g土(表2)。
土壤pH強烈抑制了鹽堿化草地中羊草天然群落斑塊中AM真菌的物種豐富度(SR=23.59-2.22×pH,r2=0.53,P<0.001)(圖2A)。隨著pH的增加,AM真菌的物種數量由最高6種下降為僅1種。雖然pH值越高,孢子密度越低,但土壤pH對土壤中孢子密度的影響未達到顯著水平(P=0.198)(圖2B)。
表2羊草根際土壤AM真菌資源及地區分布
Table 2 The resources and distribution of AM fungi in rhizosphere of L. chinensis

侵染頻率=(侵染根段數/總根段數)×100%;侵染程度=(侵染根長/總根長)×100%;孢子密度=A M真菌所有種的孢子數量/20 g土壤。
Colonization rate=(nu m ber of rootinfected/nu m ber of root m easured)×100%;Infection intensity=(length of rootinfected/length of root m easured)×100%;Spore density=spore nu m ber of all A M F speciesin 20 g soil.

圖2 土壤pH對AM真菌物種豐富度(A)和孢子密度(B)的影響Fig.2 The effects of soil pH on species richness (A) and spore density (B) of AM fungi
在所調查的羊草群落中,各樣點AM真菌對羊草根系的侵染頻率為30%~76%,平均(53.40±3.07)%。侵染強度為4%~36%,平均(17.50±1.70)%。侵染頻率(CR)與侵染強度(II)顯著正相關(II=0.47×CR-7.47,r2=0.71,P<0.001),即AM菌侵染的羊草根系數量越多,其在每條根上侵染的長度越長(圖3)。

圖3 羊草根系AM菌根的侵染頻率和侵染強度的關系Fig.3 The relationships between colonization rate and infection intensity of AM fungi to L. chinensis root
AM真菌對羊草根系的侵染頻率(CR=31.08+5.83×SR,r2=0.13,P=0.011 )和侵染強度(II=6.50+2.87×SR,r2=0.11,P=0.025)均與土壤中AM真菌的物種豐富度顯著正相關(圖4A),表明AM真菌的物種數量越多,對羊草根系的侵染活動越強。隨著土壤鹽堿化強度的增加,AM真菌對羊草根系的侵染能力變差,表現為土壤pH與AM真菌的侵染頻率(CR=213.98-18.06×pH,r2=0.14,P=0.010)和侵染強度(II=87.86-7.92×pH,r2=0.09,P=0.046)顯著負相關(圖4B)。

圖4 侵染頻率和侵染強度與AM真菌物種豐富度(A)和土壤pH(B)的關系Fig.4 The relationships of colonization rate and infection intensity with species richness of AM fungi (A) and soil pH (B)
3討論
鹽堿化草地存在較豐富的AM真菌資源。早在1928年,Mason[23]就報道了鹽堿土壤環境下的植物菌根。隨后的研究發現,在鹽堿土這一特殊的生態系統中,叢枝菌根真菌幾乎侵染所有植物。唐明等[24](2007)在內蒙古鹽堿土13種主要植物的根際土壤中分離出3屬26種AM真菌;王桂君[25](2005)在吉林省西部鹽堿化草地的20種典型植物的根際土壤中鑒定出29種AM菌根真菌。本研究僅針對羊草這一物種,在松嫩平原西部鹽堿化草地中共檢測到能夠侵染羊草根系的4屬11種菌根真菌(表2)。一般而言,AM真菌在自然生態系統具有較高的多樣性,而在人類頻繁干擾的生態系統中,如農田和放牧場,AM真菌多樣性降低[26]。除了受宿主植物影響外,環境因子,如氣候、土壤、土壤微生物、土地利用方式等,都影響著AM真菌的資源分布[6,27-28],如人們發現土壤pH對AM真菌種類分布的影響具有一定的規律性[29-30]。此外,宿主植物對環境因子變化的響應,也會通過影響AM真菌與宿主植物的親和性而影響AM菌的存在與分布[31-32]。
球囊霉屬(Glomus)菌種在大多數調查樣地中占居優勢(表2),這與其他鹽堿環境中的調查結果相同[24,33-34],目前普遍認為球囊霉屬多出現在中性和 pH 較高的土壤中[35]。球囊霉屬的摩西球囊霉(G.mossea)在本次調查中出現頻率最多,每個地段都有。作為球囊霉屬中分布最廣的物種,摩西球囊霉的發生頻度往往隨鹽堿脅迫的增加而增加[35]。地球囊霉(G.geosporum)、近明球囊霉(G.claroideum)在頻率和孢子密度上都表現為較高水平。一些研究證明摩西球囊霉和地球囊霉是重度鹽土中最優勢的物種[36-37],并且地球囊霉也是重度退化地區的優勢種[33,38],甚至出現在pH值為11的鹽土中[39]。無梗囊霉屬(Acaulospora)的光壁無梗囊霉(A.laevis)、類球囊霉屬(Paraglomus)的隱類球囊霉屬(P.occultum)和盾巨孢囊霉屬(Scutellospora)的透明盾巨孢囊霉屬(S.pellucida)在某些地區數量很多,并成為該地區優勢種,但是在其他地區出現較少。
作為繁殖體,土壤中AM真菌孢子的多少對菌化植物的形成意義重大。我們的研究表明,雖然各個調查樣點的孢子密度變化較大,但土壤pH并不是影響孢子密度的主要因素(圖2B)。而在土層受到嚴重干擾的裸堿斑土壤中很少檢測到AM真菌侵染現象,并且很少找到AM真菌孢子[15,40],因此,強烈的土壤干擾和侵蝕可能是影響AM真菌繁殖體數量的主要原因之一。
AM真菌對羊草根系的侵染頻率和侵染強度在各個調查樣點間變化較大(表2)。不同AM真菌對相同植物的侵染速度和侵染率不同[41],這種差異與植物和AM真菌的親和性有關[42],也與環境因子,特別是影響根系生長的土壤條件有很大關系[43],如土壤pH、水分、鹽分含量、養分水平等[44]。由于鹽堿脅迫不利于孢子萌發和菌絲生長[45],因此,土壤 pH 不僅直接影響 AM 真菌的發生和種群分布[46],也對AM真菌侵染羊草根系的頻率和強度產生負面影響(圖4),降低了真菌對羊草根系的侵染活動。雖然已有研究表明AM真菌能夠加強植物對營養元素的選擇性吸收,降低鹽堿脅迫對生長的影響[47-48],但只有耐鹽能力強的AM菌種才能在重度鹽堿化草地植被恢復中發揮積極作用[17]。我們認為在鹽堿化羊草地中存在較豐富的侵染羊草根系的AM真菌資源,研究結果為篩選和利用耐鹽堿AM真菌菌株、恢復和重建松嫩鹽堿化羊草草地生態系統提供了理論依據。
References:
[1]Mangan S A, Eom A H, Adler G H,etal. Diversity of arbuscular mycorrhizal fungi across a fragmented forest in Panama: Insular spore communities differ from mainland communities. Oecologia, 2004, 141(4): 687-700.
[2]Wu Q S, Yuan F Y, Fei Y J,etal. Effects of arbuscular mycorrhizal fungi on aggregate stability, GRSP, and carbohydrates of white clover. Acta Prataculturae Sinica, 2014, 23(4): 269-275.
[3]Wu Q S, Yuan F Y, Fei Y J,etal. Effects of arbuscular mycorrhizal fungi on root system architecture and sugar contents of white clover. Acta Prataculturae Sinica, 2014, 23(1): 199-204.
[4]Jansa J, Mozafar A, Anken T,etal. Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza, 2002, 12(5): 225-234.
[5]Lugo M A, Cabello M N. Native arbuscular mycorrhizal fungi (AMF) from mountain grassland (Córdoba, Argentina) I. Seasonal variation of fungal spore diversity. Mycologia, 2002, 94(4): 579-586.
[6]Entry J A, Fuhrmann J J, Sojka R E,etal. Influence of irrigated agriculture on soil carbon and microbial community structure. Environmental Management, 2004, 33(SUPPL. 1): 363-373.
[7]Cai B P, Chen J Y, Zhang Q X,etal. Three new records of arbuscular mycorrhizal fungi associated withPrunusmumein China. Mycosystema, 2008, 27(4): 538-542.
[8]Wu C H, Chen X, Wang Z Q. Lead absorption by weeds from lead-polluted soil. Chinese Journal of Applied Ecology, 2004, 15(8): 1451-1454.
[9]Greipsson S, El-Mayas H. Arbuscular mycorrhizae ofLeymusarenariuson coastal sands and reclamation sites in Iceland and response to inoculation. Restoration Ecology, 2000, 8(2): 144-150.
[10]McHugh J M, Dighton J. Influence of mycorrhizal inoculation, inundation period, salinity, and phosphorus availability on the growth of two salt marsh grasses,SpartinaalternifloraLois. andSpartinacynosuroides(L.) Roth., in nursery systems. Restoration Ecology, 2004, 12(4): 533-545.
[11]Richter B S, Stutz J C. Mycorrhizal inoculation of big sacaton: Implications for grassland restoration of abandoned agricultural fields. Restoration Ecology, 2002, 10(4): 607-616.
[12]Cordoba A S, De Mendonca M M, Stuermer S L,etal. Diversity of arbuscular mycorrhizal fungi along a sand dune stabilization gradient: A case study at Praia da Joaquina, Ilha de Santa Catarina, South Brazil. Mycoscience, 2001, 42(4): 379-387.
[13]Kiers E T, Lovelock C E, Krueger E L,etal. Differential effects of tropical arbuscular mycorrhizal fungal inocula on root colonization and tree seedling growth: Implications for tropical forest diversity. Ecology Letters, 2000, 3(2): 106-113.
[14]Yang H X, Liu R J, Guo S X. Effects of arbuscular mycorrhizal fungusGlomusmosseaeon the growth characteristics ofFestucaarundinaceaunder salt stress conditions. Acta Prataculturae Sinica, 2014, 23(4): 195-203.
[15]Dodd J C, Thomson B D. The screening and selection of inoculant arbuscular-mycorrhizal and ectomycorrhizal fungi. Plant and Soil, 1994, 159(1): 149-158.
[16]Kaya C, Ashraf M, Sonmez O,etal. The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Scientia Horticulturae, 2009, 121(1): 1-6.
[17]Smith S E, Facelli E, Pope S,etal. Plant performance in stressful environments: Interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant and Soil, 2010, 326(1): 3-20.
[18]Zhang M Q, Wang Y S, Xing L J. The ecological distribution of AM fungi community in south and east coast of China. Mycosystema, 1998, 17(3): 274-277.
[19]Sheng M, Tang M, Zhang F F,etal. Effect of soil factors on arbuscular mycorrhizal fungi in saline alkaline soils of Gansu, Inner Mongolia and Ningxia. Biodiversity Science, 2011, 19(1): 85-92.
[20]Schenck N C, Perez Y. Manual for Identification of Vesicular Arbuscular Mycorrhizal Fungi[M]. Gainesville: University of Florida, 1988.
[21]Mao S C, Xing J S, Song M J,etal. Reaction of two indigenous strains of VAMF on cotton. Cotton Science, 1994, 6(4): 237-242.
[22]Sanders I R, Fitter A H. Evidence for differential responses between host-fungus combinations of vesicular-arbuscular mycorrhizas from a grassland. Mycologist Resarch, 1992, 96(6): 415-419.
[23]Mason E. Note on the presence of mycorrhiza in the roots of salt marsh plants. New Phytologist, 1928, 27(3): 193-195.
[24]Tang M, Huang Y H, Sheng M,etal. Diversity and distribution of arbuscular mycorrhizal fungi in saline alkaline soil, Inner Mongolia. Acta Pedologica Sinica, 2007, 44(6): 1104-1110.
[25]Wang G J. The Symbiotic Diversity of Arbuscular Mycorrhizal in SalinizedLeymuschinensisGrassland in Western Jilin Province[D]. Changchun: Northeast Normal University, 2005.
[26]Cai B P, Zhang Y, Chen Y J,etal. Three new records of arbuscular mycorrhizal fungi associated with wildPrunusmumefrom Tibet in China. Mycosystema, 2007, 26(1): 36-39.
[27]Miller S P. Arbuscular mycorrhizal colonization of semi-aquatic grasses along a wide hydrologic gradient. New Phytologist, 2000, 145(1): 145-155.
[28]Nilsson L O, Giesler R, B??th E,etal. Growth and biomass of mycorrhizal mycelia in coniferous forests along short natural nutrient gradients. New Phytologist, 2005, 165(2): 613-622.
[29]Peng Y L, Yang M N, Cai X B. Influence of soil factors on species diversity of arbuscular mycorrhizal(AM) fungi inStipasteppe of Tibet Plateau. Chinese Journal of Applied Ecology, 2010, 21(5): 1258-1263.
[30]Hou X F, He X L. The spatio-temporal distribution of arbuscular mycorrhizal fungi fromHedysarumleaveMaxim. Journal Publishing Department of Agricultural University of Hebei, 2007, 133(4): 50-54.
[31]Phillings J M, Hayman D S. Improves procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 1970, 55(1): 158-160.
[32]Giovannetti M, Mosse B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 1980, 84(3): 489-500.
[33]Liu R J, Liu P Q, Xu K,etal. Ecological distribution of arbuscular mycorrhizal fungi in saline alkaline soils of China. Chinese Journal of Applied Ecology, 1999, 10(6): 721-724.
[34]Carvalho L M, Ca?ador I, Martins-Lou??o M. Temporal and spatial variation of arbuscular mycorrhizas in salt marsh plants of theTagusestuary(Portugal). Mycorrhiza, 2001, 11(6): 303-309.
[35]Sengupta A, Chaudhuri S. Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza, 2002, 12(4): 169-174.
[36]Al-Karaki G N. Salt stress response of salt-sensitive and tolerant durum wheat cultivars inoculated with mycorrhizal fungi. Acta Agronomica Hungarica, 2001, 49(1): 25-34.
[37]Thrall P H, Bever J D, Slattery J F. Rhizobial mediation ofAcaciaadaptation to soil salinity: Evidence of underlying trade-offs and tests of expected patterns. Journal of Ecology, 2008, 96(4): 746-755.
[38]Beauchamp V B, Stromberg J C, Stutz J C. Interactions betweenTamarixramosissima(saltcedar),Populusfremontii(cottonwood), and mycorrhizal fungi: Effects on seedling growth and plant species coexistence. Plant and Soil, 2005, 275(1): 221-231.
[39]Jeffries P, Gianinazzi S, Perotto S,etal. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biology and Fertility of Soils, 2003, 37(1): 1-16.
[40]Juniper S, Abbott L K. A change in the concentration of NaCl in soil alters the rate of hyphal extension of some arbuscular mycorrhizal fungi. Canadian Journal of Botany, 2004, 82(8): 1235-1242.
[41]Smith F A, Smith S E. Multalism and parasitism: Diversity in function and structure in the arbuscular(VA) mycorrhizal symbiosis. Advances in Botanical Research, 1996, 22: 1-43.
[42]Gai J P, Liu R J. Effects of soil factors on arbuscular mycorrhizae(AM) fungi around roots of wild plants. Chinese Journal of Applied Ecology, 2003, 14(3): 470-472.
[43]Zhang Y, Guo L D, Liu R J. Diversity and ecology of arbuscular mycorrhizal fungi in Dujiangyan. Chinese Journal of Plant Ecology, 2003, 27(4): 537-544.
[44]Peason J N, Simth S E, Smith F A. Effect of photon irradiance on the development and activity of VA mycorrhizal infection inAlliumporrum. Mycological Research, 1991, 101(3): 1063-1071.
[45]Carvalho L M, Correia P M, Ca?ador I,etal. Effects of salinity and flooding on the infectivity of salt marsh arbuscular mycorrhizal fungi inAstertripoliumL. Biology and Fertility of Soils, 2003, 38(3): 137-143.
[46]Li X L, Feng G. Ecology and Physiology of VA Mycorrhizaes[M]. Beijing: Huawen Press, 2001.
[47]Feng G, Li X L, Zhang F S,etal. Effect of phosphorus and arbuscular mycorrhizal fungus on response of maize plant to saline environment. Journal of Plant Resources and Environment, 2000, 9(2): 22-26.
[48]Sheng M, Tang M, Chen H,etal. Influence of arbuscular mycorrhizae on the root system of maize plants under salt stress. Canadian Journal of Microbiology, 2009, 55(7): 879-886.
參考文獻:
[2]吳強盛, 袁芳英, 費永俊, 等. 菌根真菌對白三葉根際團聚體穩定性、球囊霉素相關土壤蛋白和糖類物質的影響. 草業學報, 2014, 23(4): 269-275.
[3]吳強盛, 袁芳英, 費永俊, 等. 叢枝菌根真菌對白三葉根系構型和糖含量的影響. 草業學報, 2014, 23(1): 199-204.
[7]蔡邦平, 陳俊愉, 張啟翔, 等. 梅根際叢枝菌根真菌三個中國新記錄種. 菌物學報, 2008, 27(4): 538-542.
[8]吳春華, 陳欣, 王兆騫. 鉛污染土壤中雜草對鉛的吸收. 應用生態學報, 2004, 15(8): 1451-1454.
[14]楊海霞, 劉潤進, 郭紹霞. AM真菌摩西球囊霉對鹽脅迫條件下高羊茅生長特性的影響. 草業學報, 2014, 23(4): 195-203.
[18]張美慶, 王幼珊, 邢禮軍. 我國東南沿海地區AM真菌群落生態分布研究. 菌物系統, 1998, 17(3): 274-277.
[19]盛敏, 唐明, 張峰峰, 等. 土壤因子對甘肅、寧夏和內蒙古鹽堿土中AM真菌的影響. 生物多樣性, 2011, 19(1): 85-92.
[21]毛樹春, 邢金松, 宋美珍, 等. 棉花對兩種VA菌根真菌的反應. 棉花學報, 1994, 6(4): 237-242.
[24]唐明, 黃艷輝, 盛敏, 等. 內蒙古鹽堿土中AM真菌的多樣性與分布. 土壤學報, 2007, 44(6): 1104-1110.
[25]王桂君. 吉林省西部鹽堿化羊草草原的叢枝菌根共生多樣性[D]. 長春: 東北師范大學, 2005.
[26]蔡邦平, 張英, 陳俊愉, 等. 藏東南野梅根際叢枝菌根真菌三個我國新記錄種(英文). 菌物學報, 2007, 26(1): 36-39.
[29]彭岳林, 楊敏娜, 蔡曉布. 西藏高原針茅草地土壤因子對叢枝菌根真菌物種多樣性的影響. 應用生態學報, 2010, 21(5): 1258-1263.
[30]侯曉飛, 賀學禮. 荒漠植物羊柴根際AM真菌時空分布研究. 河北農業大學學報, 2007, 133(4): 50-54.
[33]劉潤進, 劉鵬起, 徐坤, 等. 中國鹽堿土壤中AM菌的生態分布. 應用生態學報, 1999, 10(6): 721-724.
[42]蓋京蘋, 劉潤進. 土壤因子對野生植物AM真菌的影響. 應用生態學報, 2003, 14(3): 470-472.
[43]張英, 郭良棟, 劉潤進. 都江堰地區叢枝菌根真菌多樣性與生態研究. 植物生態學報, 2003, 27(4): 537-544.
[46]李曉林, 馮固. 叢枝菌根生態生理[M]. 北京: 華文出版社, 2001.
[47]馮固, 李曉林, 張福鎖, 等. 施磷和接種AM真菌對玉米耐鹽性的影響. 植物資源與環境學報, 2000, 9(2): 22-26.
張義飛,畢琪,楊允菲,張忠輝,胡長群,楊雨春,趙珊珊,王相剛.松嫩平原鹽堿化羊草群落中AM真菌物種資源及侵染率研究. 草業學報, 2015, 24(9): 80-88.
ZHANG Yi-Fei, BI Qi, YANG Yun-Fei, ZHANG Zhong-Hui, HU Chang-Qun, YANG Yu-Chun, ZHAO Shan-Shan, WANG Xiang-Gang. Arbuscular mycorrhizal fungi diversity in saline-alkalineLeymuschinensisgrasslands on the Songnen Plain. Acta Prataculturae Sinica, 2015, 24(9): 80-88.
通訊作者*Corresponding author. E-mail:yifeii@hotmail.com
作者簡介:張義飛(1972-),男,吉林長春人,助理研究員,博士。E-mail:yifeii@hotmail.com
基金項目:國家自然科學基金資助項目(30270260,30770397),林業公益性行業科研專項(201104040)和吉林省科技發展計劃(201205065)資助。
收稿日期:2014-10-13;改回日期:2014-12-10
DOI:10.11686/cyxb2014426http://cyxb.lzu.edu.cn