李金明,楊淵,陳璟
(華中科技大學同濟醫學院附屬同濟醫院,湖北武漢430030)
抑郁癥核醫學腦功能顯像的進展
李金明,楊淵,陳璟
(華中科技大學同濟醫學院附屬同濟醫院,湖北武漢430030)
抑郁癥是目前臨床上常見的精神性疾病之一。核醫學顯像是最早應用于抑郁癥腦功能顯像的影像學手段,能為臨床提供抑郁癥行為缺陷相關的影像學依據,包括腦血流灌注的改變、腦代謝的異常以及腦受體的表達和活性信息等。伴隨核醫學儀器的更新,多模態顯像技術的發展,核醫學腦功能顯像在抑郁癥病因探索、早期診斷以及治療監測方面將發揮越來越大的作用。
抑郁癥;腦;核醫學
抑郁癥以持久自發性情緒低落,對日常活動喪失興趣和愉快感為主要臨床特征。迄今,抑郁癥的病因并不清楚,目前認為個體遺傳基因片段異常所致局部腦血供、代謝、神經活動等改變,以及易患性格特征是抑郁癥發病的生理和心理基礎[1]。流行病學調查[2]顯示抑郁癥全球患病率約為8%~12%,且呈逐年增高的趨勢,已成為全球性主要精神問題之一。
Hamilton抑郁量表評分是目前臨床評估抑郁嚴重程度的主要方法,但受測評者個體差異影響較大。通過腦功能顯像探索抑郁癥患者腦血供、代謝以及神經活動的異常規律將有助于推進抑郁癥的早期鑒別診斷以及個體化治療[3]。腦功能顯像主要手段包括核醫學顯像(單光子發射計算機斷層顯像(SPECT)和正電子發射計算機斷層顯像(PET))和磁共振顯像(MRI)。其中前者在抑郁癥研究方面發展較早,且伴隨核醫學儀器的發展,SPECT/CT、PET/CT和PET/MRI同機圖像融合顯像儀的出現,在抑郁癥病因探索、早期診斷以及治療監測方面將發揮越來越大的作用。
由于顯像劑進入腦細胞的量與局部腦血流灌注正相關,而后者影響腦功能及代謝,因此,腦血流灌注顯像在一定程度上可以反映局部腦功能狀態。腦血流灌注SPECT顯像常用顯像劑有99mTc-ECD、99mTc-HMPAO、123I-IMP和133Xe等;PET顯像常用顯像劑為13N-NH3·H2O和15O-H2O。
1.1 腦血流灌注減低
大量核醫學腦血流灌注顯像研究均發現抑郁癥患者存在不同程度的腦血流灌注減低,但各文獻報道的灌注減低區域及程度略有不同:①大腦皮層血流灌注減低。按照出現異常的頻率依次為額葉、顳葉、枕葉和頂葉[4-6]。前額葉皮質是邊緣系統情緒環路(Papez環路)向新皮層輸送感覺和情緒信息的重要部位[7]。Goodwin等[8]研究認為前額葉皮質不同部位受累時,患者可表現欣快沖動或情緒淡漠,即當背側前額葉皮質,尤其是背側前額葉中央皮質受累時,患者表現情緒淡漠;當腹側前額葉皮質,尤其是腹側前額葉中央皮質和眶額回皮質受累時,患者表現欣快沖動。Nagafusa等99mTc-ECD SPECT顯像顯示抑郁癥患者雙側前額葉皮質和雙側枕葉以左側受累嚴重[4]。②邊緣系統血流灌注減低[4-6]。邊緣系統通過Papez環路相互聯系,并與新皮層、丘腦和腦干發生廣泛聯系,參與調解本能和情感行為。其中扣帶回的前部特別的牽扯到情緒,尤其對負面情緒起作用;海馬區域主要負責記憶和學習,二者在腦血流灌注顯像中常與眶額回皮質或前額葉皮質一同呈現異常結果。單、雙相抑郁癥腦血流灌注SPECT顯像對比研究[9]發現兩組均存在雙側顳葉、額葉、海馬血流灌注減低;且血流灌注減低程度與患者學習和判斷能力的損傷、注意力和記憶力的減退存在相關性。③小腦血流灌注減低[4,6]。PET和fMRI腦顯像研究[10]顯示抑郁癥患者小腦和丘腦血流灌注減低。推測小腦參與悲觀情緒的識別和表達,長期的嚴重抑郁可能通過損傷小腦與額葉的功能聯系而累及小腦。但目前尚沒有資料證實小腦血流灌注減低是罹患抑郁癥的危險因素或者是抑郁癥病程進展的結果。
1.2 腦血流灌注增加
Goodwin等[8]研究腦血流灌注顯像發現存在抑郁癥家族史的年輕患者扣帶回皮質和背側前額葉皮質血流灌注增加;年輕抑郁癥患者扣帶回后部和基底節區血流灌注的增加與認知功能的損傷相關;而老年抑郁癥患者扣帶回后部血流灌注的增加與并存焦慮癥狀有關。推測腦血流灌注增加可能關聯頻繁的消極思考,而腦血流灌注減低可能關聯淡漠的情感表現。Savitz等[11]研究未經治療的雙相抑郁癥患者15O-H2O PET腦顯像,發現左腹側額葉和左側杏仁核血流灌注增加,且Hamilton抑郁量表評分與左側杏仁核血流灌注正相關,與左腹側額葉血流灌注負相關。而Videbech等[12]研究15O-H2O PET腦顯像,發現中-重度抑郁癥患者右側海馬和左側小腦血流灌注增加。冀二妮等[9]發現雙相抑郁癥患者雙側基底節血流灌注增加,推測可能為雙相抑郁癥患者躁狂發作的生理基礎。
抑郁癥患者局部腦血流灌注改變存在個體差異,在一定程度上可以反映患者行為缺陷和抑郁嚴重程度,并可預測臨床治療效果,但目前尚無權威性結論。Monkul等[13]研究未經治療的抑郁癥患者15O-H2O腦PET顯像,發現右側扣帶回前部、額中回和額下回血流灌注減低;雙側扣帶回后部、右側尾狀核、左側海馬旁回血流灌注增加;Hamilton抑郁量表評分與雙側額中回、左側額下回、右側扣帶回前部血流灌注負相關,與右側丘腦和左側殼核正相關。Videbech等[14]研究提示抑郁嚴重程度與雙側背外側額葉和眶額回皮質血流灌注負相關,與海馬血流灌注正相關。Monkul等[13]發現抑郁癥患者焦慮情緒與雙側扣帶回后部和頂下小葉血流灌注正相關;抑郁情緒與左背外側前額皮層和左側角回血流灌注負相關;認知功能損傷與左內側前額葉皮層血流灌注正相關。Brockmann等[15]研究5-羥色胺再攝取抑制劑(SSRI)治療后的抑郁癥患者99mTc-HMPAO SPECT腦顯像,發現治療有效者早期前額葉、顳葉和扣帶回血流灌注增加;伴隨治療進程,額下回血流灌注減低,中央前回血流灌注增加。Kohn等99mTc-HMPAO SPECT腦顯像[16]發現三環類和SSRI類抗抑郁藥物治療有效者可恢復正常腦血流灌注;而電休克治療有效者原血流灌注減低區血供改善并不明顯,同時雙側顳頂部和小腦出現血流灌注減低。
核醫學腦代謝顯像包括腦葡萄糖代謝顯像、氧代謝顯像和蛋白質代謝顯像。其中腦葡萄糖代謝和氧代謝顯像已運用于抑郁癥的研究。
2.1 腦葡萄糖代謝顯像
葡萄糖幾乎是腦組織的唯一能源物質。18F-FDG PET腦顯像[17-19]已發現抑郁癥患者存在廣泛腦區葡萄糖代謝異常。Drevets等[20]發現未經治療的抑郁癥患者雙側眶額回、雙腹側額葉、左側杏仁核和扣帶回后部葡萄糖代謝增加;膝下前額葉皮質、背外側額葉前中部葡萄糖代謝減低;且左背外側前額葉皮質葡萄糖代謝與Hamilton抑郁量表評分負相關。
McGrath等[21]研究SSRI治療或認知行為治療的抑郁癥患者,發現島葉葡萄糖代謝減低關聯認知行為治療后的抑郁緩解或SSRI治療的不敏感;預示島葉葡萄糖代謝可能成為抑郁癥治療評價的生物標記物,指導抑郁癥初始治療的選擇。Baeken等[22]研究高頻經顱磁刺激(HF-rTMS)治療藥物抵抗難治型單相抑郁癥患者時發現,抑郁緩解者膝下前扣帶回皮質葡萄糖代謝明顯下降。
2.2 腦氧代謝顯像
正常人腦耗氧量占全身的20%。Ottowitz等[23]利用15O-PET顯像研究抑郁癥患者的記憶加工過程,發現抑郁癥患者語言學習中右側扣帶回前部、左腹側前額皮質、雙側海馬和左側眶額回皮質氧代謝增高;右側扣帶回前部氧代謝與語言組織有關,左腹側前額皮質氧代謝與語言加工有關。
抑郁癥發病機制目前尚不明確,現階段較為公認的假說有單胺遞質假說和受體假說[24]。核醫學腦神經遞質受體顯像可反映腦區單胺類神經遞質及受體水平和活性,現已應用于抑郁癥的病因探索、治療監測以及新藥開發的基礎和臨床研究中[24]。
3.1 5-羥色胺(5-HT)受體顯像
3.1.1 5-HT1A受體顯像
5-HT1A受體主要分布于腦干中縫核突觸前膜和邊緣區突觸后膜。Savitz等[24]認為抑郁癥患者顳葉內側皮質和邊緣區5-HT1A受體活性下降,且受糖皮質激素水平的影響;中縫核不同亞區5-HT1A受體結合活性可能存在差異。Boldrini等[25]發現中縫核喙部、腹外側和背側區域5-HT1A受體活性增強;中縫核尾部區域5-HT1A受體活性減弱。Fisher等[26]聯合11CWAY100635 PET和fMRI腦顯像發現抑郁癥患者中縫核5-HT1A受體活性減弱關聯杏仁核血氧水平依賴(BOLD)信號的增強。
3.1.2 5-HT2A受體顯像
5-HT2A受體廣泛分布于人腦組織中,額葉和顳葉密度最高,其次為基底節、頂葉、中央前回、丘腦等。Baeken等[27-28]進行123I-5-I-R91150 SPECT腦顯像發現藥物抵抗的單相抑郁癥患者背側額葉(右側為著)和扣帶回前部5-HT2A受體活性降低;左側海馬區5-HT2A受體活性增高;HF-rTMS療效與雙背外側前額葉皮質5-HT2A受體活性正相關,與右側海馬5-HT2A受體活性負相關。常用5-HT2A受體PET顯像劑包括18F-Altanserin、11C-MDL、18F-FESP和18F-Setoperone,其中18FFESP和18F-Setoperone同時可結合多巴胺(DA)受體。雖然多數5-HT2A受體PET顯像顯示抑郁癥患者5-HT2A受體活性下降,但尸檢和臨床前研究暗示抑郁癥患者5-HT2A受體活性可能上調。Savitz等[24]認為矛盾結果可能與顯像前患者的抗抑郁治療干預有關。此外,抑郁癥患者行為缺陷上的差異也是顯像結果不一致的原因之一。
3.1.3 5-HT1B受體顯像
5-HT1B受體主要分布于基底節。Murrough等11C-P943 PET顯像[29]發現未經治療的抑郁癥患者紋狀體腹側5-HT1B受體活性降低。Anisman等[30]發現自殺幸存的抑郁癥患者前額葉皮質、眶額皮質外側和海馬5-HT1BmRNA表達減少。
3.1.4 5-HT轉運體(5-HTT)顯像
伴隨5-HTT抑制劑在抑郁癥治療中作用的認同,5-HTT成為抑郁癥研究熱點之一。然而5-HTT腦顯像結果迥異[31]。研究[32]顯示5-HTT活性受配體顯像劑類型、顯像季節和受檢者體質量影響。常用5-HTT SPECT顯像劑包括非選擇性顯像劑123I-β-CIT和選擇性顯像劑123I-ADAM。常用5-HTT PET顯像劑有11C-(+)McN5652和11C-DASB。Amsterdam等123I-ADAM SPECT顯像發現抑郁癥患者中腦、顳葉及基底節區5-HTT活性降低,暗示可用于抑郁癥的鑒別診斷[33]。Hsieh等[34]研究發現抑郁癥患者后代中腦5-HTT活性下降,暗示抑郁癥遺傳易感性歸因于抑郁癥的病理生理。Miller等11CDASB PET顯像發現有自殺傾向的抑郁癥患者5-HTT活性明顯低于輕度抑郁癥患者和健康對照組,預示5-HTT活性可能反映抑郁癥病情嚴重程度[35]。
3.2 DA受體顯像
3.2.1 DA1受體顯像
DA1受體主要分布于紋狀體、伏隔核、視束、前額葉皮質、中央前回、扣帶回、海馬和杏仁核。11C-SCH23390和11CNNC-112是常用DA1受體PET顯像劑。Dougherty等11CSCH23390 PET顯像[36]發現抑郁癥患者發怒時紋狀體DA1受體活性下降13%。Cannon等11C-NNC-112 PET顯像[37]發現抑郁癥患者左側尾狀核中部DA1受體活性下降14%。由于11C-NNC-112可同時結合DA1受體和5-HT2A受體,所以顯像結果有可能受干擾。
3.2.2 DA2受體顯像
DA2受體主要分布于紋狀體。Yang等[38]和de Kwaasteniet等[39]131I-IBZM SPECT腦顯像發現抑郁癥患DA2受體活性與健康對照組無明顯差異。而Lehto等[40]研究發現抑郁癥患者顳葉DA2受體活性增高。常用DA2受體PET顯像劑包括靶向DA2/DA3受體的11C-Raclopride、18F-Fallypride和11CFLB-457;靶向DA2/DA4受體的11C-NMSP。Meyer等11CRaclopride PET顯像發現抑郁癥患者雙側殼核DA2/DA3受體活性增高[41]。Kobiella等研究18F-Fallypride PET和fMRI腦顯像,發現抑郁癥患者BOLD信號與紋狀體DA2/DA3受體活性負相關,與杏仁核、島葉和扣帶回前部DA2/DA3受體活性正相關[42]。Savitz等[24]還發現吸煙和顯像劑類型影響顯像結果。
3.2.3 DA轉運體(DAT)顯像
常用的DAT SPECT顯像劑有123I-β-CIT、123I-FP-CIT和99mTc-TRODAT-1。Di Giuda等123I-FP-CIT SPECT顯像發現抑郁癥患者基底節區(以紋狀體為著)DAT活性增高[43]。Amsterdam等99mTc-TRODAT-1 SPECT顯像[44]發現抑郁癥患者紋狀體DAT活性增高。11C-CFT和11C-RTI-32是常用DAT PET顯像劑。Meyer等[45]發現未經治療的抑郁癥患者紋狀體DAT活性下降14%。
此外,Conway等[46]利用FDOPA作為顯像劑進行PET顯像,也發現抑郁癥患者腦部紋狀體多巴胺能系統活性減低。
3.3 單胺氧化酶-A(MAO-A)活性顯像
MAO-A可催化代謝5-HT,去甲腎上腺素和DA。Meyer等11C-Harmine PET顯像[47]發現抑郁癥患者廣泛腦區MAOA活性增高;SSRI治療不敏感的抑郁癥患者MAO-A活性增高;復發的抑郁癥患者前額皮層和扣帶回前部MAO-A活性增高。暗示MAO-A活性增高可能是抑郁癥的特征性標志之一。
3.4 乙酰膽堿受體顯像
Hannestad等123I-5IA-85380 SPECT腦顯像[48]發現雙相抑郁癥患者額葉、顳葉、頂葉、扣帶回前部、海馬、杏仁核、丘腦和紋狀體β2*-煙堿型N受體活性減低。
3.5 去甲腎上腺素轉運體顯像
Remy等11C-RTI-32 PET顯像[49]發現有抑郁病史的帕金森病患者邊緣系統去甲腎上腺素轉運體活性減低,暗示帕金森病患者出現抑郁與邊緣系統中去甲腎上腺素能系統受損有關。
綜上所述,核醫學腦功能顯像為抑郁癥病因探索、臨床診斷、治療和預防提供了一定依據。5-HT受體、DA受體和轉運體蛋白顯像有望未來開發新型抑郁癥診斷顯像劑。多模態腦功能顯像聯合將為了解抑郁癥的病理生理提供新視角。然而,受研究對象、方法等諸多條件的影響,各種核醫學腦功能顯像均未形成統一的觀點,仍然需要更多深入細致的研究,包括健康自愿者腦功能顯像對照;抑郁癥患者異常的腦功能顯像與其臨床特征、治療選擇和監測的聯系等。
[1]Fava M,Kendler KS.Major depressive disorder[J].Neuron,2000, 28(2):335-341.
[2]Kessler RC,Berglund P,Demler O,et al.The epidemiology of major depressive disorder:results from the National Comorbidity Survey Replication(NCS-R)[J].JAMA,2003,289(23):3095-3105.
[3]Kim E,Howes OD,Kapur S.Molecular imaging as a guide for the treatment of central nervous system disorders[J].Dialogues Clin Neurosci,2013,15(3):315-328.
[4]Nagafusa Y,Okamoto N,Sakamoto K,et al.Assessment of cerebral blood flow findings using99mTc-ECD single-photon emission computed tomography in patients diagnosed with major depressive disorder[J].J Affect Disord,2012,140(3):296-299.
[5]Takahashi S,Ukai S,Tsuji T,et al.Cerebral blood flow in the subgenual anterior cingulate cortex and modulation of the moodregulatory networks in a successful rTMS treatment for major depressive disorder[J].Neurocase,2013,19(3):262-267.
[6]Watanabe M,Umezaki Y,Miura A,et al.Comparison of cerebral blood flow in oral somatic delusion in patients with and without a history of depression:a comparative case series[J].BMC Psychiatry,2015,15(1):1-10.
[7]Liang X,Zou Q,He Y,et al.Coupling of functional connectivity and regional cerebral blood flow reveals a physiological basis for network hubs of the human brain[J].Proc Natl Acad Sci USA, 2013,110(5):1929-1934.
[8]Goodwin GM.Neuropsychological and neuroimaging evidence for the involvement of the frontal lobes in depression[J].J Psychopharmacol,1997,11(2):115-122.
[9]冀二妮,關念紅,王厚亮,等.單、雙相抑郁患者腦血流灌注特征及其與認知功能的相關性[J].中華行為醫學與腦科學雜志,2011,20(4):330-332.
[10]Baldacara L,Borgio JG,Lacerda AL,et al.Cerebellum and psychiatric disorders[J].Rev Bras Psiquiatr,2008,30(3):281-289.
[11]Savitz J,Nugent AC,Cannon DM,et al.Effects of arterial cannulation stress on regional cerebral blood flow in major depressive disorder[J].Sci Rep,2012,2:308.
[12]Videbech P,Ravnkilde B,Pedersen AR,et al.The Danish PET/depression project:PET findings in patients with major depression[J].Psychol Med,2001,31(7):1147-1158.
[13]Monkul ES,Silva LA,Narayana S,et al.Abnormal resting state corticolimbic blood flow in depressed unmedicated patients with major depression:a(15)O-H(2)O PET study[J].Hum Brain Mapp,2012,33(2):272-279.
[14]Videbech P,Ravnkilde B,Pedersen TH,et al.The Danish PET/ depression project:clinical symptoms and cerebral blood flow.A regions-of-interest analysis[J].Acta Psychiatr Scand,2002,106 (1):35-44.
[15]Brockmann H,Zobel A,Joe A,et al.The value of HMPAO SPECT in predicting treatment response to citalopram in patients with major depression[J].Psychiatry Res,2009,173(2):107-112.[16]Kohn Y,Freedman N,Lester H,et al.Cerebral perfusion after a 2-year remission in major depression[J].Int J Neuropsychopharmacol,2008,11(6):837-843.
[17]Dunn RT,Kimbrell TA,Ketter TA,et al.Principal components oftheBeckDepressionInventoryandregionalcerebral metabolism in unipolar and bipolar depression[J].Biol Psychiatry,2002,51(5):387-399.
[18]Kimbrell TA,Ketter TA,George MS,et al.Regional cerebral glucose utilization in patients with a range of severities of unipolar depression[J].Biol Psychiatry,2002,51(3):237-252.
[19]Su L,Cai Y,Xu Y,et al.Cerebral metabolism in major depressive disorder:a voxel-based Meta-analysis of positron emission tomography studies[J].BMC Psychiatry,2014,14(1):1-7.
[20]Drevets WC,Bogers W,Raichle ME.Functional anatomical correlatesofantidepressantdrugtreatmentassessedusingPET measuresofregionalglucosemetabolism[J].EurNeuropsychopharmacol,2002,12(6):527-544.
[21]McGrath CL,Kelley ME,Holtzheimer PE,et al.Toward a neuroimaging treatment selection biomarker for major depressive disorder[J].JAMA Psychiatry,2013,70(8):821-829.
[22]Baeken C,Marinazzo D,Everaert H,et al.The Impact of Accelerated HF-rTMS on the Subgenual Anterior Cingulate Cortex in Refractory Unipolar Major Depression:Insights From18FDG PET Brain Imaging[J].Brain Stimul,2015,8(4):808-815.
[23]Ottowitz WE,Deckersbach T,Savage CR,et al.Neural correlates of strategic processes underlying episodic memory in women with major depression:A15O-PET study[J].J Neuropsychiatry Clin Neurosci,2010,22(2):218-230.
[24]Savitz JB,Drevets WC.Neuroreceptor imaging in depression[J].Neurobiol Dis,2013,52:49-65.
[25]Boldrini M,Underwood MD,Mann JJ,et al.Serotonin-1A autoreceptor binding in the dorsal raphe nucleus of depressed suicides[J].J Psychiatr Res,2008,42(6):433-442.
[26]Fisher PM,Meltzer CC,Ziolko SK,et al.Capacity for 5-HT1A-mediated autoregulation predicts amygdala reactivity[J].Nat Neurosci,2006,9(11):1362-1363.
[27]Baeken C,De Raedt R,Bossuyt A.Is treatment-resistance in unipolar melancholic depression characterized by decreased serotonin(2)A receptors in the dorsal prefrontal-anterior cingulate cortex?[J].Neuropharmacology,2012,62(1):340-346.
[28]Baeken C,De Raedt R,Bossuyt A,et al.The impact of HF-rTMS treatment on serotonin(2A)receptors in unipolar melancholic depression[J].Brain Stimul,2011,4(2):104-111.
[29]Murrough JW,Henry S,Hu J,et al.Reduced ventral striatal/ ventral pallidal serotonin1B receptor binding potential in major depressive disorder[J].Psychopharmacology(Berl),2011,213(2-3): 547-553.
[30]Anisman H,Du L,Palkovits M,et al.Serotonin receptor subtype and p11 mRNA expression in stress-relevant brain regions of suicide and control subjects[J].J Psychiatry Neurosci,2008, 33(2):131-141.
[31]Newberg AB,Amsterdam JD,Wintering N,et al.Low brain serotonin transporterbindinginmajordepressivedisorder[J].Psychiatry Res,2012,202(2):161-167.
[32]Erritzoe D,Frokjaer VG,Haahr MT,et al.Cerebral serotonin transporter binding is inversely related to body mass index[J].Neuroimage,2010,52(1):284-289.
[33]Amsterdam JD,Newberg AB,Newman CF,et al.Change over time in brain serotonin transporter binding in major depression: effects of therapy measured with[(123)I]-ADAM SPECT[J].J Neuroimaging,2013,23(4):469-476.
[34]Hsieh PC,Chen KC,Yeh TL,et al.Lower availability of midbrain serotonin transporter between healthy subjects with and without a family history of major depressive disorder-a preliminary two-ligand SPECT study[J].Eur Psychiatry,2014,29(7): 414-418.
[35]Miller JM,Hesselgrave N,Ogden RT,et al.Positron emission tomography quantification of serotonin transporter in suicide attempters with major depressive disorder[J].Biol Psychiatry,2013, 74(4):287-295.
[36]Dougherty DD,Bonab AA,Ottowitz WE,et al.Decreased striatal D1 binding as measured using PET and[11C]SCH 23,390 in patients with major depression with anger attacks[J].Depress Anxiety,2006,23(3):175-177.
[37]Cannon DM,Klaver JM,Peck SA,et al.Dopamine type-1 receptorbindinginmajordepressivedisorderassessedusing positron emission tomography and[11C]NNC-112[J].Neuropsychopharmacology,2009,34(5):1277-1287.
[38]YangYK,YehTL,YaoWJ,etal.Greateravailabilityof dopamine transporters in patients with major depression—a dual-isotope SPECT study[J].Psychiatry Res,2008,162(3):230-235.
[39]de Kwaasteniet BP,Pinto C,Ruhe HG,et al.Striatal dopamine D2/3 receptor availability in treatment resistant depression[J].PLoS One,2014,9(11):e113612.
[40]LehtoSM,KuikkaJ,TolmunenT,etal.Temporalcortex dopamine D2/3 receptor binding in major depression[J].Psychiatry Clin Neurosci,2008,62(3):345-348.
[41]Meyer JH,McNeely HE,Sagrati S,et al.Elevated putamen D(2) receptor binding potential in major depression with motor retardation:an[11C]raclopride positron emission tomography study[J].Am J Psychiatry,2006,163(9):1594-1602.
[42]Koerts J,Leenders KL,Koning M,et al.Striatal dopaminergic activity(FDOPA-PET)associated with cognitive items of a depression scale(MADRS)in Parkinson’s disease[J].Eur J Neurosci,2007,25(10):3132-3136.
[43]Di Giuda D,Camardese G,Cocciolillo F,et al.Dopaminergic dysfunction and psychiatric symptoms in movement disorders:a123I-FP-CIT study:reply to comment by Erro et al[J].Eur J Nucl Med Mol Imaging,2013,40(4):638-639.
[44]Amsterdam JD,Newberg AB,Soeller I,et al.Greater striatal dopamine transporter density may be associated with major depressive episode[J].J Affect Disord,2012,141(2-3):425-431.
[45]Meyer JH,Kruger S,Wilson AA,et al.Lower dopamine transporter binding potential in striatum during depression[J].Neuroreport,2001,12(18):4121-4125.
[46]Conway CR,Chibnall JT,Cumming P,et al.Antidepressant response to aripiprazole augmentation associated with enhanced FDOPA utilization in striatum:a preliminary PET study[J].Psychiatry Res,2014,221(3):231-239.
[47]Meyer JH,Wilson AA,Sagrati S,et al.Brain monoamine oxidase A binding in major depressive disorder:relationship to selective serotonin reuptake inhibitor treatment,recovery,and recurrence[J].Arch Gen Psychiatry,2009,66(12):1304-1312.
[48]Hannestad JO,Cosgrove KP,DellaGioia NF,et al.Changes in the cholinergic system between bipolar depression and euthymia as measured with[123I]5IA single photon emission computed tomography[J].Biol Psychiatry,2013,74(10):768-776.
[49]Remy P,Doder M,Lees A,et al.Depression in Parkinson’s disease:loss of dopamine and noradrenaline innervation in the limbic system[J].Brain,2005,128(Pt 6):1314-1322.
Progress of nuclear medicine brain functional imaging in depression
LI Jin-ming,YANG Yuan,CHEN Jing (Tongji Hospital of Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430030,China)
Depression is a globally prevalent psychiatric disorder.Nuclear medicine functional imaging of the brain is the first imaging method applied in depression research,which can demonstrate the abnormalities of cerebral blood flow perfusion, cerebral metabolism,and the distribution and function of neuroreceptors,etc.With the development of nuclear medicine device and the appearance of multimodal imaging system,nuclear medicine imaging will play an even more important role in exploring pathogenesis,developing new technologies for early diagnosis and therapy monitoring of depression.
Depressive disorder;Brain;Nuclear medicine
R749.4;R817.4
A
1008-1062(2016)10-0739-05
2016-01-18
李金明(1990-),男,安徽六安人,在讀碩士研究生。E-mail:ljming0518@163.com
陳璟,華中科技大學同濟醫學院附屬同濟醫院核醫學科,430030。E-mail:lindaxcx@vip.163.com