史彩華, 胡靜榮, 李傳仁, 張友軍
(1. 長江大學, 荊州 434025; 2. 中國農業科學院蔬菜花卉研究所, 北京 100081)
?
專論與綜述
環境脅迫下昆蟲的耐寒適應機制研究進展
史彩華1,2, 胡靜榮1, 李傳仁1, 張友軍2*
(1. 長江大學, 荊州 434025; 2. 中國農業科學院蔬菜花卉研究所, 北京 100081)
昆蟲是變溫動物,為了安全越冬,昆蟲通常改變自身結構和物質構成以適應低溫的到來,這一適應機制與體內特殊的生理生化物質緊密相關,如海藻糖、葡萄糖、甘油、山梨醇、脂肪酸和氨基酸等小分子抗凍保護劑。這些抗凍保護劑具有穩定細胞膜結構和保護蛋白質功能的作用。雖然昆蟲耐寒性的研究不斷深入,但目前我們仍然很難確定影響耐寒的關鍵因素是什么?為什么有些昆蟲在低于-20℃環境下還能存活?為了弄清這一科學問題,科學家們利用轉錄組、基因組、蛋白質組和代謝組等各種組學剖析低溫脅迫后昆蟲生理反應的分子機制。本文旨在綜述前人對昆蟲耐寒性的研究,為將來其他昆蟲或動植物的耐寒性研究提供參考依據。同時,也為新型生物農藥的開發和天敵昆蟲的人工助增提供廣闊思路。
昆蟲; 耐寒性; 抗凍保護劑; 機制
昆蟲耐寒性研究最早起源于18世紀30年代,Bachmetjew發現了昆蟲的過冷卻點[1]。直到20世紀60年代,Salt[2]應用簡單的儀器設備進行了昆蟲耐低溫的生理試驗。隨著科學技術的發展,許多高科技的手段被用于揭示低溫生物學問題,比如:氣相色譜、液相色譜、電泳法、差示掃描量熱法、核磁共振光譜和各種組學,包括轉錄組、基因組、基因芯片、蛋白質組和代謝組等。
影響昆蟲耐寒的因素主要包括生物因素和非生物因素。生物因素主要包括寄主營養、發育歷期及雌雄差異等;非生物因素主要有季節性氣溫變化、快速冷馴化、環境濕度、光周期及不同地理位置等。昆蟲耐寒是各種因素相互作用的結果[3],并非單一的體系,而是由多種抗寒物質組成的復雜系統[4-6]。昆蟲應對低溫耐寒的對策主要分為兩類:一類是行為對策,即生態適應對策,當冬季低溫來臨時,昆蟲通過行為活動尋找合適的躲避場所,比如遷飛、休眠和滯育等;另一類是生理對策,即改變體內生理生化物質比例,提高耐寒性。目前,昆蟲耐寒性研究主要圍繞過冷卻點、小分子抗凍保護劑、抗凍蛋白和熱休克蛋白等方面進行機理解析[7]。然而,不同昆蟲耐寒機理不盡相同,本文對前人的大量研究進行了綜述。
昆蟲是變溫動物,能否安全越冬直接關系到昆蟲下一年種群的繁衍。19世紀60年代,人們開始意識到昆蟲的耐寒性與昆蟲自身生理調節緊密相關。
1.1 過冷卻點的降低
溫度低于昆蟲體液冰點而不凝固的現象稱作過冷卻現象。過冷卻點是描述昆蟲耐寒性的主要指標之一。昆蟲的過冷卻點在不同個體和群體之間差異很大,受環境、自身發育、機體代謝等多種因素影響,因此,這些因素也影響昆蟲的耐寒性。進入過冷卻狀態是北半球溫帶和寒溫帶地區昆蟲采取的主要越冬策略。蘋淡褐卷蛾(Epiphyaspostvittana)幼蟲經冷馴化處理后,過冷卻點和死亡率均明顯降低[8]。美洲芹鳳蝶(Papiliozelicaon)越冬蛹過冷卻點為-20.5℃時,可以在-30℃幸存,但經春季暖溫暴露后,過冷卻點升為-17℃,在-20℃僅能存活1 h[9]。由此說明低溫冷馴化對降低昆蟲過冷卻點至關重要,也是自然環境下昆蟲能夠正常越冬必不可少的步驟。
1.2 體內冰核物質的排除與結構調整
生物體中常有異源催化物質,促使水分子重新排列,并在零下溫度結冰,這種催化物質被稱作冰核促成活性因子(ice nucleating active agents,INA),簡稱為冰核。早期在細菌的核中得到證實,細胞外膜上的蛋白、碳水化合物和脂類限制了冰核的形成。同樣,在昆蟲體液中,也存在冰核。除去冰核可以增加昆蟲的耐寒性,提高小分子防凍保護劑的合成。食物和細菌在昆蟲腸道內被認為是潛在的冰核物質,因此,在低溫下可以通過停止取食的方式除去這些潛在的冰核物質。最近,Worland等[10-11]在彈尾目昆蟲中發現蛻皮可以降低過冷卻點,可能由于彈尾目昆蟲通過蛻皮脫掉了潛在的冰核物質。近年來通過基因芯片技術證明了蛻皮與過冷卻點降低存在一定的聯系。另外,冰核結構也是影響過冷卻點的因素,不同的冰核結構有助于山楂粉蝶(Aporiacrataegi)耐受-85℃低溫[12]。因此,說明不同昆蟲通過不同的途徑處理冰核來達到抵抗低溫的目的。
1.3 小分子抗凍保護劑的積累
越冬昆蟲體內聚集小分子抗凍保護劑,如甘油、多元醇、糖類等,可增加昆蟲體內束縛水的含量;直接與酶及其他蛋白相互作用,提高昆蟲機體的耐寒性。有研究報道,長角血蜱(Haemaphysalislongicornis)滯育卵中山梨醇和甘油的積累是重要的越冬抗凍保護劑[13];冰川搖蚊(Pseudodiamesabranickii)體內主要以葡萄糖和蔗糖作為小分子抗凍保護劑[14];大螟(Sesamiainferens)體內小分子抗凍保護劑,如甘油、海藻糖、果糖、葡萄糖和肌醇含量的變化與季節氣溫波動完全吻合[15]。因此,說明昆蟲抵抗低溫并非單一物質行為,而是存在多元抗凍保護系統。
1.4 脂類的轉化
目前,研究與耐寒相關的脂類主要有軟脂酸、亞油酸、脂肪酸酯和油酸等。脂肪是生物體的三大基礎物質之一,具有貯能和保溫等功能,同時在低溫耐寒方面起著非常重要的作用[16-18]。昆蟲脂肪耐寒主要表現在:其一,脂肪具有貯能、供能的功效,如低溫飼養條件下劍川無鉤蝠蛾(Hepialusjianchuanensis)幼蟲體內脂肪含量明顯高于較高溫度飼養的個體[19];其二,脂肪可以減少昆蟲體內自由水含量,從而增加其耐寒性[20];其三,游離脂肪含量影響昆蟲過冷卻點的變化。作為脂肪代謝產物的甘油可以降低白蠟窄吉丁(Agrilusplanipennis)的過冷卻點,保護其組織不受低溫的傷害[21]。
脂肪酸是脂肪合成的底物,因此,它與昆蟲的耐寒性有著緊密的聯系。一般情況下,隨著溫度的降低,不飽和脂肪酸含量升高,飽和脂肪酸含量降低,增加昆蟲體內不飽和脂肪酸含量可以阻止細胞膜脂在低溫下結晶。Nieminen等[22]的研究表明,頸利虱蠅(Lipoptenacervi)體內不飽和脂肪酸含量在晚秋季節顯著高于夏季。
脂肪參與昆蟲體內各種代謝反應,直接或間接地影響昆蟲的多種生理反應。同時,脂肪含量的變化影響昆蟲耐寒性的機制也并非單一,因此,需要進一步從分子層面深入研究。
1.5 自由氨基酸的合成
溫度脅迫也能觸發昆蟲體內自由氨基酸的代謝反應。在低溫條件下,自由氨基酸對昆蟲機體具有抗凍保護的作用。蠋蝽(Armachinensis)經快速冷馴化處理后,體內自由氨基酸含量發生較大變化,其中丙氨酸和谷氨酸含量明顯升高,脯氨酸含量明顯降低[23]。相反,植物抗寒性研究中普遍認為脯氨酸是一類抗凍保護劑,其含量隨著低溫脅迫大幅度增加。因此,說明自由氨基酸在不同生物體耐寒中的作用機制并不相同。
1.6 酶激活及離子平衡
無機離子(inorganic ions)是生命體不可缺少的一部分,在溶質的跨膜運動中扮演著重要的角色,如K+、Na+和Ca2+等。當昆蟲受到低溫脅迫時,體內會積累大量有毒代謝物質,堿性金屬離子和各種酶類可以幫助調節機體受損,確保正常的新陳代謝。在低溫暴露下,昆蟲血淋巴中K+濃度顯著增加,Na+濃度下降及腸道內水分流失[24],這一觀點在黑腹果蠅(Drosophilamelanogaster)中已經得到證實[25]。然而,東亞飛蝗(Locustamigratoria)經低溫脅迫后血淋巴中K+濃度并未發生顯著變化[26]。說明堿性金屬離子在不同昆蟲種類耐寒中的作用和變化動態并非一致,如低溫暴露下,Ca2+在亞洲玉米螟(Ostriniafurnacalis)中誘導快速冷馴化,刺激甘油合成[27]。
溫度變化會通過一個信號傳導系統激活糖原磷酸化酶,糖原和其他冷凍保護劑隨著溫度的變化相互轉化。越冬過程中,溫度或光周期刺激直接影響昆蟲生長發育中的激素,改變合成多元醇的酶活機制,如保幼激素(JH)和保幼激素類似物(JHA)刺激二化螟幼蟲體內甘油聚集,蛻皮激素則降低其甘油濃度[28]。SOD和CAT能夠清除細胞內的活性氧、羥自由基及其他過氧化物,以免對細胞造成毒害[29]。LDH是糖酵解途徑的關鍵酶之一,若其活性升高會直接影響昆蟲體內能量代謝,促進新陳代謝,致使昆蟲不耐寒。Na+,K+-ATP酶有促進離子運輸的重要功能,低溫誘導使離子在細胞內外平衡,啟動相關生理生化反應[30]。如異色瓢蟲經冷馴化處理后體內細胞保護酶超氧化物歧化酶(SOD)與過氧化氫酶(CAT)活性升高,與新陳代謝有關的乳酸脫氫酶(LDH)及Na+,K+-ATP酶活性降低[31]。
2.1 抗冷保護劑基因調控
2.1.1 脂類
脂肪酸脫飽和酶(fatty acid desaturase, FAD)是一類在脂肪酸鏈上將碳碳單鍵轉化為碳碳雙鍵的酶,是合成不飽和脂肪酸的關鍵酶[32]。昆蟲中FAD保幼激素的種類很多,但主要屬于FAD9(△9-酰基輔酶脫飽和酶)和FAD11(△11-酰基輔酶脫飽和酶)[33-34]。在魚類[35]、細菌[36]、植物[37]和昆蟲[38]的耐低溫研究中均證實了細胞膜上飽和脂肪酸轉變成不飽和脂肪酸時,FAD9基因起到了非常關鍵的作用。關于FAD9基因序列已經在黑腹果蠅[39]、粉紋夜蛾(Trichoplusiani)[40]、家蠶(Bombyxmori)[41]和家蠅(Muscadomestica)[42]中得到鑒定,序列在兩端保守性低,但中間部分存在兩個相對保守的疏水區,富含3個極保守的組氨酸基序和4 次跨膜結構域,這3個極保守的組氨酸基序與酶活性中心的形成相關,主要是螯合金屬離子,結合氧[43]。
Kayukawa等[38]在蔥地種蠅(Deliaantiqua)中最先證實了FAD9基因與耐寒相關。隨后,又有學者陸續在白紋伊蚊(Aedesalbopictus)、麻蠅(Sarcophagacrassipalpis)等幾種昆蟲證實耐寒與FAD9基因有關[44-45]。當溫度降低時膜脂流動性減少,該信號激活FAD9合成不飽和脂肪酸用來提高昆蟲耐寒性。FAD9在低溫下有兩種調節機制[35]:其一,當溫度開始下降時,激活昆蟲體內現有的FAD9基因,增加其活性,但表達量不變;其二,當溫度繼續下降時,FAD9基因表達量升高,酶活性也進一步增加。關于FAD調控脂肪酸代謝的機制至今研究還不夠深入,有待進一步完善。
2.1.2 甘油激酶
在低溫狀態時,昆蟲合成多元醇等抗凍保護劑阻止細胞結冰,增加其適應性和生存能力。甘油是昆蟲血淋巴中主要的抗凍保護劑之一[46],具有兩個獨立的合成途徑:一個是利用多元醇脫氫酶催化甘油醛和煙酰胺腺嘌呤二核苷磷酸(NADPH+H+)途徑合成甘油[47];另一個是利用甘油磷酸脫氫酶(GPDH)和葡萄糖激酶(GK)途徑合成甘油[48]。小菜蛾通過后者完成甘油合成,其基因組注釋中有4個葡萄糖激酶(GK)基因和1個甘油磷酸脫氫酶(GPDH)基因[49],經RNAi驗證GK1與耐寒相關[50]。GPDH可能在耐寒過程中起輔助作用,催化合成3-磷酸甘油[51],這一假設需要在其他昆蟲中進一步研究證明。
2.1.3 海藻糖
海藻糖也是昆蟲血淋巴中主要的抗凍保護劑之一,由2個葡萄糖殘基通過糖苷鍵結合而成[52]。海藻糖的合成途徑有5 種,最主要的是TPS/TPP途徑。這個途徑中,海藻糖-6-磷酸合成酶起關鍵作用,即尿苷二磷酸葡萄糖和6-磷酸葡萄糖在海藻糖6-磷酸合成酶的催化作用下合成6-磷酸海藻糖,然后在海藻糖6-磷酸磷酸酯酶作用下生成海藻糖[53]。
隨著季節變化,昆蟲體內海藻糖在血淋巴中的含量也隨之變化,秋季增加,冬季結束后下降[54]。同樣,這一特性在低溫條件或昆蟲冬滯育中也存在[55]。完全處于冬滯育狀態的蘋果蠹蛾(Cydiapomonella)幼蟲體內海藻糖含量比滯育初期的高3倍,而且海藻糖濃度與蘋果蠹蛾幼蟲過冷卻能力和低溫生存能力相關[56]。異色瓢蟲在低溫誘導下,TPS的表達量隨著溫度的降低而顯著升高,在降溫和升溫處理條件下,TPS的表達量呈現先升高后下降的表達趨勢[57]。進一步說明TPS基因的表達與耐寒相關。這一機制的研究為明確昆蟲的耐寒途徑提供了新的思路。
2.2 抗凍蛋白和熱滯活性
抗凍蛋白是一類具有熱滯活性,吸附在冰核表面抑制冰核增長的冰結合蛋白,能夠將凍結溫度降到熔點之下,這一現象稱作熱滯作用。抗凍蛋白能將昆蟲血淋巴的冰點降低超過5℃[58]。同時,抗凍蛋白還可改變冰晶形態、降低過冷卻點、降低玻璃化和去玻璃化損傷,具有明顯的季節性[59]。目前,至少有50種昆蟲產生抗凍蛋白[60]。昆蟲抗凍蛋白的分子量一般約為8~9 kD,無糖基化位點并且含有較多的親水性氨基酸,有40%~50%的氨基酸殘基能形成氫鍵。由于一些昆蟲的抗凍蛋白相比魚類,具有更強的抗凍能力[61],因此,昆蟲抗凍蛋白的研究成為生物技術的熱門話題。
目前,盡管大部分昆蟲抗凍蛋白研究集中在探索和測量血淋巴中熱滯活性,但是也有少量昆蟲的抗凍蛋白序列被測序并純化,如:黃粉蟲(Tenebriomolitor)、赤翅甲(Dendroidescanadensis)、雪跳蚤(Hypogastruraharveyi)、樅色卷蛾(Choristoneurafumiferana)等[62]。比較這4種昆蟲的抗凍蛋白序列,發現它們之間相似度非常低,表明昆蟲抗凍蛋白之間由不同始祖獨立進化而來,至少包含17個cf型亞族和13個D型亞族。同一基因不同的亞型多拷貝現象存在明顯的適應性,因此,隨著環境信號的改變,這些蛋白可能發揮不同的功能[63]。將抗凍蛋白轉入昆蟲細胞系中進行表達,可以控制神經內分泌,使生物體對環境因素誘導產生不敏感的反應[64]。也有研究表明,有些生物體轉入抗凍蛋白基因后,提高了熱滯活性,增強了抗凍能力;然而,也有些生物體轉入抗凍蛋白基因后,雖然提高了熱滯活性,但是抗凍能力并無明顯差異[65]。可能存在如下原因[66-67]:(1)抗凍蛋白是多基因家族,熱滯活性不可能區分不同亞型的抗凍蛋白,不同形式抗凍蛋白亞型混合,產生了耐寒性;(2)細胞膜的穩定性對抗寒非常重要,即使轉基因抗凍蛋白集中在細胞膜上且能正確翻譯與修飾,但它們不可能無限制地穩定細胞膜;(3)穩定細胞膜抵抗低溫需要一些協同作用的物質,如甘油。因此,昆蟲體內抗凍蛋白的產生與抵抗低溫的關系非常復雜,需要通過現代分子生物學手段進行深入研究。
2.3 熱休克蛋白
熱休克蛋白(heat shock proteins, HSPs)是一種抗逆蛋白,通常被認為具有保護細胞不受傷害的作用。在大部分昆蟲中,冷休克可以誘導熱休克蛋白家族基因的表達,但在果蠅中,不管是冷脅迫還是快速冷馴化,HSP70的表達幾乎恒定不變[68]。因此,在早期昆蟲耐寒性研究中,黑腹果蠅不是理想的模式昆蟲,HSP70不隨著冷休克而上調,但這并不意味其他熱休克蛋白基因也不變化,特別是小熱休克蛋白基因家族,這一觀念隨著后來研究的深入得到了證實[69],如HSP19.5,HSP20.8和HSP21.7在美洲斑潛蠅(Liriomyzasativae)耐寒中起到非常重要的作用,其中HSP20.8對低溫更敏感[70]。
冬滯育在昆蟲中普遍存在,其研究主要集中在熱休克蛋白基因[71]。與滯育相關的基因有兩種[72]:一種是直接調控滯育;另一種是輔助啟動滯育機制。不同物種之間調控滯育的基因不同,如HSP90在麻蠅(S.crassipalpis)滯育中表達上調[73],但在蔥地種蠅(Deliaantiqua)滯育中表達下調[74],說明不同種類的昆蟲參與耐寒調控的熱休克蛋白并非一致。
熱休克蛋白基因家族與滯育的關系非常復雜,主要受外部環境的刺激影響。麻蠅(S.crassipalpis)通過RNAi技術干擾HSP23和HSP70基因,并不影響其滯育,但影響蛹的耐寒性[75]。因此,HSP23和HSP70被認為主要與麻蠅越冬耐寒相關。
目前,確定與滯育觸發相關的基因有兩類[76]。一類是滯育激素,不同物種之間表現并非一致,滯育激素在家蠶中誘導胚胎滯育[77],然而,在煙芽夜蛾(Heliothisvirescens)[78]和棉鈴蟲(Helicoverpaarmigera)[79]中解除滯育。另一類是P38 MAPK的磷酸化作用,在豆長刺螢葉甲(Atrachyamenetriesi)[80]、家蠶(Bombyxmori)[81]和麻蠅(Sarcophagacrassipalpis)[82]等3種昆蟲的滯育與解除中得到證實。p38 MAPK的磷酸化作用在誘導麻蠅進入快速冷馴化過程中起著關鍵作用,溫度在0℃ 左右10 min內啟動p38 MAPK磷酸化途徑[83]。
2.4 水通道蛋白
隨著分子生物學高科技手段的發展與運用,生物體中仍然存在一些特殊的基因在耐寒中起著重要作用,如水通道蛋白就是其中之一。水通道蛋白是跨膜蛋白,可以選擇性地讓水或其他小分子物質通過細胞膜。目前,水通道蛋白在黑腹果蠅[84]、白紋伊蚊(A.albopictus)[85]、岡比亞按蚊(Anophelesgambiae)[86]和Eurostasolidaginis[87]等昆蟲中得到克隆并鑒定。通過免疫印跡法得知E.solidaginis水通道蛋白與哺乳動物同源,水通道蛋白的表達量與氣候溫度和干燥直接相關,抑制水通道蛋白活性可以明顯降低E.solidaginis脂肪體和中腸細胞在低溫下的存活[87]。由于水通道蛋白具有控制水分和甘油流動,增加滲透調節和代謝運輸的功能,因此,可以推測水通道蛋白與耐寒性存在一定的關系,但需要進一步研究證實。
昆蟲受低溫脅迫時,會啟動一系列抗寒機制。通過調控相關抗寒基因,合成抗逆物質,增加細胞內抗凍蛋白和熱休克蛋白等提高抗寒能力,保護機體不受低溫的傷害。同時,這一生理生化過程隨著溫度的恢復是可逆的。
昆蟲耐寒性研究是昆蟲生態學和生物進化學研究的熱點,也為害蟲的測報和防治提供理論基礎[88],尤其對新農藥的開發提供了新的思路。
昆蟲脂肪酸脫飽和酶在低溫下促進不飽和脂肪酸的形成,減少膜脂流動性,提高耐寒性。因此,可以通過基因工程等相關手段開發新的生物制劑,阻斷害蟲體內脂肪酸脫飽和酶的活性,降低害蟲耐寒能力,讓其不能在低溫條件下越冬,達到害蟲防治的效果。同時,對于有益生物,也可以通過此方法保護其耐寒越冬。這一研究為今后的生產實踐提供了廣闊的思路。
昆蟲體內冰核物質能夠提高昆蟲過冷卻點,降低昆蟲耐寒性,導致越冬昆蟲大量死亡。若開發成新型的生物制劑,與其他防治方法配合使用,可能開辟一個全新的害蟲防治領域,具有潛在的生態學意義。
總之,隨著基因芯片、蛋白質組學、代謝組學和基因組學等的發展與應用,昆蟲耐寒的生理生化機制逐漸清晰。盡管果蠅不適合作為耐寒研究的模式昆蟲,但果蠅有完整的基因組序列、成熟的育種系、突變體和細胞系。根據果蠅的基因功能,推測其他昆蟲某類基因的功能,再進行試驗證明。研究昆蟲的耐寒性機制,可為農業昆蟲的測報提供理論參考,尤其對天敵昆蟲的低溫儲存具有重要意義,同時,在新農藥開發與利用方面具有較大前景。這些研究有望推動和促進害蟲農業防治和生物防治事業的發展。
[1] Somme L.The history of cold hardiness research in terrestrial arthropods [J]. CryoLetters, 2000, 21(5): 289-296.
[2] Salt R W. Principles of insect cold-hardiness [J]. Annual Review of Entomology, 1961, 6(3): 55-74.
[3] Williams C M, Chick W D, Sinclair B J. A cross-seasonal perspective on local adaptation: metabolic plasticity mediates responses to winter in a thermal-generalist moth [J]. Functional Ecology, 2015, 29(4): 549-561.
[4] 張徐, 呂寶乾, 金啟安, 等. 低溫對椰心葉甲成蟲體內幾種抗寒物質含量的影響[J]. 熱帶作物學報, 2013, 34(5): 942-946.
[5] 李艷紅, 成巨龍, 張南, 等. 高、低溫處理對斜紋夜蛾生長發育、存活及耐寒性的影響[J]. 植物保護學報, 2014, 41(4): 501-508.
[6] 岳雷, 周忠實, 劉志邦, 等. 不同強度快速冷馴化對廣聚螢葉甲成蟲耐寒性生理指標的影響[J]. 昆蟲學報, 2014, 57(6): 631-638.
[7] Fuller B J. Cryoprotectants: the essential antifreezes to protect life in the frozen state [J]. CryoLetters, 2004, 25(6): 375-388.
[8] Bürgi L P, Mills N J. Cold tolerance of the overwintering larval instars of light brown apple mothEpiphyaspostvittana[J]. Journal of Insect Physiology, 2010, 56(11): 1645-1650.
[9] Williams C M, Nicolai A, Ferguson L V, et al. Cold hardiness and deacclimation of overwinteringPapiliozelicaonpupae [J]. Comparative Biochemistry and Physiology, Part A: Molecular & Integrative Physiology, 2014, 178: 51-58.
[10]Worland M R.Factors that influence freeing in the sub-Antarctic springtailTullbergiaantarctica[J]. Journal of Insect Physiology, 2005, 51(8): 881-894.
[11]Worland M R, Leinaas H P, Chown S L.Supercooling point frequency distribution inCollembolaare affected by moulting[J]. Functional Ecology, 2006, 20(2): 323-329.
[12]Li N G.Relationships between cold hardiness, and ice nucleating activity, glycerol and protein contents in the hemolymph of caterpillars,AporiacrataegiL.[J]. CryoLetters, 2012, 33(2): 135-143.
[13]Yu Zhijun, Lu Yulan, Yang Xiaolong, et al. Cold hardiness and biochemical response to low temperature of the unfed bush tickHaemaphysalislongicornis(Acari: Ixodidae)[J]. Parasites & Vectors, 2014, 7(1): 1-7.
[14]Lencioni V, Jousson O, Guella G, et al. Cold adaptive potential of chironomids overwintering in a glacial stream [J]. Physiological Entomology, 2015, 40(1): 43-53.
[15]Sun Meng, Tang Xiaotian, Lu Mingxing, et al. Cold tolerance characteristics and overwintering strategy ofSesamiainferens(Lepidoptera: Noctuidae) [J]. Florida Entomologist, 2014, 97(4): 1544-1553.
[16]Bemani M, Izadi H, Mahdian K, et al. Study on the physiology of diapause, cold hardiness and supercooling point of overwintering pupae of the pistachio fruit hull borer,Arimaniacomaroffi[J]. Journal of Insect Physiology, 2012, 58(7): 897-902.
[17]Behroozi E, Izadi H, Samih M A, et al. Physiological strategy in overwintering larvae of pistachio white leaf borer,OcneriaterebinthinaStrg.(Lepidoptera: Lymantriidae) in Rafsanjan, Iran [J]. Italian Journal of Zoology, 2012, 79(1): 44-49.
[18]Lehmann P, Lyytinen A, Sinisalo T, et al. Population dependent effects of photoperiod on diapause related physiological traits in an invasive beetle,Leptinotarsadecemlineata[J]. Journal of Insect Physiology, 2012, 58(8): 1146-1158.
[19]Zou Zhiwen, Liu Xin, Wang Jianghai, et al. Effects of low temperatures on the fatty acid composition ofHepialusjianchuanensislarvae[C]∥Proceedings of the 2010 3rd International Conference on Biomedical Engineering and Informatics, 2010: 2560-2564.
[20]Canavoso L E, Jouni Z E, Karnas K J, et al. Fat metabolism in insects [J]. Annual Review of Nutrition, 2001, 21(1): 23-46.
[21]Crosthwaite J C, Sobek S, Lyons D B, et al. The overwintering physiology of the emerald ash borer,AgrilusplanipennisFairmaire (Coleoptera: Buprestidae)[J]. Journal of Insect Physiology, 2011, 57(1): 166-173.
[22]Nieminen P, K?kel? R, Paakkonen T, et al. Fatty acid modifications during autumnal cold-hardening in an obligatory ectoparasite, the deer ked (Lipoptenacervi)[J]. Journal of Insect Physiology, 2013, 59(6): 631-637.
[23]李興鵬, 宋麗文, 張宏浩, 等. 蠋蝽抗寒性對快速冷馴化的響應及其生理機制[J]. 應用生態學報, 2012, 23(3): 791-797.
[24]MacMillan H A, Williams C M, Staples J F, et al. Reestablishment of ion homeostasis during chill-coma recovery in the cricketGrylluspennsylvanicus[J]. Proceedings of the National Academy of Sciences of the United States of American, 2012, 109(50): 20750-20755.
[25]MacMillan H A, Findsen A, Pedersen T H, et al. Cold-induced depolarization of insect muscle: differing roles of extracellular K+during acute and chronic chilling [J]. Journal of Experimental Biology, 2014, 217(16): 2930-2938.
[26]Findsen A, Pedersen T H, Petersen A G, et al. Why do insects enter and recover from chill coma? Low temperature and high extracellular potassium compromise muscle function inLocustamigratoria[J]. Journal of Experimental Biology, 2014, 217(8): 1297-1306.
[27]Teets N M, Yi Shuxia, Lee R E, et al. Calcium signaling mediates cold sensing in insect tissues [J]. Proceedings of the National Academy of Sciences of the United States of American, 2013, 110(22): 9154-9159.
[28]Mirth C K, Tang Huiyuan, Makohon-Moore S C, et al. Juvenile hormone regulates body size and perturbs insulin signaling inDrosophila[J]. Proceedings of the National Academy of Sciences of the United States of American, 2014, 111(19): 7018-7023.
[29]Xu Xiaorui, Zhu Mingming, Li Liangliang, et al. Cold hardiness characteristic of the overwintering pupae of fall webwormHyphantriacunea(Drury) (Lepidoptera: Arctiidae) in the northeast of China[J]. Journal of Asia-Pacific Entomology, 2015, 18(1): 39-45.
[30]McMullen D C, StoreyK B.Suppression of Na+, K+-ATPase activity by reversible phosphorylation over the winter in a freeze-tolerant insect [J]. Journal of Insect Physiology, 2008, 54(6): 1023-1027.
[31]趙靜, 陳珍珍, 曲建軍, 等. 異色瓢蟲成蟲冷馴化反應及體內幾種酶活力的相關變化[J]. 昆蟲學報, 2010, 53(2): 147-153.
[32]Everatt M J, Convey P, Worland M R, et al. Contrasting strategies of resistance vs. tolerance to desiccation in two polar dipterans [J]. Polar Research, 2014, 33(2):82-85.
[33]HaoGuixia, Liu Weitian, O’Connor M, et al. Acyl-CoA Z9-and Z10-desaturase genes from a New Zealand leaf roller moth species,Planotortrixocto[J]. Insect Biochemistry and Molecular Biology, 2002, 32(9): 961-966.
[34]Roelofs W L, Liu Weitian, Hao Guixia, et al. Evolution of moth sex pheromones via ancestral genes [J]. Proceedings of the National Academy of Sciences of the United States of American, 2002, 99(21): 13621-13626.
[35]Tiku P E, Gracey A Y, Macartney A I, et al. Cold-induced expression of Delta 9-desaturase in carp by transcriptional and post translational mechanisms [J]. Science, 1996, 271(5250): 815-818.
[36]Sakamoto T, Bryant D A.Temperature-regulated mRNA accumulation and stabilization for fatty acid desaturase genes in the cyanobacteriumSynechococcussp. [J]. Molecular Microbiology, 1997, 23(6): 1281-1292.
[37]Vega S E, Del-Rio A H, Bamberg J B, et al. Evidence for the up-regulation of stearoyl-ACP(A9) desaturase gene expression during cold acclimation[J]. American Journal of Potato Research, 2004, 81(2): 125-135.
[38]Kayukawa T, Chen B, Hoshizaki S, et al. Upregulation of a desaturase is associated with enhancement of cold hardiness in the onion maggotDeliaantiqua[J]. Insect Biochemistry and Molecular Biology, 2007, 37(11): 1160-1167.
[39]Dallerac R, Labeur C, Jallon J M, et al. A delta 9 desaturase gene with a different substrate specificity is responsible for the cuticulardiene hydrocarbon polymorphism inDrosophilamelanogaster[J]. Proceedings of the National Academy of Sciences of the United States of American, 2000, 97(17): 9449-9454.
[40]Liu Weitian, Ma P W, Marsella-Herrick P, et al. Cloning and functional expression of a cDNA encoding a metabolic acyl-CoA Delta 9-desaturase of the cabbage looper moth,Trichoplusiani[J].Insect Biochemistry and Molecular Biology, 1999, 29(5): 435-443.
[41]Yoshiga T, Okano K, Mita K, et al. cDNA cloning of acy1-CoA desaturase homologs in the silkworm,Bombyxmori[J]. Gene, 2000, 246(1): 339-345.
[42]Eigenheer A L, Young S, Blomquist G J, et al. Isolation and molecular characterization ofMuscadomesticadelta-9 desaturase sequences [J]. Insect Biochemistry and Molecular Biology, 2002, 11(6): 533-542.
[43]Nakamura M T, Nara T Y.Structure, function and dietary regulation of △6, △5 and △9 desaturases [J]. Annual Review of Nutrition, 2004, 24:345-376.
[44]Rinehart J P, Robich R M, Denlinger D L.Isolation of diapause regulated genes from the flesh fly,Sarcophagacrassipalpisby suppressive subtractive hybridization [J]. Journal of Insect Physiology, 2010, 56(6): 603-609.
[45]Reynolds J A, Poelchau M F, Rahman Z, et al. Transcript profiling reveals mechanisms for lipid conservation during diapause in the mosquito,Aedesalbopictus[J]. Journal of Insect Physiology, 2012, 58(7): 966-973.
[46]丁惠梅, 馬罡, 武三安, 等. 滯育昆蟲小分子含量變化研究進展[J]. 應用昆蟲學報, 2011, 48(4): 1060-1070.
[47]Holden H A, Storey K B.Reversible phosphorylation regulation of NADPH-linked polyol dehydrogenase in the freeze-avoiding gall moth,Epiblemascudderiana: role in glycerol metabolism[J]. Archives of Insect Biochemistry and Physiology, 2011, 77(1): 32-44.
[48]Park Y, Kim Y.RNA interference of glycerol biosynthesis suppresses rapid cold hardening of the beet armyworm,Spodopteraexigua[J]. Journal of Experimental Biology, 2013, 216(22): 4196-4203.
[49]Wu Shunfan, Yu Huayang, Gao Congfen, et al. Superfamily of genes encoding G protein-coupled receptors in the diamondback mothPlutellaxylostella(Lepidoptera: Plutellidae)[J]. Insect Molecular Biology, 2015, 24(4): 442-453.
[50]Park Y, Kim Y.A specific glycerol kinase induces rapid cold hardening of the diamondback moth,Plutellaxylostella[J]. Journal of Insect Physiology, 2014, 67(1): 56-63.
[51]Guo Qiang, Hao Youjin, Li Yuan, et al. Gene cloning, characterization and expression and enzymatic activities related to trehalose metabolism during diapause of the onion maggotDeliaantiqua(Diptera: Anthomyiidae)[J]. Gene, 2015, 565(1): 106-115.
[52]Shukla E, Thorat L J, Nath B B, et al. Insect trehalase: Physiological significance and potential applications [J]. Glycobiology, 2015, 25(4): 357-367.
[53]李源, 郝友進, 張玉娟, 等. 蔥蠅海藻糖-6-磷酸合成酶基因的克隆、序列分析及滯育相關表達[J]. 昆蟲學報, 2013, 56(4): 329-337.
[54]Kostál V, Zahradnicková H, Simek P, et al. Multiple component system of sugars and polyols in the overwintering spruce bark beetle,Ipstypographus[J]. Journal of Insect Physiology, 2007, 53(6): 580-586.
[55]Vanin S, Bubacco L, Beltramini M.Seasonal variation of trehalose and glycerol concentrations in winter snow-active insects[J]. CryoLetters, 2008, 29(6): 485-491.
[56]Khani A, Moharramipour S, Barzegar M.Cold tolerance and trehalose accumulation in overwintering larvae of the codling moth,Cydiapomonella(Lepidoptera: Tortricidae)[J]. European Journal of Entomology, 2007, 104(3): 385-392.
[57]秦資, 王甦, 魏蘋, 等. 異色瓢蟲海藻糖合成酶基因的克隆及低溫誘導表達分析[J]. 昆蟲學報, 2012, 55(6): 651-658.
[58]毛新芳, 張富春. 昆蟲抗凍蛋白的分離純化及特性分析[J]. 昆蟲知識, 2009, 46(1): 26-32.
[59]趙靜, 崔寧寧, 張帆, 等. 異色瓢蟲成蟲體型及體內脂肪含量對其耐寒能力的影響[J]. 昆蟲學報, 2010, 53(11): 1213-1219.
[60]Duman J G, Bennett T, Sformo T, et al. Antifreeze proteins in Alaskan insects and spiders [J]. Journal of Insect Physiology, 2004, 50(4): 259-266.
[61]Guza N, Topraka U, Dageria A, et al. Identification of a putative antifreeze protein gene that is highly expressed during preparation for winter in the sunn pest,Eurygastermaura[J]. Journal of Insect Physiology, 2014, 68(1): 30-50.
[62]Clark M S, Worland M R.How insects survive the cold: molecular mechanisms-a review [J]. Journal of Comparative Physiology B, 2008, 178(8): 917-933.
[63]Meister K, Lotze S, Olijve L L C, et al. Investigation of the ice-binding site of an insect antifreeze protein using sum-frequency generation spectroscopy [J]. Journal of Physical Chemistry Letters, 2015, 6(7): 1162-1167.
[64]Uribe E, Venkatesan M, Rose D R, et al. Expression of recombinant Atlantic salmon serum C-type lectin inDrosophilamelanogasterSchneider 2 cells [J]. Cytotechnology, 2013, 64(4): 513-521.
[65]Biggar K K, Kotani E, Furusawa T, et al. Expression of freeze-responsive proteins, Fr10 and Li16, from freeze-tolerant frogs enhances freezing survival of BmN insect cells [J]. The FASEB Journal, 2013, 27(8): 3376-3383.
[66]Tyshenko M G, Walker V K. Hyperactive spruce budworm antifreeze expression in transgenicDrosophiladoes not confer cold shock tolerance [J]. Cryobiology, 2004, 49(1): 28-36.
[67]Nicodemus J, O’Tousa J E, Duman J G.Expression of a beetle,Dendroidescanadensis, antifreeze protein inDrosophilamelanogaster[J]. Journal of Insect Physiology, 2006, 52(8): 888-896.
[68]Jensen P, Overgaard J, Loeschcke V, et al. Inbreeding effects on standard metabolic rate investigated at cold, benign and hot temperatures inDrosophilamelanogaster[J]. Journal of Insect Physiology, 2014, 62(1): 11-20.
[69]Shen Ying, Gu Jun, Huang Lihua, et al. Cloning and expression analysis of six small heat shock protein genes in the common cutworm,Spodopteralitura[J]. Journal of Insect Physiology, 2011, 57(7): 908-914.
[70]Huang Lihua, Wang Chenzhu, Kang Le. Cloning and expression of five heat shock protein genes in relation to cold hardening and development in the leaf miner,Liriomyzasativa[J]. Journal of Insect Physiology, 2009, 55(3): 279-285.
[71]King A M, MacRae T H.Insect heat shock proteins during stress and diapause [J]. Annual Review of Entomology, 2015, 60: 59-75.
[72]Tyukmaeva V L, Veltsos P, Slate J, et al. Localization of quantitative trait loci for diapause and other photoperiodically regulated life history traits important in adaptation to seasonally varying environments[J]. Molecular Ecology, 2015, 24(11): 2809-2819.
[73]Michaud M R, Teets N M, Peyton J T, et al. Heat shock response to hypoxia and its attenuation during recovery in the flesh fly,Sarcophagacrassipalpis[J]. Journal of Insect Physiology, 2011, 57(1): 203-210.
[74]Chen B, Kayukawa T, Monteiro A, et al. The expression of the HSP90 gene in response to winter and summer diapauses and thermal-stress in the onion maggot,Deliaantiqua[J]. Insect Molecular Biology, 2005, 14(6): 697-702.
[75]Rinehart J P, Li Aiqing, Yocum G D, et al. Up-regulation of heat shock proteins is essential for cold survival during insect diapause[J]. Proceedings of the National Academy of Sciences of the United States of American, 2007, 104(27): 11130-11137.
[76]Denlinger D L, Armbruster P A.Mosquito diapause [J]. Annual Review of Entomology, 2014, 59: 73-93.
[77]Sato A, Sokabe T, Kashio M, et al. Embryonic thermosensitive TRPA1 determines transgenerational diapause phenotype of the silkworm,Bombyxmori[J]. Proceedings of the National Academy of Sciences of the United States of American, 2014, 111(13): 1249-1255.
[78]Zhang Qirui, Nachman R J, Denlinger D L.Diapause hormone in theHelioverpa/Heliothiscomplex: A review of gene expression, peptide structure and activity, analog and antagonist development, and the receptor [J]. Peptides, 2015, 72: 196-201.
[79]Lu Yuxuan, Zhang Qi, Xu Weihua. Global metabolomic analyses of the hemolymph and brain during the initiation, maintenance, and termination of pupal diapause in the cotton bollworm,Helicoverpaarmigera[J]. PLoS ONE, 2014, 9(6): e99948.
[80]Kidokoro K, Ando Y.Effect of anoxia on diapause termination in eggs of the false melon beetle,Atrachyamenetriesi[J]. Journal of Insect Physiology, 2006, 52(1): 87-93.
[81]Zhao Aichun, Long Dingpei, Ma Sanyuan, et al. Efficient strategies for changing the diapause character of silkworm eggs and for the germline transformation of diapause silkworm strains [J]. Insect Science, 2012, 19(2): 172-182.
[82]Sláma K, Denlinger D L.Transitions in the heartbeat pattern during pupal diapause and adult development in the flesh fly,Sarcophagacrassipalpis[J]. Journal of Insect Physiology, 2013, 59(8): 767-780.
[83]Fujiwara Y, Denlinger D L.p38MAPK is a likely component of the signal transduction pathway triggering rapid cold hardening in the flesh flySarcophagacrassipalpis[J]. Journal of Experimental Biology, 2007, 210(18): 3295-3300.
[84]Kaufmann N, Mathai J C, Hill W G, et al. Developmental expression and biophysical characterization of aDrosophilamelanogasteraquaporin [J]. American Journal of Physiology Cell Physiology, 2005, 289(2): 397-407.
[85]Marusalin J, Matier B J, Rheault M R, et al. Aquaporin homologs and water transport in the anal papillae of the larval mosquito,Aedesaegypti[J]. Journal of Comparative Physiology B, 2012, 182(8): 1047-1056.
[86]Liu Kun, Tsujimoto H, Cha S J, et al. Aquaporin water channel AgAQp1 in the malaria vector mosquitoAnophelesgambiaeduring blood feeding and humidity adaptation [J]. Proceedings of the National Academy of Sciences of the United States of American, 2011, 108(15): 6062-6066.
[87]Philip B N, Yi Shuxia, Elnitsky M A, et al. Aquaporins play a role in desiccation and freeze tolerance in larvae of the goldenrod gall fly,Eurostasolidaginis[J]. Journal of Experimental Biology, 2008, 211(7): 1114-1119.
[88]唐斌, 林青青, 鄔夢靜, 等. 抗寒類蛋白與冷馴化誘發昆蟲耐寒的生理調節研究[J]. 環境昆蟲學報, 2014, 36(5): 805-813.
(責任編輯:田 喆)
Research progress in the cold tolerance mechanism of insects under environmental stress
Shi Caihua1,2, Hu Jingrong1, Li Chuanren1, Zhang Youjun2
(1. Yangtze University, Jingzhou 434025, China; 2. Institute of Vegetables and Flowers,Chinese Academy of Agricultural Sciences, Beijing 100081, China)
As ectothermic animals, insects usually convert its structure and physiological material composition in order to survive safely in winter. This adaptation mechanism is closely related to the special physiological and biochemical substances in the body, such as trehalose, dextrose, glycerol, sorbitol, fatty acids, amino acids and other frost protection agents of small molecules. These antifreeze agents have the function of stabilizing the cell membrane structure and protecting the protein function. Currently, research on the cold tolerance of insects is deepening, but it is still difficult to determine the key factors that affect the cold tolerance. Why some insects can survive below -20℃? In order to clarify the scientific issues, a large number of scholars have used the theory of transcriptomics, genomics, proteomics and metabolomics to analyze the molecular mechanisms of insect physiological responses after low temperature stress. The purpose of this article is to review the cold tolerance aspects of previous studies and provide a reference for future studies of other insects or cold flora and fauna. At the same time, it also provides a broad way for the development of new bio-pesticides and increasing natural enemies of insects artificially.
insect; cold tolerance; frost protection agent; mechanism
Reviews
2016-02-16
2016-05-05
公益性行業(農業)科研專項(2013203027)
Q 965
A
10.3969/j.issn.0529-1542.2016.06.003
* 通信作者 E-mail:zhangyoujun@caas.cn