黃詩言 饒南荃 徐舒豪 李小兵口腔疾病研究國家重點(diǎn)實(shí)驗(yàn)室 華西口腔醫(yī)院兒童口腔科(四川大學(xué)),成都 610041
?
調(diào)控牙萌出的細(xì)胞及分子機(jī)制研究進(jìn)展
黃詩言饒南荃徐舒豪李小兵
口腔疾病研究國家重點(diǎn)實(shí)驗(yàn)室 華西口腔醫(yī)院兒童口腔科(四川大學(xué)),成都 610041
[摘要]牙萌出是指牙冠形成后向?平面移動(dòng),穿過牙槽骨和口腔黏膜到達(dá)功能位置的一系列復(fù)雜生理過程。目前研究認(rèn)為,牙萌出由牙槽骨、牙囊、破骨細(xì)胞、成骨細(xì)胞及多種細(xì)胞因子等共同調(diào)控,其中牙囊參與調(diào)控牙槽骨吸收與形成,是牙萌出的必要條件;同時(shí),牙根形成及牙周韌帶在牙齒持續(xù)萌出階段發(fā)揮作用。牙萌出的具體調(diào)控機(jī)制尚不明確,本文就牙萌出過程中發(fā)揮調(diào)控作用的細(xì)胞及分子機(jī)制的研究現(xiàn)狀作一綜述。
[關(guān)鍵詞]牙萌出; 牙囊; 牙槽骨;核因子κB受體活化因子; 核因子κB受體活化因子配體; 骨保護(hù)素
Correspondence: Li Xiaobing, E-mail: lxb_30@hotmail.com.
牙萌出的必要條件一是牙冠部牙槽骨吸收以形成萌出通道,二是牙齒具有萌出動(dòng)力,即牙齒沿萌出道移動(dòng)[2]。在此過程中,牙囊具有重要意義。牙囊是起源于外胚層間充質(zhì)的一層疏松結(jié)締組織,包繞在成釉器和牙乳頭周圍,含有干細(xì)胞和能發(fā)育為牙周組織的前體細(xì)胞亞群;這些前體細(xì)胞在一定條件下可以分化為成骨細(xì)胞、牙周膜細(xì)胞或成牙骨質(zhì)樣細(xì)胞,在牙發(fā)育后期形成牙骨質(zhì)、牙周膜和固有牙槽骨[3]。牙囊細(xì)胞在正常狀態(tài)下具有分化為脂肪細(xì)胞、成骨細(xì)胞或成牙骨質(zhì)細(xì)胞及神經(jīng)元的潛能,對(duì)調(diào)控牙齒萌出具有重要作用[4-5]。
牙齒正常萌出的前提條件是有牙囊存在,若無包繞成釉器和牙乳頭細(xì)胞的牙囊,牙齒不能萌出[2]。Cahill等[2]采取手術(shù)方式移除比格犬前磨牙的牙囊,牙齒不能萌出;而如果保持牙囊完整,僅移除牙胚并替換為金屬復(fù)制體,該復(fù)制體仍然會(huì)照常萌出,并且在其冠部牙槽骨形成正常的萌出通道,基部則有骨小梁形成[5]。該實(shí)驗(yàn)不僅證實(shí)牙囊在牙萌出過程中的重要性,同時(shí)提示其他組織(牙髓、牙根等)對(duì)牙萌出并無決定性作用。牙囊主要調(diào)控牙齒在牙槽骨內(nèi)的萌出階段。
1.1牙囊調(diào)控牙槽骨改建
牙萌出時(shí),牙槽骨吸收以形成牙萌出通道,同時(shí)基部牙槽骨形成[6]。Wise等[7]發(fā)現(xiàn),大鼠第一、二磨牙分別在出生后第18、25天萌出;而出生第3天,大鼠下頜一磨牙牙槽窩基部開始形成新生牙槽骨,冠部發(fā)生牙槽骨吸收,第14天基部新生牙槽骨充滿牙槽窩并形成牙根間隔,而第二磨牙鄰近部位的骨形成才剛開始。Cahill[8]在比格犬即將萌出的前磨牙方放置一條金屬線隔離萌出通道,可觀察到牙萌出受阻,但在暫時(shí)阻生的前磨牙冠方,仍可見牙槽骨改建形成的萌出道;隨后去除金屬線,牙齒仍能繼續(xù)萌出,并且萌出速度較正常組更快,牙槽窩基部可觀察到更多的骨小梁。該實(shí)驗(yàn)提示,萌出道的形成對(duì)于牙萌出具有重要意義,同時(shí)可證明牙萌出與骨形成具有相關(guān)性。
Marks等[9]對(duì)牙萌出時(shí)牙槽骨的代謝進(jìn)行研究,發(fā)現(xiàn)牙囊本身具有極性。牙囊分為冠部和根(基)部?jī)蓚€(gè)區(qū)域,牙囊冠部細(xì)胞調(diào)控牙槽骨的吸收,而根部細(xì)胞則調(diào)控牙槽骨的形成。若牙囊冠半部被移除而保留根半部,不會(huì)發(fā)生牙槽骨吸收,牙齒不會(huì)萌出;相反地,若移除牙囊根半部而保持冠半部完整,雖牙槽骨發(fā)生吸收但是由于缺乏牙槽窩基部的牙槽骨形成,牙齒仍不會(huì)萌出。牙囊調(diào)控的空間差異性可能是由于基因空間差異性表達(dá)所致。有研究[10]發(fā)現(xiàn),破骨相關(guān)標(biāo)記基因核因子κB受體活化因子配體(receptor activator for nuclear factor-κB ligand,RANKL)基因的表達(dá)在牙囊冠半部強(qiáng)于根半部,而成骨相關(guān)標(biāo)記基因骨形態(tài)發(fā)生蛋白(bone morphogenetic protein,BMP)-2的表達(dá)在牙囊根半部更高。此外,成釉器縮余釉上皮可與牙囊細(xì)胞相互作用聚集破骨細(xì)胞,促進(jìn)牙槽骨改建[10]。這些研究提示,牙囊對(duì)于牙萌出至關(guān)重要,其調(diào)控作用具有空間差異性,牙囊冠部區(qū)域可調(diào)節(jié)破骨細(xì)胞形成和萌出所需的牙槽骨吸收,同時(shí)牙囊基部調(diào)控萌出所需的牙槽骨形成。
1.2牙囊調(diào)控牙槽骨吸收的細(xì)胞及分子機(jī)制
牙萌出過程中,牙槽骨改建尤其是牙槽骨吸收是牙萌出的必要條件。破骨細(xì)胞是牙槽骨吸收的執(zhí)行細(xì)胞,對(duì)于牙萌出至關(guān)重要,抑制或增強(qiáng)破骨細(xì)胞形成因子的活性會(huì)影響破骨細(xì)胞活性,影響牙槽骨吸收,從而影響牙齒萌出[11]。
研究[12]發(fā)現(xiàn),牙齒萌出開始前,首先有大量的單核細(xì)胞聚集到牙囊,牙囊冠方1/3區(qū)域有大量的破骨細(xì)胞浸潤。大鼠出生后第3天,下頜第一磨牙牙囊內(nèi)出現(xiàn)大量單核細(xì)胞,同時(shí)牙槽窩內(nèi)伴有大量破骨細(xì)胞出現(xiàn);出生后第10天,再次形成大量破骨細(xì)胞[13]。在牙囊的局部微環(huán)境中,破骨前體細(xì)胞在成骨細(xì)胞系細(xì)胞調(diào)控作用下分化為成熟破骨細(xì)胞[14],其中成骨細(xì)胞系細(xì)胞表達(dá)的兩種細(xì)胞因子RANKL[15]和集落刺激因子1(colony-stimulating factor-1,CSF-1)[16]與破骨前體細(xì)胞的分化成熟密切相關(guān)。破骨前體細(xì)胞表面表達(dá)CSF-1受體和RANKL,分別與CSF-1 及RANKL結(jié)合而相互作用,促進(jìn)破骨前體細(xì)胞分化為成熟破骨細(xì)胞。
牙囊內(nèi)的破骨前體細(xì)胞來源于單核細(xì)胞/巨噬細(xì)胞系[16]。牙囊細(xì)胞首先合成、分泌CSF-1和單核細(xì)胞趨化因子1(monocyte chemotactic protein-1,MCP-1),促進(jìn)單核細(xì)胞聚集到牙囊內(nèi)并分化為破骨前體細(xì)胞。CFS-1和MCP-1在大鼠出生第3天的牙囊內(nèi)表達(dá)最多,即牙囊內(nèi)單核細(xì)胞大量聚集的時(shí)間[16]。CSF-1不僅能促進(jìn)破骨前體細(xì)胞存活及增殖,上調(diào)破骨前體細(xì)胞核因子κB受體活化因子(receptor activator for nuclear factor-κB,RANK)基因的表達(dá),而且可下調(diào)骨保護(hù)素(osteoprotegerin,OPG)的表達(dá)[13],從而增強(qiáng)RANK-RANKL間的細(xì)胞間信號(hào)傳導(dǎo)[17],促進(jìn)破骨前體細(xì)胞分化并發(fā)育為成熟的破骨細(xì)胞,同時(shí)通過在成熟破骨細(xì)胞內(nèi)迅速形成肌動(dòng)蛋白環(huán)以激活成熟的破骨細(xì)胞發(fā)揮骨吸收功能[18]。牙囊表達(dá)的內(nèi)皮單核細(xì)胞激活多肽-Ⅱ(endothelial monocyteactivating polypeptide Ⅱ,EMAP-Ⅱ)也對(duì)單核細(xì)胞具有趨化性[19-20],其表達(dá)高峰出現(xiàn)在出生后第1~3天。體外研究[21]發(fā)現(xiàn),通過siRNA干擾牙囊內(nèi)EMAP-Ⅱ的表達(dá),單核細(xì)胞的聚集隨之減少。此外,EMAP-Ⅱ可上調(diào)CSF-1和MCP-1的基因表達(dá),從而間接促進(jìn)單核細(xì)胞聚集。
CSF-1和RANKL對(duì)于大量破骨細(xì)胞的形成是非常必要的,RANKL/RANK/OPG信號(hào)通路是調(diào)控破骨細(xì)胞分化、成熟及功能的重要信號(hào)途徑[22],缺乏CSF-1或RANKL[23],牙齒不會(huì)萌出。由此可見,牙囊內(nèi)CSF-1和RANKL基因的時(shí)空表達(dá)對(duì)于啟動(dòng)和促進(jìn)破骨細(xì)胞形成非常重要。Maeda等[24]發(fā)現(xiàn),成骨細(xì)胞系細(xì)胞和破骨前體細(xì)胞之間的Wnt5a/受體酪氨酸激酶孤兒受體2/Jun-氨基末端激酶(Wnt5a/receptor tyrosine kinase-like orphan receptor 2/Jun N-terminalkinases,Wnt5a/Ror2/JNK)信號(hào)串話可以通過激活非經(jīng)典Wnt信號(hào)通路上調(diào)RANK基因的表達(dá),增強(qiáng)RANKL與RANK結(jié)合,從而促進(jìn)小鼠破骨前體細(xì)胞的分化成熟和骨吸收。Wise等[12]的研究顯示,大鼠牙囊冠部細(xì)胞的RANKL表達(dá)強(qiáng)度高于牙囊根部細(xì)胞,再次證實(shí)RANKL的表達(dá)特點(diǎn)與牙萌出冠部的牙槽骨吸收相關(guān)。RANKL基因敲除小鼠表現(xiàn)為長(zhǎng)骨骨吸收停止,同時(shí)牙齒不萌出;采用表達(dá)B、T淋巴細(xì)胞的RANKL進(jìn)行基因補(bǔ)救后,破骨細(xì)胞和骨吸收出現(xiàn)在長(zhǎng)骨骨內(nèi)膜,但不會(huì)發(fā)生在牙槽骨,牙齒仍不能萌出[25];可見牙萌出中牙槽骨吸收所需的RANKL必須來源于牙囊。
大鼠破骨細(xì)胞形成的高峰是出生后第3天,而小高峰是在第10天[26]。大鼠牙囊內(nèi)CSF-1的表達(dá)在出生后第3天表達(dá)最高,第10天減少,但牙囊內(nèi)血管內(nèi)皮細(xì)胞生長(zhǎng)因子(vascular endothelial growth factor,VEGF)在第9~11天大量表達(dá),因VEGF可上調(diào)破骨前體細(xì)胞上RANK和CSF-1的表達(dá),因此可以替代CSF-1的部分作用[27];同時(shí),牙囊內(nèi)腫瘤壞死因子-α (tumor necrosis factor-α,TNF-α)也是在第9天表達(dá)量最高,而TNF-α既可以通過促進(jìn)牙囊細(xì)胞表達(dá)VEGF[28]間接發(fā)揮作用,也可以獨(dú)立于RANKL[29]或通過促進(jìn)與RANKL相連接的破骨前體細(xì)胞成熟[30]而直接促進(jìn)破骨細(xì)胞形成。
破骨細(xì)胞形成的抑制因子之一OPG同樣是由成骨細(xì)胞系細(xì)胞分泌。OPG可與RANKL競(jìng)爭(zhēng)性結(jié)合RANK,抑制RANKL和RANK間的相互作用,阻斷成熟破骨細(xì)胞形成[31]。大鼠出生后第3天,下頜第一磨牙牙囊內(nèi)CSF-1大量表達(dá),RANKL的表達(dá)未上調(diào),但OPG基因表達(dá)下調(diào),大量破骨細(xì)胞形成[13,32]。骨硬化癥大鼠牙囊內(nèi)缺乏CSF-1的表達(dá),OPG表達(dá)上調(diào);使用siRNA靶向抑制牙囊細(xì)胞CSF-1的表達(dá)同樣可導(dǎo)致OPG表達(dá)上調(diào)[13]。Heinrich等[33]證明,RANKL 和OPG在大鼠牙囊中的表達(dá)呈現(xiàn)出明顯的時(shí)間和空間順序,RANKL主要表達(dá)在牙囊冠部,而OPG主要表達(dá)在牙囊根部,第3天下調(diào)OPG的表達(dá)會(huì)導(dǎo)致RANKL/OPG的比例變化從而有助于破骨細(xì)胞形成。大鼠出生后第10天,OPG表達(dá)增多[32],但RANKL上調(diào)到最大表達(dá)量[27],RANKL/OPG的比例仍可促進(jìn)破骨細(xì)胞形成。牙囊表達(dá)的另一個(gè)抑制破骨細(xì)胞形成的分子是分泌性卷曲相關(guān)蛋白-1(secreted frizzledrelated protein-1,SFRP-1),其發(fā)揮抑制作用的途徑與OPG不同,負(fù)向調(diào)節(jié)SFRP-1的表達(dá)可促進(jìn)破骨細(xì)胞的形成[19]。研究[19]證實(shí),SD大鼠出生第3天,由于CSF-1和EMAP-Ⅱ高表達(dá)可使SFRP-1表達(dá)下調(diào),第9天,TNF-α同樣可以下調(diào)SFRP-1的表達(dá),從而促進(jìn)破骨細(xì)胞形成。
綜上所述,牙囊內(nèi)基因的時(shí)空表達(dá)差異可促進(jìn)破骨細(xì)胞形成,調(diào)控牙槽骨吸收,形成牙萌出道。
1.3牙囊調(diào)控牙槽骨形成的細(xì)胞及分子機(jī)制
基部牙槽骨的形成在牙齒頜骨內(nèi)萌出階段具有積極的作用。牙槽間隔大量的新骨形成,可促使牙齒沿萌出阻力較小的萌出通道移動(dòng)[6-7]。牙囊細(xì)胞具有分化為成骨細(xì)胞的潛能,可以產(chǎn)生礦化基質(zhì)[4]。在膜型基質(zhì)金屬蛋白酶-1(membrane type 1 matrix metalloproteinase,MT1-MMP)基因敲除模型小鼠中觀察到牙齒萌出延遲,提示牙槽骨形成是牙齒萌出的必要因素[34]。這類小鼠盡管發(fā)生牙槽骨吸收,但由于缺乏MT1-MMP,影響膠原和牙周韌帶纖維的降解,從而影響骨重建,牙槽骨形成受到抑制,牙齒萌出延遲。在牙齒萌出障礙的小鼠牙囊內(nèi),MT1-MMP的表達(dá)也發(fā)生明顯下降[35]。
牙囊根半部同樣參與了牙槽骨形成的調(diào)控。牙囊內(nèi)基因在調(diào)控牙槽骨形成中具有時(shí)間及空間表達(dá)差異性。研究[12]發(fā)現(xiàn),牙槽窩基部牙槽骨在大鼠出生后第3天開始形成,在第9天快速形成,而BMP-2在牙囊根半部的表達(dá)強(qiáng)于冠半部,出生后第3天開始表達(dá),并在第9天達(dá)到最高。BMP-2不僅可促進(jìn)成骨細(xì)胞分化[36],還可下調(diào)RANKL的表達(dá),促進(jìn)基部新生牙槽骨形成[32],因此BMP-2可能參與調(diào)節(jié)牙槽骨形成[7]。此外,牙囊內(nèi)的TNF-α可通過上調(diào)BMP-2的表達(dá)促進(jìn)牙槽骨改建[37]。還有研究[38]發(fā)現(xiàn),BMP-9可誘導(dǎo)牙囊細(xì)胞分化為骨細(xì)胞,對(duì)促進(jìn)骨形成具有重要作用。體內(nèi)研究[6]發(fā)現(xiàn),干擾BMP-6表達(dá)后,大鼠下頜磨牙盡管能夠形成牙萌出道,但基部新生牙槽骨形成明顯減少,會(huì)導(dǎo)致牙齒萌出延遲或者不能萌出。雖已取得這些進(jìn)展,但是牙槽骨形成作為萌出動(dòng)力是否在萌出的骨內(nèi)階段之后仍然持續(xù)發(fā)揮作用目前尚不清楚。
由于牙萌出的過程伴隨著牙根發(fā)育,長(zhǎng)期以來牙根形成被認(rèn)為是萌出動(dòng)力之一。然而,有實(shí)驗(yàn)[2,39]發(fā)現(xiàn),切除發(fā)育中前磨牙的一個(gè)根甚至全部根,牙齒仍然能按正常速度萌出到口腔中;即使移除赫特維希上皮根鞘、根尖乳頭和根尖周組織,無根牙仍可萌出,而牙根缺失產(chǎn)生的空隙由新生牙槽骨填補(bǔ)。Nirmala等[40]也觀察到,牙本質(zhì)發(fā)育不良Ⅰ型的患者及接受放射治療的兒童,盡管其牙根形成受阻,牙冠仍能萌出到口腔中。
無根牙的正常萌出提示牙周韌帶可能不是牙萌出的基本動(dòng)力,但當(dāng)去除牙髓壓力和牙本質(zhì)形成的作用后,牙周韌帶成為了唯一對(duì)牙萌出起作用的因素,提示牙周韌帶在牙持續(xù)萌出中具有重要作用。牙囊分化形成牙周韌帶,在骨內(nèi)萌出階段連接牙齒和牙槽窩;同時(shí),牙周韌帶可感知咬合力引導(dǎo)的骨拉力,指導(dǎo)牙槽窩內(nèi)壁的牙槽骨改建,從而參與牙萌出[41]。由此看來,牙根形成及牙周韌帶并非牙萌出動(dòng)力,牙周韌帶可能通過幫助牙齒突破牙齦萌出到功能平面而在牙齒持續(xù)萌出階段發(fā)揮作用。
綜上所述,牙萌出的前提是牙囊的正常發(fā)育,由牙囊調(diào)控牙萌出過程中牙槽骨的改建。牙囊內(nèi)多種細(xì)胞及分子協(xié)調(diào)作用,首先調(diào)控單核細(xì)胞聚集到牙囊,促進(jìn)破骨前體細(xì)胞分化成熟,成為成熟的破骨細(xì)胞,使牙囊冠部牙槽骨發(fā)生吸收,形成牙萌出通道;其次牙囊基部新生牙槽骨形成,為牙萌出提供動(dòng)力,進(jìn)而調(diào)控牙齒萌出。因?yàn)檠滥覂?nèi)相關(guān)調(diào)控基因的表達(dá)缺陷將導(dǎo)致牙萌出障礙[42],因此明確牙囊內(nèi)調(diào)控牙槽骨吸收和形成的具體分子機(jī)制將有助于預(yù)防和治療牙萌出障礙,促進(jìn)正常的建立,維護(hù)口腔健康。
[參考文獻(xiàn)]
[1]Proffit WR, Fields HW Jr, Sarver DM.Contemporary orthodontics[M].5th ed.St.Louis: Elsevier Mosby, 2012:75-82.
[2]Cahill DR, Marks SC Jr.Tooth eruption: evidence for the central role of the dental follicle[J].J Oral Pathol, 1980, 9(4):189-200.
[3]Honda MJ, Imaizumi M, Suzuki H, et al.Stem cells isolated from human dental follicles have osteogenic potential[J].Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2011, 111(6):700-708.
[4]Mori G, Ballini A, Carbone C, et al.Osteogenic differentiation of dental follicle stem cells[J].Int J Med Sci, 2012, 9 (6):480-487.
[5]A?il Y, Yang F, Gulses A, et al.Isolation, characterization and investigation of differentiation potential of human periodontal ligament cells and dental follicle progenitor cells and their response to BMP-7 in vitro[J].Odontology, 2016, 104 (2):123-135.
[6]Wise GE, He H, Gutierrez DL, et al.Requirement of alveolar bone formation for eruption of rat molars[J].Eur J Oral Sci, 2011, 119(5):333-338.
[7]Wise GE, Yao S, Henk WG.Bone formation as a potential motive force of tooth eruption in the rat molar[J].Clin Anat, 2007, 20(6):632-639.
[8]Cahill DR.The histology and rate of tooth eruption with and without temporary impaction in the dog[J].Anat Rec, 1970, 166(2):225-237.
[9]Marks SC Jr, Cahill DR.Regional control by the dental follicle of alterations in alveolar bone metabolism during tooth eruption[J].J Oral Pathol, 1987, 16(4):164-169.
[10]Park SJ, Bae HS, Cho YS, et al.Apoptosis of the reduced enamel epithelium and its implications for bone resorption during tooth eruption[J].J Mol Histol, 2013, 44(1):65-73.
[11]Chlastakova I, Lungova V, Wells K, et al.Morphogenesis and bone integration of the mouse mandibular third molar [J].Eur J Oral Sci, 2011, 119(4):265-274.
[12]Wise GE, Yao S.Regional differences of expression of bone morphogenetic protein-2 and RANKL in the rat dental follicle [J].Eur J Oral Sci, 2006, 114(6):512-516.
[13]Wise GE, Yao S, Odgren PR, et al.CSF-1 regulation of osteoclastogenesis for tooth eruption[J].J Dent Res, 2005, 84(9):837-841.
[14]Xiong J, Onal M, Jilka RL, et al.Matrix-embedded cells control osteoclast formation[J].Nat Med, 2011, 17(10):1235-1241.
[15]Bradaschia-Correa V, Moreira MM, Arana-Chavez VE.Reduced RANKL expression impedes osteoclast activation and tooth eruption in alendronate-treated rats[J].Cell Tissue Res, 2013, 353(1):79-86.
[16]Que BG, Wise GE.Colony-stimulating factor-1 and monocyte chemotactic protein-1 chemotaxis for monocytes in the rat dental follicle[J].Arch Oral Biol, 1997, 42(12):855-860.
[17]Nakano Y, Yamaguchi M, Fujita S, et al.Expressions of RANKL/RANK and M-CSF/c-fms in root resorption lacunae in rat molar by heavy orthodontic force[J].Eur J Orthod, 2011, 33(4):335-343.
[18]Jassim LK, Hijazi AYA.Expression of RANKL by dental cells during eruption of mice teeth[J].J Baghdad Col Dent, 2013, 25(1):76-81.
[19]Liu D, Yao S, Wise GE.Regulation of SFRP-1 expression in the rat dental follicle[J].Connect Tissue Res, 2012, 53 (5):366-372.
[20]Chen Y, Legan SK, Mahan A, et al.Endothelial-monocyte activating polypeptideⅡdisrupts alveolar epithelial type Ⅱ to type Ⅰ cell transdifferentiation[J].Respir Res, 2012, 13:1.
[21]Liu D, Wise GE.Expression of endothelial monocyte-activating polypeptideⅡin the rat dental follicle and its potential role in tooth eruption[J].Eur J Oral Sci, 2008, 116(4):334-340.
[22]Silva I, Branco JC.Rank/Rankl/opg: literature review[J].Acta Reumatol Port, 2011, 36(3):209-218.
[23]Harris SE, MacDougall M, Horn D, et al.Meox2Cre-mediated disruption of CSF-1 leads to osteopetrosis and osteocyte defects[J].Bone, 2012, 50(1):42-53.
[24]Maeda K, Kobayashi Y, Udagawa N, et al.Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis[J].Nat Med, 2012, 18(3):405-412.
[25]Castaneda B, Simon Y, Jacques J, et al.Bone resorption control of tooth eruption and root morphogenesis: involvement of the receptor activator of NF-κB (RANK)[J].J Cell Physiol,2011, 226(1):74-85.
[26]Fukuhara F, Matsuzaka K, Senzui S, et al.The expression of RANKL, OPG and TNF-α on cells and/or tissues around alveolar bone during early-stage rat tooth germ development [J].Oral Med Pathol, 2011, 15(2):39-43.
[27]Yao S, Liu D, Pan F, et al.Effect of vascular endothelial growth factor on RANK gene expression in osteoclast precursors and on osteoclastogenesis[J].Arch Oral Biol, 2006, 51(7):596-602.
[28]Wise GE, Yao S.Expression of tumour necrosis factor-alpha in the rat dental follicle[J].Arch Oral Biol, 2003, 48(1):47-54.
[29] Lee SS, Sharma AR, Choi BS, et al.The effect of TNFα secreted from macrophages activated by titanium particles on osteogenic activity regulated by WNT/BMP signaling in osteoprogenitor cells[J].Biomaterials, 2012, 33(17):4251-4263.
[30]Kitaura H, Kimura K, Ishida M, et al.Immunological reaction in TNF-α-mediated osteoclast formation and bone resorption in vitro and in vivo[J].Clin Dev Immunol, 2013(2): 181849.
[31]Belibasakis GN, Bostanci N.The RANKL-OPG system in clinical periodontology[J].J Clin Periodontol, 2012, 39(3): 239-248.
[32]Liu D, Yao S, Pan F, et al.Chronology and regulation ofgene expression of RANKL in the rat dental follicle[J].Eur J Oral Sci, 2005, 113(5):404-409.
[33]Heinrich J, Bsoul S, Barnes J, et al.CSF-1, RANKL and OPG regulate osteoclastogenesis during murine tooth eruption[J].Arch Oral Biol, 2005, 50(10):897-908.
[34]Xu H, Snider TN, Wimer HF, et al.Multiple essential MT1-MMP functions in tooth root formation, dentinogenesis, and tooth eruption[J].Matrix Biol, 2016.doi: 10.1016/j.matbio.2016.01.002.
[35]Omar NF, Gomes JR, Neves Jdos S, et al.MT1-MMP expression in the odontogenic region of rat incisors undergoing interrupted eruption[J].J Mol Histol, 2011, 42(6):505-511.
[36]Chen P, Wei D, Xie B, et al.Effect and possible mechanism of network between microRNAs and RUNX2 gene on human dental follicle cells[J].J Cell Biochem, 2014, 115(2):340-348.
[37]Yao S, Prpic V, Pan F, et al.TNF-alpha upregulates expression of BMP-2 and BMP-3 genes in the rat dental follicle—implications for tooth eruption[J].Connect Tissue Res, 2010, 51(1):59-66.
[38]Li C, Yang X, He Y, et al.Bone morphogenetic protein-9 induces osteogenic differentiation of rat dental follicle stem cells in P38 and ERK1/2 MAPK dependent manner[J].Int J Med Sci, 2012, 9(10):862-871.
[39]Shapira Y, Kuftinec MM.Rootless eruption of a mandibular permanent canine[J].Am J Orthod Dentofacial Orthop, 2011, 139(4):563-566.
[40]Nirmala SV, Sivakumar N, Usha K.Dentin dysplasia type Ⅰwith pyogenic granuloma in a 12-year-old girl[J].J Indian Soc Pedod Prev Dent, 2009, 27(2):131-134.
[41]Sarrafpour B, Swain M, Li Q, et al.Tooth eruption results from bone remodelling driven by bite forces sensed by soft tissue dental follicles: a finite element analysis[J].PLoS ONE, 2013, 8(3):e58803.
[42]Dorotheou D, Gkantidis N, Karamolegkou M, et al.Tooth eruption: altered gene expression in the dental follicle of patients with cleidocranial dysplasia[J].Orthod Craniofac Res, 2013, 16(1):20-27.
(本文編輯吳愛華)
Research progress on the cellular and molecular mechanisms of tooth eruption
Huang Shiyan, Rao Nanquan, Xu Shuhao, Li Xiaobing.(State Key Laboratory of Oral Diseases, Dept.of Pediatric, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China)
[Key words]tooth eruption;dental follicles;alveolar bone;receptor activator for nuclear factor-κB;receptor activator for nuclear factor-κB ligand;osteoprotegerin
[Abstract]Tooth eruption is a series of complicated physiological processes occurring once the crown is formed completely, as well as when the tooth moves toward the occasion plane.As such, the tooth moves through the alveolar bone and the oral mucosa until it finally reaches its functional position.Most studies indicate that the process of tooth eruption involves the alveolar bone, dental follicles, osteoclasts, osteoblasts, and multiple cytokines.Dental follicles regulate both resorption and formation of the alveolar bone, which is required for tooth eruption.Furthermore, root formation with periodontal ligament facilitates continuous tooth eruption.However, the exact mechanism underlying tooth eruption remains unclear.Hence, this review describes the recent research progress on the cellular and molecular mechanisms of tooth eruption.
[中圖分類號(hào)]R 780.2
[文獻(xiàn)標(biāo)志碼]A [doi]10.7518/hxkq.2016.03.020
[收稿日期]2015-12-15; [修回日期]2016-03-20
[作者簡(jiǎn)介]黃詩言,碩士,E-mail:jashsy44@gmail.com
[通信作者]李小兵,教授,博士,E-mail:lxb_30@hotmail.com