劉長城,王 偉
(北京化工研究院材料科學(xué)研究所,北京 100013)
?
茂金屬聚丙烯催化劑研究進(jìn)展
劉長城,王 偉
(北京化工研究院材料科學(xué)研究所,北京 100013)
聚烯烴是目前世界上產(chǎn)量最大、應(yīng)用最廣的合成聚合物材料,以茂金屬為催化劑生產(chǎn)的聚丙烯性能優(yōu)越。本文根據(jù)科技論文和公開專利,從負(fù)載方法、載體改性、聚合效果等角度,總結(jié)了丙烯聚合茂金屬催化劑的負(fù)載技術(shù)研究進(jìn)展,認(rèn)為,載體類型、載體預(yù)處理以及載體改性,對丙烯聚合行為以及聚合物結(jié)構(gòu)性能均有重要影響。文章最后,對茂金屬聚丙烯的工業(yè)化前景提出展望。
茂金屬,聚丙烯,負(fù)載化,工業(yè)化
聚烯烴是目前世界上產(chǎn)量最大、應(yīng)用最廣的合成聚合物材料,其中,聚丙烯(PP)十分引人注目。PP的性能價(jià)格比使得它具有很強(qiáng)的市場競爭力。聚丙烯密度低、成本低、加工性能好,且有利于環(huán)境保護(hù),、近年來一直是增長最快的通用塑料。中國是PP需求增長最快的國家,年均增長率達(dá)到10%,是世界最主要的PP消費(fèi)國家之一[1]。
催化劑是推動(dòng)PP技術(shù)發(fā)展的主要?jiǎng)恿Αiegler-Natta催化劑是生產(chǎn)聚丙烯的抓喲體系,近三十年來出現(xiàn)了單一活性中心的茂金屬催化體系。在助催化劑MAO存在下,幾乎所有IV族的茂金屬催化劑都對丙烯聚合有活性,催化劑結(jié)構(gòu)不同,聚合行為和產(chǎn)物聚丙烯的結(jié)構(gòu)也不相同[2-4]。
茂金屬催化劑的對稱性決定了丙烯聚合物的立體結(jié)構(gòu),如不同結(jié)構(gòu)的茂金屬可以生產(chǎn)無規(guī)聚丙烯[5-7]、等規(guī)聚丙烯[8-11]、間規(guī)聚丙烯[12]以及其他更復(fù)雜的結(jié)構(gòu)[13-15]。
茂金屬催化劑活性中心單一,所生產(chǎn)的聚丙烯分子量分布窄、透明性和光澤度優(yōu)良、耐沖擊性能且韌性優(yōu)異。用于生產(chǎn)高等規(guī)聚丙烯的茂金屬催化劑的結(jié)構(gòu)是外消旋的,許多專利文獻(xiàn)都報(bào)道了這類催化劑[9, 16-23]。
相對于Ziegler-Natta催化體系,茂金屬催化劑活性高,聚合物分子量分布和化學(xué)組成分布窄。但均相茂金屬催化活性中心容易發(fā)生雙金屬分子締合反應(yīng),從而失去活性,所以需要大量使用MAO,導(dǎo)致成本增加,同時(shí)也導(dǎo)致聚合物的灰分增加。茂金屬催化劑出現(xiàn)之前,聚烯烴工業(yè)除了生產(chǎn)EPR和EPDM的釩催化體系是均相外,其他聚合實(shí)施方式如氣相聚合、淤漿聚合、本體聚合用的都是負(fù)載化催化劑,茂金屬要更廣泛地適用現(xiàn)有工業(yè)設(shè)備,必須要進(jìn)行負(fù)載化[24]。
常用的載體有無機(jī)載體和有機(jī)載體兩大類。
硅膠是茂金屬催化劑負(fù)載化中用得最多的一種載體。硅膠要經(jīng)過高溫焙燒,以除去游離水并減少硅膠表面羥基。Soga[25]分別在多個(gè)溫度下將硅膠焙燒,用SiCl4或Br2CHCHBr2處理,然后進(jìn)行負(fù)載,作者認(rèn)為焙燒溫度會(huì)影響硅膠的羥基含量,從而對聚合物等規(guī)度有影響。
Sacchi[26]用硅膠負(fù)載Cp2ZrCl2,研究了不同負(fù)載方法對乙烯聚合的影響。發(fā)現(xiàn)直接負(fù)載 (Cp2ZrCl2/SiO2)比MAO預(yù)處理載體后負(fù)載(Cp2ZrCl2/SiO2-MAO)得到的活性要低。(Cp2ZrCl2/SiO2-MAO)在很低的Al/Zr比下依然表現(xiàn)較高活性。
Soga[27-30]將橋聯(lián)茂金屬催化劑分別直接負(fù)載在多種無機(jī)材料上,僅用烷基鋁做助催化劑,用于丙烯聚合,大對數(shù)催化劑表現(xiàn)相當(dāng)高的活性,所得聚合物熔點(diǎn)可達(dá)130~140 ℃,要高于均相體系。
浙江大學(xué)朱銀邦等[31]用Grace952型硅膠負(fù)載橋聯(lián)茂金屬rac-Me2Si(Ind)2ZrCl2催化丙烯聚合,結(jié)果表明活性中心的穩(wěn)定性增加,所得聚合物的分子量和等規(guī)五元組以及方向選擇性均高于相應(yīng)均相體系。
使用氯硅烷[32]、烷基鋁[33]、硅氧烷[34]等對硅膠的表面進(jìn)行改性,可明顯改善催化劑的聚合行為。
聚合物也可以用作茂金屬催化劑的載體,與無機(jī)物載體相比,聚合物結(jié)構(gòu)均一,表面不象無機(jī)物載體表面那樣復(fù)雜載體,有利于保持茂金屬活性中心的特性;不會(huì)帶入無機(jī)組分,使得產(chǎn)物灰分低;而且可以直接制得分散均勻的反應(yīng)器合金;用于生產(chǎn)橡膠時(shí),產(chǎn)品不會(huì)結(jié)團(tuán)或粘釜。
Stephen等[35]認(rèn)為,聚合物載體可被單體溶脹但并不溶于單體,聚合過程實(shí)際上是處于一種微觀均相的“類溶液”環(huán)境。他們使用1%二乙烯基苯交聯(lián)的聚苯乙烯作為負(fù)載茂金屬的載體,所得催化劑在低溫時(shí)也具有高活性,得到的乙烯共聚物分散性、流動(dòng)性好,聚合物粒徑隨時(shí)間按比例增長。
意大利Montell公司[36]采用兩段“反應(yīng)器粒子”工藝制備i-PP/EPR合金,第一段采用Ziegler-Natta催化劑合成等規(guī)聚丙烯,然后將茂金屬負(fù)載在聚丙烯上,在第二段進(jìn)行乙丙共聚,得到聚合物合金。所得乙丙共聚物在聚丙烯中分散均勻。
對于單中心茂金屬催化體系主要有以下觀點(diǎn):(1)傳質(zhì)阻力會(huì)使聚合速率和聚合物分子量降低;(2)活性中心濃度高會(huì)增加傳質(zhì)阻力從而降低催化劑的效率;(3)催化劑活性高及催化劑顆粒大時(shí),傳質(zhì)阻力會(huì)造成共聚物化學(xué)組成不均一;(4)對于淤漿聚合,顆粒內(nèi)部的溫度梯度對聚合行為影響不大[37]。
用茂金屬催化劑生產(chǎn)丙烯共聚物是一個(gè)重要的發(fā)展方向。采用茂金屬催化劑可以合成出許多Z-N催化劑難于合成的新型丙烯共聚物。用茂金屬催化劑生產(chǎn)無規(guī)共聚物時(shí),共聚單體的隨機(jī)插入性很好,可以制備共聚單體含量很高的無規(guī)共聚物,有潛力開發(fā)出高性能的低溫?zé)岱獠牧稀?/p>
茂金屬催化劑不可能完全取代目前工業(yè)上的催化體系,但是由于茂金屬可以賦予聚合物新的結(jié)構(gòu)和性能,它可以在彌補(bǔ)傳統(tǒng)催化體系聚合產(chǎn)物不足,更可以為聚烯烴開拓新的市場,從而為聚烯烴帶來概念性的革命。所以,針對工業(yè)需要,研制開發(fā)工業(yè)用的茂金屬烯烴聚合催化劑,不僅是迎合未來市場的需要,更可以在未來的競爭中占據(jù)有利地位。
[1] 崔小明. 世界PP工業(yè)現(xiàn)狀及生產(chǎn)技術(shù)新進(jìn)展[J]. 合成樹脂及塑料. 2005, 22(5): 57-61.
[2] Kaminsky W, Külper K, Brintzinger HH, et al. Polymerization of Propene and Butene with a Chiral Zirconocene and Methylalumoxane as Cocatalyst[J]. Angew. Chem. Int. Ed., 1985, 24: 507-508.
[3] Angermund K, Fink G, Jensen V R, et al. Toward Quantitative Prediction of Stereospecificity of Metallocene-Based Catalysts for α-Olefin Polymerization[J]. Chem. Rev., 2000, 100 (4): 1457-1470.
[4] BusicoV, Cipullo R. Microstructure of polypropylene[J]. Prog. Polym. Sci., 2001, 26:443-533.
[5] Kaminsky W, Külper K, Niedoba S. Olefinpolymerization with highly active soluble zirconium compounds using aluminoxane as co-catalyst[J]. Makromol. Chem. Macromol. Symp., 1986, 3:377-387.
[6] Resconi L, Jones R L, Rheingold A L, et al. High-Molecular-Weight Atactic Polypropylene from Metallocene Catalysts. Me2Si(9-Flu)2ZrX2(X=Cl, Me)[J]. Organometallics, 1996, 15: 998-1005.
[7] Collins S, Gauthier W J, Holden D A, et al. Ward. Variation of polypropylene microtacticity by catalyst selection[J]. Organometallics., 1991, 10: 2061-2068.[8] Spaleck W, Küber F, Winter A, et al. The Influence of Aromatic Substituents on the Polymerization Behavior of Bridged Zirconocene Catalysts[J]. Organometallics. 1994, 13: 954-963.
[9] Rieger B, Reinmuth A, R?ll W, et al. Highly isotactic polypropene prepared with rac-dimethylsilyl-bis (2-methyl-4-t-butyl-cyclopentadienyl) zirconiumdichloride: An NMR investigation of the polymer microstructure[J]. J.Mol.Catal., 1993, 82: 67-73.
[10]Resconi L, Piemontesi F, Nifant’ev I, et al. Metallocene compounds, process for their preparation thereof, and their use in catalysts for the polymerization of olefins [P]. USA: 6518386.
[11]Resconi L, Balboni D, Baruzzi G, et al. rac-[Methylene(3-tert-butyl-1-indenyl)2]ZrCl2: A Simple, High-Performance Zirconocene Catalyst for Isotactic Polypropene[J]. Organometallics, 2000, 19: 420-429.
[12]Even J A, Jones R L, Razavi A, et al. Syndiospecific propylene polymerizations with Group IVB metallocenes[J]. J. Am. Chem. Soc., 1988, 110: 6255-6256.
[13]Even J A, Elder M J, Jones R L, et al. Robinson. Metallocene/polypropylene structural relationships: Implications on polymerization and stereochemical control mechanisms[J]. Macromol. Symp., 1991, 48: 253-295.
[14]Coates G W, Waymouth R M. Oscillating stereocontrol: a strategy for the synthesis of thermoplastic elastomeric polypropylene[J]. Science, 1995, 267: 217-219.
[15]Lin S, Waymouth R M. 2-Arylindene metallocenes: conformationally dynamic catalysts to control the structure and properties of polypropylenes[J]. ChemInform, 2002, 35(49):765-773.[16]Welborn Jr H C. Silicon-bridged transition metal compound[P]. USA: 5017714.
[17]Palackal S J, Alt H G, Patsidis K, et al. Olefin polymerization using silyl-bridged metallocenes[P]. USA: 5401817.
[18]Bercaw J E, Herzog T A. Stereospecific olefin polymerization catalysts[P]. USA: 5708101.
[19]Okumura Y, Sakuragi T, Ono M, et al. Polyolefin production catalyst and method of preparing polyolefins[P]. USA: 6121182.
[20]Even J A, Elder M J, Reddy B R. Process and catalyst for producing isotactic polyolefins[P]. USA: 6262199.
[21]沙姆肖姆 E S, 鮑奇 C. 丙烯的聚合催化劑[P]. 中國:1194019.
[22]韋少義,朱博超, 陳雪蓉,等. 烯烴聚合用茂金屬催化劑[P]. 中國:1300786.
[23]賈軍紀(jì),朱博超,陳雪蓉,等. 烯烴聚合用茂金屬催化劑[P]. 中國:1176115.
[24]Hlatky G G. Heterogeneous single-site catalysts for olefin polymerization[J]. Chem.Rev., 2000, 100:1347-1176.
[25]Soga K, Kim H J, Shiono T. Polymerization of propene with highly isospecific. SiO2-supported zirconocene catalysts activated with common alkylaluminiums[J]. Macromol.Chem.Phys., 1994, 195:3347-3360.
[26]Sacchi M C, Zucchi D, Tritto I, et al. Silica-supported metallocenes: stereochemical comparison between homogeneous and heterogeneous catalysis[J]. Macromol.Rapid Cummon, 1995, 16: 581-590.
[27]Kaminaga M, Soga K. Polymerization of propene with the catalyst systems composed of Al2O3or MgCl2-supported Et[IndH4]2ZrCl2and AlR3(R = CH3, C2H5)[J]. Makromol.Chem. Rapid Commun., 1991, 12: 367-372.
[28]Kaminaga M, Soga K. Polymerization of propene with catalyst systems composed of Al2O3or MgCl2supported zirconocene and Al(CH3)3[J]. Polymer 1992, 33:1105-1107.
[29]Soga K, Kaminaga M. Polymerization of propene with the heterogeneous catalyst system Et[IndH4]2ZrCl2/MAO/SiO2combined with trialkylaluminium[J]. Makromol.Chem. Rapid Commun., 1992, 13: 221-224.
[30]Soga K, Kaminaga M. Polymerization of propene with zirconocene-containing supported catalysts activated by common trialkylaluminiums[J]. Makromol.Chem., 1993, 194: 1745-1755.
[31]朱銀邦,封麟先.rac-Me2Si(Ind)2ZrCl2負(fù)載型催化劑催化丙烯等規(guī)聚合的研究[J]. 高分子學(xué)報(bào),2000(4): 443-447.
[32]Soga K, Shiono T, Kim H J. Activation of silica-supported zirconocene catalysts by common trialkylaluminums.[J]. Makromol.Chem., 1993, 194: 3499-3504.
[33]Hlatky G G, Upton D J. Supported Ionic Metallocene Polymerization Catalysts[J]. Macromolecules., 1996, 29: 8019-8020.
[34]Lee D H, Shin S Y. Ethylene polymerization with metallocene and trimethylaluminumtreated silica[J]. Macromol.Symp., 1995, 97: 195-203.
[35]Stephen B, Frechet J M J, Walzerl J F. Polyolefin spheres from metallocenes supported on noninteracting polystyrene[J]. Science, 1998, 280: 270-273.
[36]Galli P, Collina G, Sgarzi P. Combining Ziegler-Natta and mettalocene catalysis: New heterophasic propylene copolymers from the novel multicatalyst reactor granule technology[J]. J. Appl. Polym. Sci., 1997, 66: 1831-1837.
[37]Haielec A E, Soares J B P. Polymerization Reaction Engineering-Metallocene Catalysis[J]. Prog. Polym.Sci., 1996, 21: 651-706.
Research Progress on Metallocene Catalyst for Propylene Polymerization
LIUChang-cheng,WANGWei
(Institute of Materials Science, Beijing Research Institute of Chemical Industry (BRICI),Beijing 100013, China)
Polypropylene is one of the most important commercial polymer materials. Polypropylene based on metallocene catalyst owns the excellent properties. The research progress on supporting technology of the metallocene catalyst for propylene polymerization was summarized, including the supporting method, support modification and the polymerization results. The polymerization behaviors and the structures and the properties of the resulted polymer were highly depended on the type, pretreating and the modification of the supports. The prospect towards industrialization was proposed.
metallocene; polypropylene; supporting technology; industrialization
劉長城(1959-),男,工程師,從事烯烴聚合催化劑的研究。
王偉(1969-),男,博士,高級工程師,從事烯烴聚合單中心催化劑的研究。
TQ31
A
1001-9677(2016)024-0029-03