李進(jìn)壽,羅芬,阮少江,阮俊峰,王楠楠
寧德師范學(xué)院生物系,寧德 352100
聯(lián)苯菊酯暴露對(duì)雌性褐菖鲉卵巢發(fā)育的影響及其毒性機(jī)制
李進(jìn)壽*,羅芬,阮少江,阮俊峰,王楠楠
寧德師范學(xué)院生物系,寧德 352100
聯(lián)苯菊酯是農(nóng)業(yè)、園林等領(lǐng)域應(yīng)用廣泛的擬除蟲菊酯類殺蟲劑,然而有關(guān)聯(lián)苯菊酯對(duì)魚類生殖毒性的研究卻很少。以常見的近海魚類褐菖鲉為受試對(duì)象,探討聯(lián)苯菊酯對(duì)魚類卵巢發(fā)育的影響及機(jī)制。褐菖鲉在以環(huán)境相關(guān)濃度(1、10、100 ng·L-1)的聯(lián)苯菊酯暴露50 d后,各暴露組卵巢生殖細(xì)胞發(fā)育均受到顯著抑制,卵巢17β-雌二醇與睪酮含量均出現(xiàn)下降,caspase-3活性呈劑量依賴性上升。相對(duì)定量PCR分析顯示,卵巢雌激素受體(ERβ)mRNA水平下降。結(jié)果表明,聯(lián)苯菊酯誘導(dǎo)細(xì)胞產(chǎn)生凋亡,導(dǎo)致雌、雄激素水平和雌激素受體表達(dá)下降,環(huán)境劑量作用下對(duì)褐菖鲉卵巢發(fā)育具有顯著影響。
聯(lián)苯菊酯;褐菖鲉;生殖毒性;細(xì)胞凋亡;卵巢;機(jī)制
擬除蟲菊酯類殺蟲劑對(duì)哺乳動(dòng)物毒性低,因而廣泛應(yīng)用于作物、園林與住宅[1-4],1982年已占全球殺蟲劑市場(chǎng)30%以上的份額[4]。然而,魚類等水生動(dòng)物及其他非靶生物對(duì)該類農(nóng)藥敏感[5-7],如對(duì)人類等非靶標(biāo)生物具有內(nèi)分泌干擾、免疫和神經(jīng)毒性等多種潛在毒性,特別對(duì)魚、貝和甲殼類等水生生物毒性較大[8],同時(shí)該類農(nóng)藥對(duì)光、熱穩(wěn)定,在自然環(huán)境的殘效期長(zhǎng)而不易分解[9],因此在長(zhǎng)期的使用過程中可能造成的環(huán)境問題應(yīng)當(dāng)引起關(guān)注。聯(lián)苯菊酯(bifenthrin, BF)是常見的擬除蟲菊酯類農(nóng)藥,孫廣大[2]的報(bào)道顯示廈門西海岸及九龍江河口表層水體中聯(lián)苯菊酯濃度最高達(dá)9.1 ng·L-1,沉積物中檢出濃度達(dá)21 μg·kg-1;Forsgren等[6]的報(bào)道也顯示美國(guó)加利福尼亞北部海域水面聯(lián)苯菊酯的濃度達(dá)到4.6~34.0 ng·L-1。這些濃度均超過了Harper等[10]判定的中等毒性值(median toxicity values),表明聯(lián)苯菊酯在水體環(huán)境的存在對(duì)魚類等水生動(dòng)物具有威脅。同時(shí),城市徑流及污水處理廠出水中也檢出殘留聯(lián)苯菊酯[11],可見聯(lián)苯菊酯對(duì)生態(tài)環(huán)境的影響不容忽視。
已有的研究表明,擬除蟲菊酯類農(nóng)藥對(duì)魚類的毒性達(dá)到哺乳類與鳥類的1 000倍以上[12-13]。溴氰菊酯、氯氰菊酯均對(duì)銀鯰魚(Rhamdia quelen)胚胎發(fā)育具有毒性[14],順式氯氰菊酯對(duì)孔雀魚(Poecilia reticulata)的96 h半致死濃度為9.43 μg·L-1[15],氯氰菊酯在濃度為0.10 μg·L-1的條件下48 h內(nèi)還可導(dǎo)致10%的南亞野鯪(Labeo rohita)死亡,0.20 μg·L-1濃度條件下72 h內(nèi)致其全部死亡[16]。報(bào)道顯示,聯(lián)苯菊酯對(duì)美國(guó)大鹽湖鹵蟲(GSL Artemia)Ⅱ-Ⅲ齡無節(jié)幼體24 h半致死濃度(24 h-LC50)>100 mg·L-1[17],對(duì)虹鱒魚(Oncorhynchus mykiss)、藍(lán)鰓太陽魚(Lepomis macrochirus)、雜色鳉(Cyprinodon variegatus)與糠蝦(mysids)96 h的半致死濃度(96 h-LC50)分別為0.15、0.35、17.8與3.97 μg·L-1[3]。聯(lián)苯菊酯暴露還可引起魚體內(nèi)激素的變化[18],以及體內(nèi)雌二醇(E2)、卵黃蛋白原(VTG)和卵殼前體蛋白(CHG)濃度水平的提高[5,7,18]。然而,有關(guān)聯(lián)苯菊酯對(duì)魚類生殖毒性的報(bào)道較少。本實(shí)驗(yàn)以我國(guó)近海常見的經(jīng)濟(jì)魚類褐菖鲉(Sebastiscus marmoratus)為受試對(duì)象,通過環(huán)境相關(guān)濃度(1、10、100 ng·L-1)的聯(lián)苯菊酯慢性暴露實(shí)驗(yàn)以探討聯(lián)苯菊酯對(duì)近海魚類性腺發(fā)育的影響。
1.1 藥品
聯(lián)苯菊酯(產(chǎn)品批號(hào):c10584000)為德國(guó)Dr. Ehrenstorfer公司產(chǎn)品,原藥純度不小于99.5%,使用之前用乙腈配制成濃度分別為0.25、2.5和25 μg·mL-1的存儲(chǔ)液,其他化學(xué)藥品為國(guó)產(chǎn)分析純。
1.2 試驗(yàn)用魚的暴露處理和樣品的收集
雌性褐菖鮋(該魚種屬卵胎生魚類,雌性無尿殖突而區(qū)別于雄性)購(gòu)自福建省寧德市蕉城區(qū)城澳,為暫養(yǎng)于魚排的海捕魚,體重(62.8±12.4) g。暴露實(shí)驗(yàn)前,實(shí)驗(yàn)用魚置于玻璃缸中(每缸25只)用50 L的砂濾海水曝氣馴化7 d。暴露實(shí)驗(yàn)中每組25只魚,分別以濃度為1、10和100 ng·L-1的聯(lián)苯菊酯進(jìn)行暴露實(shí)驗(yàn)(分別加入200 μL的0.25、2.5和25 μg·mL-1的聯(lián)苯菊酯存儲(chǔ)液),對(duì)照組加入等量的乙腈溶劑(溶劑濃度4 μL·L-1)。暴露組每天更換一半海水并補(bǔ)充一半的藥物(即分別補(bǔ)充100 μL的0.25、2.5和25 μg·mL-1的聯(lián)苯菊酯存儲(chǔ)液)。每天換水前2 h用購(gòu)自商業(yè)公司的顆粒餌料以大約魚體重1%的量進(jìn)行投喂,換水時(shí)以虹吸管清除殘餌。暴露水溫(14±2) ℃,鹽度22‰~24‰。每7天清洗一次水缸并全部更換暴露海水與藥物。
經(jīng)過50 d的暴露試驗(yàn)后,在各組進(jìn)行隨機(jī)取樣。取樣時(shí)對(duì)各組魚的性腺和體重進(jìn)行稱量,測(cè)定各組性體比指數(shù)(GSI)。GSI的計(jì)算為:GSI=性腺重量(g)/體重(g)×100%。用于生化和分子生物學(xué)指標(biāo)分析的組織取樣后立即用液氮速凍并于-80 ℃冰箱保存,用于組織學(xué)分析的卵巢組織則用波恩氏液(Bouln's)固定24 h后用70%酒精保存。
1.3 組織學(xué)分析
保存于70%酒精中的卵巢進(jìn)行石蠟包埋,置于切片機(jī)上5 μm切片。切片采用蘇木精和伊紅H.E.染色后檢查卵細(xì)胞的發(fā)育。
1.4 褐菖鲉肝臟中聯(lián)苯菊酯殘留量的檢測(cè)
稱取1.0 g肝臟樣品置于5.0 mL離心管中,依次加入400 μL ddH2O與400 mg NaCl,接著加入8 mL乙腈標(biāo)準(zhǔn)液,旋渦混合1 min,放在恒溫氣浴振蕩搖床上振蕩15 min,4 500 r·min-1離心5 min,取上清。沉淀物再加入5 mL乙腈標(biāo)準(zhǔn)液提取上清液。
所有測(cè)定都用Agilent-7890A氣相色譜儀(Agilent Technology, USA)與色譜柱(美國(guó)J&W公司)進(jìn)行。Agilent-7890A氣相色譜儀包括電子捕獲檢測(cè)器(GC-μECD)和火焰光度檢測(cè)器(FPD),色譜柱(DB-17MS石英毛細(xì)管柱)參數(shù)為30 m×250 μm×0.25 μm。
在ENVI-18固相萃取柱上端依次填入約5 mm高的中性氧化鋁填料,再填入約5 mm高的無水硫酸鈉,用4 mL乙腈預(yù)淋洗柱子,棄去流出液。將上述上清液緩慢地轉(zhuǎn)移至萃取柱,收集全部流出液于1.5 mL離心管中,于40 ℃下氮吹至近干。最后準(zhǔn)確移取等體積的乙酸乙酯-正己烷,定容洗脫,過膜,裝入進(jìn)樣瓶,供GC-μECD進(jìn)行分析。
柱升溫程序:80 ℃保持1 min,以20 ℃·min-1的速度升至240 ℃保持3 min,再以10 ℃·min-1的速度升至260 ℃保持4 min,最后以10 ℃·min-1的速度升至290 ℃保持9 min。進(jìn)樣口溫度為240 ℃;檢測(cè)器(μECD)溫度為310 ℃;載氣為氮?dú)猓兌取?9.99%,流量50 mL·min-1。聯(lián)苯菊酯樣品檢測(cè)限0.01 ng·g-1,回收率82.5%~86.6%。
1.5 Caspase-3活性的測(cè)定
異質(zhì)性是建設(shè)區(qū)域性碳排放權(quán)交易市場(chǎng)的理論基礎(chǔ)。中國(guó)地域遼闊,地區(qū)間發(fā)展差異巨大,區(qū)域性的碳交易市場(chǎng)和全國(guó)性的碳交易市場(chǎng)均有存在必要;華南地區(qū)包含廣東省、廣西壯族自治區(qū)、海南省、福建南部,區(qū)域內(nèi)部存在碳排放強(qiáng)度異質(zhì)性、技術(shù)異質(zhì)性、行業(yè)異質(zhì)性等特點(diǎn),建設(shè)華南地區(qū)的區(qū)域性碳交易市場(chǎng),擴(kuò)大市場(chǎng)容量、增加異質(zhì)性,能實(shí)現(xiàn)低碳技術(shù)轉(zhuǎn)移、降低碳交易成本、加強(qiáng)碳市場(chǎng)流動(dòng)性,從而實(shí)現(xiàn)跨省市的協(xié)同治理促進(jìn)區(qū)域生態(tài)環(huán)境改善,實(shí)現(xiàn)華南地區(qū)區(qū)域經(jīng)濟(jì)與社會(huì)環(huán)境的協(xié)調(diào)發(fā)展。
卵巢在預(yù)冷的磷酸緩沖液(pH 7.4)中進(jìn)行勻漿,4 ℃條件下2 000 r·min-1離心5 min取上清用于caspase-3活性的測(cè)定。Caspase-3活性按照caspase試劑盒(Keygene Biotech Co.,Ltd.,中國(guó)南京)說明書的方法進(jìn)行測(cè)定。各樣品的Caspase-3活性調(diào)整為等蛋白濃度并與對(duì)照組的樣品進(jìn)行比較。蛋白濃度參照Bradford[19]的方法用牛血清蛋白作為標(biāo)準(zhǔn)測(cè)定。
1.6 卵巢性激素水平的測(cè)定
卵巢性激素的測(cè)定參照Sun等[20]的方法。測(cè)定前將每個(gè)卵巢樣品加1 mL乙醇在冰浴條件下勻漿后,置于-80 ℃超低溫冰箱冰凍保存24 h以上。將勻漿液用3 mL的乙酸乙酯萃取3次。萃取物置于5 mL離心管中,并在氮吹儀下吹干后加入0.5 mL緩沖液。睪酮(T)與17-β雌二醇(E2)激素水平使用放射性免疫方法測(cè)定,放射免疫試劑盒購(gòu)自北京福瑞生物工程公司,睪酮試劑盒檢測(cè)限為0.1~30 nmol·L-1;17-β雌二醇檢測(cè)限為0.5~150 pmol·L-1;批間極差12‰。測(cè)定方法按照試劑盒操作說明書進(jìn)行。
1.7 相對(duì)定量PCR(Real-time PCR)分析
褐菖鮋ERβ的cDNA片段采用Sun等[21]的方法進(jìn)行擴(kuò)增。基因mRNA表達(dá)的測(cè)定也采用Sun等[21]的方法。靶基因mRNA相對(duì)表達(dá)量采用基因相對(duì)量表達(dá)軟件(REST-MCS-version 2)[21]計(jì)算。靶基因ERβ引物序列為F:5’-TCAAACTCAACAGGGAGGAGG-3’,R:5’-CGTACACAGATTGGAGTTGAGGAG-3’。
1.8 數(shù)據(jù)處理
實(shí)驗(yàn)結(jié)果用平均值±標(biāo)準(zhǔn)誤差(mean±SE)表示。數(shù)據(jù)的統(tǒng)計(jì)分析采用SPSS11.0軟件進(jìn)行單因素方差分析(ANOVA),P<0.05為差異顯著。
褐菖鲉各濃度暴露組與對(duì)照組間性體比未觀察到顯著性差異(圖1)。褐菖鮋卵巢內(nèi)有各個(gè)不同發(fā)育時(shí)期的卵細(xì)胞,其中對(duì)照組卵巢內(nèi)有卵原細(xì)胞、卵黃泡期、卵黃期及成熟卵子等不同發(fā)育時(shí)期的生殖細(xì)胞,高濃度的100 ng·L-1組與中濃度組的10 ng·L-1組見不到成熟卵子,低濃度的1 ng·L-1組也只是少量成熟卵子,暴露濃度越高則卵巢內(nèi)處于發(fā)育早期的卵原細(xì)胞數(shù)量越多(圖2)。各組隨機(jī)取3個(gè)不同的卵巢檢查不同發(fā)育階段生殖細(xì)胞的平均百分比,顯示對(duì)照組卵原細(xì)胞、卵黃泡期、卵黃期及成熟卵子的百分比分別為(41.51%±5.23%)、(31.26%±2.48%)、(14.51%±3.65%)和(12.73%±3.61%)。經(jīng)過聯(lián)苯菊酯暴露后褐菖鮋卵巢中卵原細(xì)胞及卵黃泡期比例增加,各暴露組都顯著高于對(duì)照組(P<0.05),相應(yīng)地卵黃期與成熟卵子比例減少,各暴露組均顯著低于對(duì)照組(P<0.05)。統(tǒng)計(jì)的結(jié)果顯示,低濃度的1 ng·L-1組卵原細(xì)胞、卵黃泡期、卵黃期及成熟卵子的百分比分別為(52.83%±2.34%)、(35.87%±1.88%)、(10.05%±1.44%)與(2.25%±1.52%);中、高濃度組均未觀察到成熟卵子,中濃度的10 ng·L-1組卵原細(xì)胞、卵黃泡期、卵黃期的百分比分別為(60.41%±2.07%)、(38.97%±2.44%)、(6.82%±2.53%),高濃度的100 ng·L-1組卵原細(xì)胞、卵黃泡期、卵黃期的百分比分別為(60.70%±2.91%)、(39.30%±2.20%)、(2.98%±1.18%)(圖3)。

圖1 雌性褐菖鲉在聯(lián)苯菊酯(BF)暴露50 d后性體比指數(shù)變化注:數(shù)據(jù)用平均值±標(biāo)準(zhǔn)偏差(means±SD)表示(n=25)。組間多重?cái)?shù)據(jù)比較采用單因素方差分析LSD檢驗(yàn),P < 0.05為顯著性差異。 Fig. 1 Gonadosomatic index (GSI) in female Sebastiscus marmoratus exposed to bifenthrin (BF) for 50 daysNote: Data are presented as means±SD (n = 25). Means of exposure not sharing a common letter are significantly different at P < 0.05 as assessed using one-way analysis of variance followed by the LSD test.

圖2 褐菖鲉在聯(lián)苯菊酯暴露50 d后卵巢切片的組織學(xué)變化注:A,對(duì)照;B,1 ng·L-1;C,10 ng·L-1;D,100 ng·L-1。標(biāo)尺=100 μm。P,卵原細(xì)胞;YV,卵黃泡期;YG,卵黃期;MF,成熟卵子。Fig. 2 Histological changes of the ovaries stained with hematoxylin and eosin in S. marmoratus exposed to BF for 50 daysNote: (A) Control, (B) 1 ng·L-1, (C) 10 ng·L-1 and (D) 100 ng·L-1; Bar: 100 μm; P, oogoniums; YV, primary oocyte; YG, secondary oocyte; MF, autumn.

圖3 褐菖鲉在聯(lián)苯菊酯暴露50 d后不同發(fā)育階段卵細(xì)胞的百分比注:數(shù)據(jù)用平均值±標(biāo)準(zhǔn)偏差(means±SD)表示(n=3)。組間多重?cái)?shù)據(jù)比較采用單因素方差分析Duncan檢驗(yàn),P < 0.05為顯著性差異。Fig. 3 Percentage of oocytes at different stages of development in female S. marmoratus exposed to BF for 50 daysNote: The data are expressed as means±SD (n= 3). Means of exposure not sharing a common letter are significantly different at P < 0.05 as assessed using one-way analysis of variance followed by the Duncan test.
2.2 肝臟組織聯(lián)苯菊酯殘留
聯(lián)苯菊酯殘留量測(cè)定的結(jié)果顯示,對(duì)照組與各暴露組聯(lián)苯菊酯殘留量分別為(0.0024±0.00049) μg·g-1、(0.0067±0.00120) μg·g-1、(0.0122±0.00373) μg·g-1和(0.0682±0.00366) μg·g-1,其中低濃度組聯(lián)苯菊酯殘留量較對(duì)照組升高不顯著(P>0.05),中高濃度組聯(lián)苯菊酯殘留量均較對(duì)照組出現(xiàn)顯著性升高(P<0.05)。褐菖鲉肝臟聯(lián)苯菊酯殘留量隨著聯(lián)苯菊酯暴露濃度的上升而增加,顯示褐菖鲉肝臟聯(lián)苯菊酯的殘留系因水體藥物引起(圖4)。

圖4 褐菖鲉在聯(lián)苯菊酯暴露50 d后肝臟中聯(lián)苯菊酯殘留量注:數(shù)據(jù)用平均值±標(biāo)準(zhǔn)偏差(means±SD)表示(n=6)。組間多重?cái)?shù)據(jù)比較采用單因素方差分析Duncan檢驗(yàn),P < 0.05為顯著性差異。Fig. 4 BF accumulation in the liver of S. marmoratus exposed to BF for 50 daysNote: Data are presented as means±SD (n = 6). Means of exposure not sharing a common letter are significantly different at P < 0.05 as assessed using one-way ANOVA followed by the Duncan test.
2.3 卵巢性激素的變化
實(shí)驗(yàn)結(jié)果顯示,褐菖鲉在經(jīng)過聯(lián)苯菊酯暴露后,各暴露組的17β-雌二醇激素水平均較對(duì)照組出現(xiàn)顯著性下降(P<0.05),對(duì)照組與各暴露組17β-雌二醇激素水平分別為(2.967±0.671) pmol·g-1、(1.882±0.406) pmol·g-1、(1.520±0.101) pmol·g-1和(1.674±0.104) pmol·g-1;卵巢睪酮激素水平較對(duì)照組也呈下降趨勢(shì),對(duì)照組與各暴露組睪酮激素水平分別為(0.585±0.101) nmol·g-1、(0.453±0.097) nmol·g-1、(0.282±0.020) nmol·g-1和(0.323±0.027) nmol·g-1,1 ng·L-1較對(duì)照組下降不顯著(P>0.05),而10 ng·L-1組與100 ng·L-1組均較對(duì)照組出現(xiàn)顯著性下降(P<0.05)(圖5)。
2.4 卵巢Caspase-3活性的變化
圖6的結(jié)果顯示,在聯(lián)苯菊酯暴露后褐菖鲉卵巢caspase-3活性對(duì)藥物呈劑量依賴性增強(qiáng),1 ng·L-1、10 ng·L-1與100 ng·L-1組caspase-3活性分別是對(duì)照組的(1.116±0.215)、(1.426±0.467)與(1.652±0.563)倍,其中10 ng·L-1組和100 ng·L-1組均較對(duì)照組出現(xiàn)顯著性增強(qiáng)(P<0.05)。
2.5 雌激素受體ERβ基因表達(dá)量的變化
褐菖鮋經(jīng)過聯(lián)苯菊酯暴露50 d后,ERβ的mRNA表達(dá)量則表現(xiàn)出對(duì)藥物濃度的劑量依賴性下降趨勢(shì),1 ng·L-1、10 ng·L-1與100 ng·L-1組雌激素受體ERβ基因表達(dá)量分別是對(duì)照組的(0.908±0.115)、(0.589±0.150)與(0.529±0.180)倍,其中低濃度組下降不顯著(P>0.05),中、高濃度組均較對(duì)照組出現(xiàn)顯著性下降(P<0.05)(圖7)。

圖5 褐菖鲉在聯(lián)苯菊酯暴露50 d后卵巢睪酮(T)與雌二醇(E2)含量的變化注:數(shù)據(jù)用平均值±標(biāo)準(zhǔn)偏差(means±SD)表示(n=6)。組間多重?cái)?shù)據(jù)比較采用單因素方差分析Duncan檢驗(yàn),P<0.05為顯著性差異。Fig. 5 The content of testosterone (T) and estradiol (E2) in the ovaries of S. marmoratus exposed to BF for 50 daysNote: Data are presented as mean± SE (n= 6). Means of exposure not sharing a common letter are significantly different at P < 0.05 as assessed by one-way ANOVA followed by the Duncan test.

圖6 褐菖鲉在聯(lián)苯菊酯暴露50 d后卵巢Caspase-3活性變化注:數(shù)據(jù)用平均值±標(biāo)準(zhǔn)偏差(means±SD)表示(n=4~6)。組間多重?cái)?shù)據(jù)比較采用單因素方差分析Duncan檢驗(yàn),P< 0.05為顯著性差異。Fig. 6 Caspase-3 activities in the ovaries of S. marmoratus exposed to BF for 50 daysNote: Data are presented as means±SE (n=4-6). Means of exposure not sharing a common letter are significantly different at P < 0.05 as assessed by one-way ANOVA followed by the Duncan test.

圖7 褐菖鮋在聯(lián)苯菊酯暴露50 d后卵巢Erβ mRNA表達(dá)量注:數(shù)據(jù)用平均值±標(biāo)準(zhǔn)偏差(means±SD)表示(n=4~6)。組間多重?cái)?shù)據(jù)比較采用單因素方差分析Duncan檢驗(yàn),P< 0.05為顯著性差異。Fig. 7 Relative mRNA expression of ERβ of the ovaries in female S. marmoratus exposed to BF for 50 daysNote:Values were normalized against β-actin. The data are expressed as means ± SE (n=4-6). Means of exposure not sharing a common letter are significantly different at P < 0.05 as assessed using one-way analysis of variance followed by the Duncan test.
聯(lián)苯菊酯等擬除蟲菊酯類農(nóng)藥因?qū)Ψ前猩锒拘韵鄬?duì)較低,因此使用量極高,這也導(dǎo)致流失到環(huán)境的殘留總量增加[22-23],然而該類農(nóng)藥在使用過程中大量進(jìn)入水體后對(duì)魚類產(chǎn)卵的影響卻少有報(bào)道[24]。在本研究中,盡管在聯(lián)苯菊酯的暴露下褐菖鮋的性體比指數(shù)沒有明顯變化,但組織學(xué)分析的結(jié)果顯示經(jīng)過聯(lián)苯菊酯的慢性暴露后,各暴露組卵細(xì)胞的發(fā)育均受到顯著抑制,這一結(jié)果顯示聯(lián)苯菊酯對(duì)魚類的生殖產(chǎn)生了影響。本研究中褐菖鲉性體比指數(shù)無顯著變化原因可能與海水環(huán)境有關(guān),F(xiàn)orsgren等[6]的報(bào)道顯示,雄性虹鱒魚(Oncorhynchus mykiss)在海水環(huán)境馴化后,在0.1與1.5 μg·L-1聯(lián)苯菊酯濃度條件下暴露2周,其性體比指數(shù)無顯著變化,而在含同樣濃度的聯(lián)苯菊酯的淡水環(huán)境中暴露2周后性體比指數(shù)顯著下降,F(xiàn)orsgren等還發(fā)現(xiàn)雌性虹鱒魚在高鹽度條件下卵泡直徑顯著下降并觀察到發(fā)育不健康的卵泡,本研究結(jié)果與其相似。褐菖鲉肝臟中聯(lián)苯菊酯殘留量測(cè)定的結(jié)果表明褐菖鲉經(jīng)過暴露后其肝臟中聯(lián)苯菊酯殘留量升高,顯示該藥物可在生物體內(nèi)富集,有關(guān)擬除蟲菊酯類農(nóng)藥在魚體內(nèi)的積累,劉慎[25]的報(bào)道也顯示氰戊菊酯在金魚(Carassius auratus)肌肉中的富集系數(shù)達(dá)到1×104,肝和鰓中更是高達(dá)1×105,而這種積累可通過食物鏈傳遞給人類,從而對(duì)人類的健康構(gòu)成潛在的威脅。
細(xì)胞凋亡或細(xì)胞程序性死亡是一個(gè)涉及到組織重塑的細(xì)胞死亡過程[26-27]。在此過程中,Caspase-3被確定是細(xì)胞凋亡的關(guān)鍵執(zhí)行者,也是caspase家族中激活細(xì)胞凋亡通道下游最重要的酶之一[28]。我們的結(jié)果顯示,褐菖鮋卵巢中caspase-3活性在聯(lián)苯菊酯暴露后得到增強(qiáng),這一結(jié)果表明聯(lián)苯菊酯暴露可能導(dǎo)致褐菖鮋卵巢細(xì)胞在發(fā)育的早期階段出現(xiàn)凋亡,這是影響卵細(xì)胞發(fā)育的重要原因,因?yàn)榛瘜W(xué)物誘導(dǎo)細(xì)胞凋亡被認(rèn)為是影響性腺發(fā)育的原因之一[29-30]。雌激素與雄激素之間的平衡對(duì)于魚類生殖腺的發(fā)育具有重要作用[21],在我們的實(shí)驗(yàn)中,褐菖鲉經(jīng)過聯(lián)苯菊酯暴露50 d后,卵巢17-β雌二醇含量下降,然而卵巢睪酮含量卻未如我們推測(cè)的那樣出現(xiàn)上升而是下降。Forsgren等[6]的報(bào)道也顯示虹鱒魚在海水環(huán)境中經(jīng)過聯(lián)苯菊酯暴露2周后,卵巢17-β雌二醇與睪酮水平均出現(xiàn)顯著性下降。雌激素和雄激素可調(diào)控卵泡發(fā)育和凋亡,性激素水平的下降會(huì)引起生殖細(xì)胞在發(fā)育的早期出現(xiàn)凋亡。Fei等[31]報(bào)道氰戊菊酯(fenvalerate)可抑制大鼠卵泡增長(zhǎng)與類固醇產(chǎn)生以及減少類固醇急性調(diào)控蛋白的轉(zhuǎn)錄,因此本研究中聯(lián)苯菊酯可能通過減少17-β雌二醇和睪酮水平而影響性腺發(fā)育與卵泡細(xì)胞的凋亡。此外,雌激素多種功能通過雌激素受體(ER)介導(dǎo)[32],當(dāng)雌激素分子與ER結(jié)合后,形成的復(fù)合物與靶DNA結(jié)合,以調(diào)控靶基因的轉(zhuǎn)錄[33]。本實(shí)驗(yàn)中褐菖鲉卵巢ERβ的mRNA表達(dá)量受到抑制可能與雌激素水平下降有關(guān)。
我們的實(shí)驗(yàn)結(jié)果表明聯(lián)苯菊酯的慢性暴露對(duì)魚類有顯著的生殖毒性,表現(xiàn)在卵巢Caspase-3活性增加,進(jìn)而導(dǎo)致性腺細(xì)胞出現(xiàn)凋亡,卵巢雌、雄激素水平的下降和雌激素受體表達(dá)下降也是抑制卵巢發(fā)育的重要原因。
[1] Moore A, Waring C P. The effects of a synthetic pyrethroid pesticide on some aspects of reproduction in Atlantic salmon (Salmo salar L.) [J]. Aquatic Toxicology, 2001, 52(1): 1-12
[2] 孫廣大. 九龍江河口及廈門西海域水環(huán)境中103種農(nóng)藥污染狀況及其初步風(fēng)險(xiǎn)評(píng)價(jià)[D]. 廈門: 廈門大學(xué), 2009: 76-78
[3] Pennington P L, Harper-Laux H, Sapozhnikova Y, et al. Environmental effects and fate of the insecticide bifenthrin in a salt-marsh mesocosm [J]. Chemosphere, 2014, 112: 18-25
[4] Srivastava Rajesh K, Yadav Kamlesh K, Trivedi Sunil P. Devicyprin induced gonadal impairment in a freshwater food fish, Channa punctatus (Bloch) [J]. Journal of Environmental Biology/Academy of Environmental Biology, India, 2008, 29(2): 187-191
[5] Brander S, He G, Smalling K, et al. The in vivo estrogenic and in vitro anti-estrogenic activity of permethrin and bifenthrin [J]. Environmental Toxicology and Chemistry, 2012, 31: 2848-2855
[6] Forsgren K L, Riar N, Schlenk D. The effects of the pyrethroid insecticide, bifenthrin, on steroid hormone levels and gonadal development of steelhead (Oncorhynchus mykiss) under hypersaline conditions [J]. General and Comparative Endocrinology, 2013, 186: 101-107
[7] Beggel S, Connon R, Werner I, et al. Changes in gene transcription and whole organism responses in larval fathead minnow (Pimephales promelas) following short-term exposure to the synthetic pyrethroid bifenthrin [J]. Aquatic toxicology (Amsterdam, Netherlands), 2011, 105(1-2): 180-188
[8] 孫愛麗, 劉菁華, 史西志, 等. 海水養(yǎng)殖環(huán)境中擬除蟲菊酯類農(nóng)藥降解菌的分離鑒定及降解特性研究[J]. 海洋與湖沼, 2014, 45(2): 363-369
Sun A L, Liu J H, Shi X Z, et al. Isolation and identification of a bacteria strain degrading pyrethroid insecticide in mariculture [J]. Oceanologia et Limnologia Sinica,2014, 45(2): 363-369 (in Chinese)
[9] Grant R J, Betts W B. Biodegradation of the synthetic pyrethroid cypermethrin in used sheep dip [J]. Letters in Applied Microbiology, 2003, 36(3): 173-176
[10] Harper H E, Pennington P L, Hoguet J, et al. Lethal and sublethal effects of the pyrethroid, bifenthrin, on grass shrimp (Palaemonetes pugio) and sheepshead minnow (Cyprinodon variegatus) [J]. Journal of Environmental Science and Health Part B, 2008, 43(6): 476-483
[11] Weston D P, Lydy M J. Urban and agricultural sources of pyrethroid insecticides to the Sacramento-San Joaquin Delta of California [J]. Environmental Science & Technology, 2010, 44: 1833-1840
[12] Bradbury S P, Coates J R. Comparative toxicology of the pyrethroid insecticides [J]. Reviews of Environmental Contamination and Toxicology, 1989, 108: 133-177
[13] Eells J T, Rasmussen J L, Bandettini P A, et al. Differences in the neuro-excitatory actions of pyrethroid insecticides and sodium channel-specific neurotoxins in rat and trout brain synaptosomes [J]. Toxicology and Applied Pharmacology, 1993, 123: 107-119
[14] Montanha F P, Galeb L A G, Mikos J D, et al. Pyrethroid toxicity in silver catfish, Rhamdia quelen [J]. Pesquisa Veterinária Brasileira, 2012, 32(12): 1297-1303
[15] Yilmaz M, Gul A, Erbasli K. Acute toxicity of alpha-cypermethrin to guppy (Poecilia reticulate, Pallas, 1859) [J]. Chemosphere, 2004, 56: 381-385
[16] Das B K, Mukherjee S C. Toxicity of cypermethrin in Labeo rohita fingerlings: Biochemical, enzymatic and haematological consequences [J]. Comparative Biochemistry and Physiology Part C, 2003, 134(1): 109-121
[17] 劉永, 汪小月, 邱立紅, 等. 7種擬除蟲菊酯農(nóng)藥對(duì)鹵蟲的急性毒性研究[J]. 生態(tài)毒理學(xué)報(bào), 2011, 6(5): 557-560
Liu Y, Wang X Y, Qiu L H, et al. Acute toxicity of seven pyrethroid insecticides to brine shrimp artemia [J]. Asian Journal of Ecotoxicology, 2011, 6(5): 557-560 (in Chinese)
[18] Degroot B C, Brander S M. The role of P450 metabolism in the estrogenic activity of bifenthrin in fish [J]. Aquatic Toxicology, 2014, 156: 17-20
[19] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry, 1976, 72: 248-254
[20] Sun L B, Zhang J L, Zuo Z H, et al. Influence of triphenyltin exposure on the hypothalamus-pituitary-gonad axis in male Sebastiscus marmoratus [J]. Aquatic Toxicology, 2011, 104: 263- 269
[21] Sun L B, Zuo Z H, Luo H M, et al. Chronic exposure to phenanthrene influences the spermatogenesis of male Sebastiscus marmoratus: U-Shaped effects and the reason for them [J]. Environmental Science & Technology, 2011, 45(23): 10212-10218
[22] 劉麗, 肖維, 黃華偉, 等. 氣象色譜法測(cè)定漁業(yè)水體6種擬除蟲菊酯類藥物的殘留量[J]. 中國(guó)漁業(yè)質(zhì)量與標(biāo)準(zhǔn), 2013, 3(2): 57-64
Liu L, Xiao W, Huang H W, et al. The determination of six kinds of synthetic pyrethroids in acquatic water by gas chromatography [J]. Chinese Fishery Quality and Standards, 2013, 3(2): 57-64 (in Chinese)
[23] 張松柏, 張德詠, 劉勇, 等. 一株菊酯類農(nóng)藥降解菌的分離鑒定及其降解酶基因的克隆[J]. 微生物學(xué)報(bào), 2009, 49(11): 1520-1526
Zhang S B, Zhang D Y, Liu Y, et al. Isolation, identification and degrading gene cloning of a pyrethroids-degrading bacterium [J]. Acta Microbiologica Sinica, 2009, 49(11): 1520-1526 (in Chinese)
[24] Oros D R, Werner I. Pyrethroid insecticides: An analysis of use patterns, distributions, potential toxicity and fate in the Sacramento-San Joaquin Delta and Central Valley.White Paper for the Interagency Ecological Program. SFEI Contribution 415. [R]. Oakland, CA: San Francisco Estuary Institute, 2005
[25] 劉慎. 氰戊菊酯對(duì)金魚的急性毒性試驗(yàn)及殘留測(cè)定[J]. 水產(chǎn)科學(xué), 2004, 23(11): 21-22
Liu S. Acute toxicity and residues of fenvalerate to Carassius auratus [J]. Fisheries Science, 2004, 23(11): 21-22 (in Chinese)
[26] Schwartzman R A, Cidlowski J A. Apoptosis: The biochemistry and molecular biology of programmed cell death [J]. Endocrine Reviews, 1993, 14: 133-151
[27] Steller H. Mechanisms and genes of cellular suicide [J]. Science, 1995, 267: 1445-1449
[28] Cohen G M. Caspases: The executioners of apoptosis [J]. Biochemical Journal, 1997, 326: 1-16
[29] Migliarini B, Campisi A M, Maradonna F, et al. Effects of cadmium exposure on testis apoptosis in the marine teleost Gobius niger [J]. General and Comparative Endocrinology, 2005, 142(1-2): 241-247
[30] Weber L P, Kiparissis Y, Hwang G S, et al. Increased cellular apoptosis after chronic aqueous exposure to nonylphenol and quercetin in adult medaka (Oryzias latipes) [J]. Comparative Biochemistry and Physiology Part C, 2002, 131: 51-59
[31] Fei J A, Qu J H, Ding X L, et al. Fenvalerate inhibits the growth of primary cultured rat preantral ovarian follicles [J]. Toxicology, 2010, 267: 1-6
[32] Jausen H T, West C R, Lehman M N, et al. Ovarian estrogen receptor-β (ERβ) regulation: I. Changes in ERβ messenger RNA expression prior to ovulation in the ewe [J]. Biology of Reproduction, 2001, 65: 866-872
[33] 巨榮菊, 張育輝. 雌激素受體在環(huán)境雌激素評(píng)估中的研究進(jìn)展[J]. 生態(tài)毒理學(xué)報(bào), 2010, 5(3): 314-319
Ju R J, Zhang Y H. Review on estrogen receptor to estimate environmental estrogen [J]. Asian Journal of Ecotoxicology, 2010, 5(3): 314-319 (in Chinese)
◆
Bifenthrin Exposure Disrupts the Development of Ovary in FemaleSebastiscusmarmoratusand the Mechanism Involved
Li Jinshou*, Luo Fen, Ruan Shaojiang, Ruan Junfeng, Wang Nannan
Department of Biology, Ningde Normal University, Ningde 352100, China
Received 25 February 2016 accepted 21 March 2016
Bifenthrin (BF) is a pyrethroid insecticide that is widely used in agriculture and horticulture. However, there are few studies available addressing the reproductive toxicity of BF on fishes. The present study was conducted to investigate the effects of BF on ovarian development in Sebastiscus marmoratus, a fish species distributed throughout the coastal areas of China, and to gain insight into its mechanism. After exposure to BF at environmental concentrations (1, 10, 100 ng·L-1) for 50 d, the percentage of previtellogenic and vitellogenic oocytes in the ovary showed a significant decrease. The levels of 17β-estradiol and testosterone were decreased in the ovary. The activity of caspase-3 was increased in a dose-dependent manner. Real-time PCR analysis showed that the expression of estrogen receptor (ERβ) was reduced in the ovary. These results suggested that BF could induce cellular apoptosis in the ovary, leading the reduction of estrogen and androgen levels and the expression of ERβ, which indicated that BF at the environmental concentrations could disturb the development of ovary in female Sebastiscus marmoratus.
bifenthrin; Sebastiscus marmoratus; reproductive toxicity; apoptosis; ovary; mechanism
福建省自然科學(xué)基金(2013N0029);福建省教育廳省屬高校科研專項(xiàng)基金(JK2012061);寧德師范學(xué)院閩東經(jīng)濟(jì)魚類增養(yǎng)殖及精深加工項(xiàng)目基金(2015T10)
李進(jìn)壽(1965-),男,教授,研究方向?yàn)樯鷳B(tài)毒理學(xué),E-mail:ndtclsj@126.com
10.7524/AJE.1673-5897.20160225001
2016-02-25 錄用日期:2016-03-21
1673-5897(2016)6-323-07
X171.5
A
李進(jìn)壽, 羅芬, 阮少江, 等. 聯(lián)苯菊酯暴露對(duì)雌性褐菖鲉卵巢發(fā)育的影響及其毒性機(jī)制[J]. 生態(tài)毒理學(xué)報(bào),2016, 11(6): 323-329
Li J S, Luo F, Ruan S J, et al. Bifenthrin exposure disrupts the development of ovary in female Sebastiscus marmoratus and the mechanism involved [J]. Asian Journal of Ecotoxicology, 2016, 11(6): 323-329 (in Chinese)