999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

農用柴油機噴油器各孔噴油規律驗證及流動特性模擬

2016-03-21 12:37:36羅福強薛福英吳習文江蘇大學汽車與交通工程學院鎮江2203中國人民解放軍鎮江船艇學院動力指揮系鎮江22003
農業工程學報 2016年2期
關鍵詞:模型

羅福強,周 群,薛福英,吳習文,2,仲 達(. 江蘇大學汽車與交通工程學院,鎮江 2203; 2. 中國人民解放軍鎮江船艇學院動力指揮系,鎮江 22003)

?

農用柴油機噴油器各孔噴油規律驗證及流動特性模擬

羅福強1,周群1,薛福英1,吳習文1,2,仲達1
(1. 江蘇大學汽車與交通工程學院,鎮江 212013;2. 中國人民解放軍鎮江船艇學院動力指揮系,鎮江 212003)

摘要:針對農用柴油機噴油器各孔內部流動特性存在差異的現象,該文以某兩氣門用非均勻布置的5孔無壓力室噴油器為研究對象建立三維模型,運用雙流體模型及空穴模型計算了模擬各孔噴油規律,與實測各孔噴油規律吻合較好。通過該模型分析了噴嘴各孔瞬態流動特性及噴孔軸線與針閥軸線夾角對噴孔內部流動的影響。模擬結果如下:在針閥全開階段,隨著凸輪軸轉角的增加,噴油壓力不斷變化,各孔內部出現不穩定空化,影響噴孔出口噴油速率;在噴射初期,噴孔內部未形成完全空穴,各孔噴油速率的差異不明顯。另外,噴嘴噴孔軸線與針閥軸線夾角從67°增至80°時,各孔內部空穴區增加且延伸的空穴逐漸向噴孔中心軸線移動,噴油速率逐漸減小。該研究可為農用柴油機噴油器各孔的分布設計提供參考。

關鍵詞:柴油機;模型;燃油噴射;噴油器;噴油速率;模擬計算

羅福強,周群,薛福英,吳習文,仲達. 農用柴油機噴油器各孔噴油規律驗證及流動特性模擬[J]. 農業工程學報,2016,32(2):58-63.doi:10.11975/j.issn.1002-6819.2016.02.009http://www.tcsae.org

Luo Fuqiang, Zhou Qun, Xue Fuying, Wu Xiwen, Zhong Da. Building 3-D model of diesel injector used in agriculture verified by injection rate of each hole and simulation on internal flow characteristics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(2): 58-63. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.02.009http://www.tcsae.org

0 引 言

農用柴油機由于成本、使用傳統等原因,兩氣門發動機仍大量應用。為了提高充氣效率增加氣門直徑,改善動力性,兩氣門發動機用噴油器一般偏離氣缸中心傾斜布置,噴油器各孔軸線與針閥軸線夾角并不相同,以使各孔噴霧在燃燒室內盡可能均勻分布。

國內外研究的試驗結果表明[1-4],這種噴油器各孔噴油規律(噴油量)并不一致,流動方向改變較大的孔噴油量相對較少。噴油過程對噴霧、混合氣形成及燃燒有較大影響,從而影響發動機動力性、經濟性、排放等。噴油過程是研究噴霧燃燒的基礎,噴孔內部流動可作為噴油嘴出口燃油霧化、缸內燃燒等模擬計算的邊界條件[5],而空穴現象是噴孔內部燃油流動過程中不可忽視的現象。在噴嘴內部空化流動的相關研究中,Payri F等[6]、崔慧峰等[7]、何志霞等[8-9]研究了穩態條件下噴孔內部空化過程,而實際噴油器噴油過程中會伴隨著針閥的開啟和關閉,以及噴油壓力的波動等非穩態工況,如:Blessing M等[10]、He等[11]、鄭金保等[12]研究了針閥運動對噴嘴瞬態流動特性的影響,Wang等[13-14]、張輝亞等[15]指出非穩態工況下壓力波動會導致不穩定空化。上述研究都是針對單個噴孔或多孔對稱分布噴油器某一孔內部空化進行的研究,而在農用柴油機中,兩氣門發動機用噴油器各孔布置不對稱,影響各孔之間內部空穴流動,導致各孔出口燃油噴霧有很大差異,進而影響燃燒和排放性能[16-17]。為滿足農用柴油機日益嚴格的排放法規,有必要針對兩氣門用噴油器的各孔內部流動特性進行研究。

本文針對某兩氣門柴油機用非均勻布置的5孔無壓力室噴油器,建立三維模型,運用雙流體模型及空穴模型以實測噴油壓力為進口邊界條件,獲取噴孔內部流動過程;在驗證模型準確性后分析噴油器各孔內燃油瞬態流動差異,以期為農用柴油機噴油器各孔分布設計提供參考。

1 數學模型

1.1計算方程

由于雙流體模型考慮了氣液兩相間的相對滑移及交界面處的作用力,并在湍流黏性計算中考慮了因空化氣泡運動而產生的渦黏性的影響,能夠反映更多的流場細節[18-19],所以選取雙流體計算模型。

基于雙流體模型的建模要求,連續性方程形式為

式中l和k表示物質狀態,k=1表示氣相,k=2表示液相;αk為k相體積分數,%;ρk為k相密度,kg/m3;νk為k相的速度,m/s;t為時間,s;Гkl為k相和l相的質量傳輸,kg/(m3·s)。

對于k相體積分數αk須滿足

動量方程形式為

式中p為壓強,Pa;tkT為k相雷諾應力,Pa;τk代表k相切應力,Pa;Mkl為k相對l相的界面力,N; g為重力加速度,m/s2。

相間質量傳輸模型采用線性空化模型,方程形式如下

式中ρ1為氣相密度,kg/m3;N?為氣泡數密度,m-3;R為空泡區氣泡半徑,m;R˙為氣泡半徑變化率,m/s;Г12為氣相對液相的質量傳輸,kg/(m3·s);Г21為液相和氣相的質量傳輸,kg/(m3·s)。

相間動量傳輸模型采用空化拖拽模型,方程形式如下

1.2計算網格和邊界條件

噴油器壓力室容積易對燃燒放熱和HC(hydrocabon碳氫)排放產生不利影響,為了降低因壓力室內受熱膨脹氣化而流入氣缸的燃油,選擇某兩氣門柴油機用非均勻布置的5孔無壓力室噴油器建立三維模型,其中5孔孔徑相等,均為0.2 mm,孔長為1 mm。噴油嘴各孔分布結構如圖1所示。

圖1 無壓力室噴嘴各孔分布圖Fig.1 Distribution of each hole in valve covered orifice injector

由于針閥運動和噴孔內燃油壓力的波動,使得燃油在噴孔內部的流動并非穩態,動網格技術能夠反映噴孔內燃油流動的瞬態變化[20-21]。圖2為噴嘴計算網格,如圖2所示,將生成的三維幾何全模型進行網格劃分,劃分網格采用分塊耦合以及“面”控制“體”的方法,同時對噴孔局部加密,生成了三維結構化六面體網格。對于湍流流動采用標準的k-ε湍流模型;近壁面區的液體流動,采用標準壁面方程進行處理。通過基于內節點的有限容積法進行離散,采用SIMPLEC算法對速度場和壓力場進行耦合計算。噴油嘴內部流動計算的入口和出口邊界均采用與試驗所測結果一致的進出口壓力為邊界條件。

圖2 噴嘴計算網格Fig.2 Nozzle computational grid

2 試驗驗證

2.1油泵試驗臺架

燃油供給系統為機械泵-管-嘴燃油供給系統(泰安試驗設備廠,型號為12PSDB75A),試驗臺主要有低壓供油系統:燃油濾清器,輸油泵;動力傳動系統:電動機,測速齒輪,聯軸器;高壓供油系統:噴油泵,高壓油管,噴油器;試驗臺控制器:轉速控制,量油計數,油溫油壓調節;燃油體積測量系統五部分組成,各孔噴油規律試驗臺架示意圖如圖3所示。結合動量守恒原理和牛頓第二定律等理論,通過長沙鈦合電子設備有限公司(簡稱長沙鈦合)生產的型號為PPM-SY02壓電式外卡壓力傳感器3和長沙鈦合生產的型號為PPM-SY05壓電式微型動態力傳感器2在試驗工況為循環噴油量65 mm3,噴油泵轉速1 200 r/min下分別測量噴油器噴油壓力以及各孔噴霧沖擊力,可得到噴油器各孔噴油規律和各孔循環噴油量[2-4]。

圖3 各孔噴油規律試驗臺架示意圖Fig.3 Schematics experimental rig of fuel injection rate of each nozzle hole

2.2試驗驗證

圖4為實測噴油壓力圖,以實測噴油壓力為進口邊界條件,計算得到各孔噴油規律以及各孔循環噴油量。圖5為各孔模擬計算噴油規律和實測噴油規律對比圖,可判斷模擬值與實測值的吻合度。為了準確描述出所建模型計算值與實測值之間的相對誤差,可通過各孔噴油規律曲線對凸輪軸轉角積分可得到各孔循環噴油量,表1為實測各孔循環噴油量與模擬計算循環噴油量的對比。通過試驗所測的各孔循環噴油量與模擬計算得到的各孔循環噴油量計算相對誤差

圖4 實測噴油壓力Fig.4 Injection pressure in experiment rig

如圖5所示,通過對比實測各孔噴油規律和模擬各孔噴油規律可知,二者曲線稍有差異,但總體形狀吻合較好。同時計算各孔模擬循環噴油量和各孔試驗循環噴油量以及二者的相對誤差,計算結果如表1所示,二者相對誤差均小于5%。由此可知,所建模型與試驗較為吻合。

圖5 各孔噴油規律試驗值與模擬值對比Fig.5 Comparison of measured and simulated fuel injection rate of each nozzle hole

表1 各孔循環噴油量試驗值與模擬值對比Table 1 Comparison of measured and simulated cycle fuel injection quantity of each nozzle hole

3 模擬計算結果與分析

選取試驗工況為循環噴油量65 mm3,噴油泵轉速1 200 r/min,用此工況下的噴油壓力為進口邊界條件進行模擬分析。

3.1各孔流動特性對比分析

圖6分別為在同一工況不同凸輪軸轉角下各孔內部空穴分布分布對比圖。

圖6 各孔空穴對比Fig.6 Comparisons among cavitation distributions of each hole

由圖6可知,在12.8℃aA時,5個噴孔內部空穴區延伸長度雖不同,但都未完全延伸至出口。相應地,在圖5中凸輪軸轉角在12.8℃aA時,各孔的噴油速率差異不明顯,說明此時部分空穴對各孔噴油速率影響不大。隨著凸輪軸轉角的增加,各噴孔內部空穴區逐漸增加,但由于各孔結構分布的不同,導致各噴孔空穴區增加的速度也不同,由圖6中可以看出孔3和孔4內部空穴區增長速度隨著凸輪軸轉角的增加相對較快,導致空穴層的厚度較厚,同時孔3和孔4的燃油流速較大,有利于噴孔出口的燃油霧化,但噴孔內流體的有效流通面積較小,噴孔噴油速率較低;孔1內部空穴區隨著凸輪軸轉角的增加呈現較緩慢的增長,空穴層厚度較薄且噴孔出口的燃油流速較低,相比較孔3和孔4而言會影響燃油霧化效果,但由于孔1中有效流通面積較大,導致孔1噴油速率相對較高;孔5和孔2內部空穴區的增長速度隨著凸輪軸轉角的增加則介于上面兩者之間。根據這一變化趨勢,為了保證混合氣的形成以優化燃燒及降低排放,綜合考慮燃油霧化和噴油速率的影響,應合理設計和安裝兩氣門多孔噴油器。

不同凸輪軸轉角下,噴孔內部空穴區存在差異,這是因為噴油壓力存在波動,導致噴孔內部發生不穩定空化。由圖6可知,在針閥全開后,凸輪軸轉角17.2℃aA時的空穴層厚度比18.4℃aA時厚,結合圖4的噴油壓力曲線圖可知,此段過程為壓力上升段;凸輪軸轉角在18.4℃aA時的空穴層厚度比在19.8℃aA時的薄,此段過程為壓力下降段。具體解釋為流場壓力的上升導致氣泡潰滅,而流場壓力的下降促使氣泡的成長,這與文獻[22]的研究結果一致。隨著噴油時刻繼續增加,噴孔內部空穴區繼續增長,但由于噴油壓力持續下降,使得噴孔出口噴油速率變小。

3.2噴油器噴孔軸線和針閥軸線夾角的影響

圖7為凸輪軸轉角21℃aA下各噴孔表面空穴分布以及噴孔出口截面的空穴分布圖。

圖7 21℃aA 下各孔表面空穴分布及各孔出口截面空穴分布Fig.7 Cavitating distributions of surface and outlet section of each hole at 21℃aA

結合圖5和圖7可知,各孔噴油規律存在明顯差異,在同一凸輪轉角下,孔1噴油速率最大,因其對應的噴孔軸線和針閥軸線夾角最小,噴孔出口處的空穴強度較弱;孔3和孔4兩者的噴油速率幾乎相同且數值相比較其他3個孔也是最小的,同時孔3和孔4空穴分布相同且空穴強度也接近,這是由于孔3和孔4的噴孔軸線和針閥軸線夾角相同且最大,燃油流動方向改變也最大,因此流動阻力也最大;孔5和孔2的噴油速率介于孔1與孔3、孔4之間,孔5和孔2的噴油速率值差異較小,噴孔內部的空穴分布基本相同且已經形成完全空穴。由于噴孔內空穴的形成有利于噴孔出口霧化,但抑制了噴孔出口流量系數[23-25],是孔3和孔4的噴油速率較其他3個孔偏小的另一原因。

為了方便比較各噴孔出口徑向的空穴和流動速度的差異,定義噴孔出口截面上任意一點到噴孔中心的距離與噴孔半徑的比值為相對半徑。噴孔頂部和底部相對半徑分別為-1和1,噴孔中心相對半徑為0。

圖8a為各孔出口處徑向氣相體積分數(空穴)分布圖,圖8b為各孔出口處徑向的流動速度分布圖。據圖7與圖8可知,孔1(噴孔軸線和針閥軸線夾角為67°)空穴分布緊貼噴孔頂部且出口處空穴強度較弱,流動速度隨著相對半徑的增加而減少。隨著噴孔軸線和針閥軸線的夾角增大至71°(孔5)和70°(孔2)時,空穴區擴散延伸至出口形成完全空穴,此時噴孔出口處的空穴已經向噴孔中心軸線移動,氣相體積分數最大值在相對半徑為?0.7左右,流速在相對半徑為?0.53左右達到最大。當噴孔軸線和針閥軸線的夾角繼續增加至80°(孔3和孔4)時,空穴強度較強,此時,氣相體積分數的最大值已經位于相對半徑為?0.15左右,流速在相對半徑為0.15左右達到最大。

圖8 各孔出口處徑向氣相體積分數和流動速度對比Fig.8 Comparisons among gas phase volume fraction and flow velocity of the outlet of each hole in the radial direction

由上述分析可知,各孔出口處流速在空穴區附近較大,這是因為噴孔出口流速的分布受噴孔內部空穴區的影響,由于空穴附近的壓力較低,根據伯努利方程可知,流體流速較高。隨著噴孔軸線和針閥軸線夾角的增大,噴孔內部空穴區向噴孔中心軸線移動,噴孔出口處流速在噴孔中心軸線附近增加,其中孔3和孔4與孔2和孔5流速分布雖然有所差異,但其流速峰值所對應的相對半徑都較接近噴孔中心軸線,有利于燃油的霧化。由此可知:首先噴孔軸線和針閥軸線夾角的大小會影響噴孔內的空穴分布,并影響噴孔出口燃油的有效流通截面積,進而影響出口噴油速率、噴霧以及混合氣的形成。其次對于農用柴油機而言,由于噴油器偏置安裝,從而導致各孔夾角布置會有差異,根據各噴孔軸線和針閥軸線夾角的差異布置噴油器在氣缸蓋上的位置可保證氣缸內混合氣均勻,噴油器在氣缸蓋上傾斜的一側噴孔夾角應較大,而另一側夾角應較小。

4 結 論

1)兩氣門發動機用噴油器偏離氣缸中心傾斜布置,噴油器各孔軸線與針閥軸線夾角不相同,導致各孔間噴油規律存在差異;各孔實測噴油規律和所建立的模型模擬計算的噴油規律吻合較好。

2)各孔燃油流動及空穴分布存在顯著差異。噴孔軸線和針閥軸線夾角從67°增加至80°,噴孔內部空穴區逐漸增加且空穴逐漸向噴孔軸線移動,同時流速在空穴區附近也逐漸增加,有利于燃油的霧化。由此可設計并改進噴油器。

3)在噴油開始階段,各孔內部都未形成完全空穴,各孔間的噴油速率差異隨噴孔軸線和針閥軸線的夾角變化不明顯。噴油過程中,孔3與孔4內部空穴發展較快,孔1內部空穴發展較慢;同時各噴孔內空穴區隨著壓力的升高而略有減小,隨著噴油壓力的降低而略有增加,這將影響各孔出口噴油速率。

[參考文獻]

[1] Luo Fuqiang, Cui Huifeng, Dong Shaofeng. Transient measuring method for injection rate of each nozzle hole based on spray momentum flux[J]. Fuel, 2014, 125(1): 20-29.

[2] Payri R, García J M, Salvador F J, et al. Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics[J]. Fuel, 2004,84(5): 551-561.

[3] Desantes J M, Payri R, Salvador F J, et al. Measurements of spray momentum for the study of cavitation in diesel injection nozzles[J]. SAE Technical, 2003-01-0703.

[4] 宗永平,劉建新,何勇靈,等. 噴油器各噴孔流量影響因素的分析[J]. 洛陽工學院學報,1999,20(4):49-51. Zong Yongping, Liu Jianxin, He Yongling, et al. Analysis of factors affecting jet orifices flux of fuel injector[J]. Journal of Luoyang Institute of Technology, 1999, 20(4): 49-51. (in Chinese with English abstract)

[5] 鄭金保,繆雪龍,洪建海,等. 共軌和直列泵管嘴系統噴油嘴壓力室流動分析[J]. 內燃機學報,2011,29(1):61-66. Zheng Jinbao, Miu Xuelong, Hong Jianhai, et al. Flow analysis of SAC nozzle with CR and PLN system[J]. Transactions of CSICE, 2011, 29(1): 61-66. (in Chinese with English abstract)

[6] Payri F, Payri R, Salvador F J, et al. A contribution to the understanding of cavitation effects in diesel injector nozzles through a combined experimental and computational investigation[J]. Computers & Fluids, 2012, 58(8): 88-101.

[7] 崔慧峰,羅福強,王子玉,等. 柴油機噴嘴內小桐子油流動特性仿真分析[J]. 農業工程學報,2013,29(24):63-71. Cui Huifeng, Luo Fuqiang, Wang Ziyu, et al. Simulation analysis of flow characteristics of Jatropha curcas oil in diesel injector[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013,29(24): 63-71. (in Chinese with English abstract)

[8] 何志霞,袁建平,李德桃. 垂直多孔噴嘴內部流動空穴現象數值模擬分析[J]. 農業機械學報,2006,37(2):2-8. He Zhixia, Yuan Jianping, Li Detao. Numerical simulation and analysis of cavitating phenomena in a vertical multi-hole nozzle[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(2): 2-8. (in Chinese with English abstract)

[9] He Zhixia, Zhong Wenjun, Wang Qian, et al. An investigation of transient nature of the cavitating flow in injector nozzles[J]. Applied Thermal Engineering, 2013,54(1): 56-64.

[10] Blessing M, K?nig G, Krüger C, et al. Analysis of flow and cavitation phenomena in diesel injection nozzles and its effects on spray and mixture formation[C]//SAE Technical Paper 031358, 2003, doi:10.4271/031358.

[11] He Zhixia, Zhong Wenjun, Wang Qian, et al. Effect of nozzle geometrical and dynamic factors on cavitating and turbulent flow in a diesel multi-hole injector nozzle[J]. International Journal of Thermal Sciences, 2013, 70(8): 132-143.

[12] 鄭金保,繆雪龍,洪建海,等. 針閥升程對小壓力室噴油嘴內部空化的影響[J]. 內燃機學報,2014,32(1):52-56. Zheng Jinbao, Miu Xuelong, Hong Jianhai, et al. Effect of needle lift on cavitation of SAC nozzle in common rail system[J]. Transactions of CSICE, 2014, 32(1): 52-56. (in Chinese with English abstract)

[13] Wang Xiang, Su Wanhua. Influence of injection pressure fluctuations on cavitation inside a nozzle hole at diesel engine conditions[C]//SAE Technical Paper 080935, 2008,doi:10.4271/080935.

[14] Wang Xiang, Su Wanhua. Numerical investigation on relationship between injection pressure fluctuations and unsteady cavitation processes inside high-pressure diesel nozzle holes[J]. Fuel, 2010, 89(9): 2252-2259.

[15] 張輝亞,張煜盛,馮明志,等. 柴油高壓噴嘴空穴流動的非穩態模擬[J]. 內燃機工程,2012,33(6):66-71. Zhang Huiya, Zhang Yusheng, Feng Mingzhi, et al. Unsteady simulation of cavitation flow in injector of high-pressure common-rail injection system[J]. Chinese Internal Combustion Engine Engineering, 2012, 33(6): 66-71. (in Chinese with English abstract)

[16] Suh H K, Chang S L. Effect of cavitation in nozzle orifice on the diesel fuel atomization characteristics[J]. International Journal of Heat & Fluid Flow, 2008, 29(4): 1001-1009.

[17] Payri R, Molina S, Salvador F J, et al. A study of the relation between nozzle geometry, internal flow and sprays characteristics in diesel fuel injection systems[J]. Journal of Mechanical Science & Technology, 2004, 18(7): 1222-1235.

[18] 汪翔,蘇萬華. 利用雙流體模型研究柴油高壓噴嘴內部的空化流動[J]. 科學通報,2008,53(15):1864-1870. Wang Xiang, Su Wanhua. Caviation flow inside high pressure injector nozzle using dual-flow model[J]. Chinese Science Bulletin, 2008, 53(15): 1864-1870. (in Chinese with English abstract)

[19] 丁紅元,劉芬,黃榮華,等. 直噴汽油機多孔噴油器噴嘴內部流動數值模擬[J]. 農業機械學報,2013,44(3):6-11. Ding Hongyuan, Liu Fen, Huang Ronghua, et al. Numerical simulation of nozzle flow in GDI multi-hole injector[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(3): 6-11. (in Chinese with English abstract)

[20] 吳健,花陽,王站成,等. 噴油壓力及背壓對丁醇柴油噴霧影響的模擬及驗證[J]. 農業工程學報,2014,30(21):47-54. Wu Jian, Hua Yang, Wang Zhancheng, et al. Simulation and verification on spray influence of butanol/diesel blends effected by injection pressure and backpressure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(21): 47-54. (in Chinese with English abstract)

[21] 何志霞,鐘汶君,黃云龍,等. 針閥運動對柴油機噴嘴瞬態流動特性的影響[J]. 內燃機學報,2012,30(4):336-342. He Zhixia, Zhong Wenjun, Huang Yunlong, et al. Investigation of transient behavior of cavitation flow in injector nozzles affected by the needle movement[J]. Transactions of CSICE, 2012, 30(4): 336-342. (in Chinese with English abstract)

[22] 汪翔,蘇萬華. 柴油高壓噴嘴內部的壓力波動與不穩定空化現象分析[J]. 內燃機學報,2010,28(3):193-198. Wang Xiang, Su Wanhua. Analysis on pressure fluctuation and unsteady cavitation inside high-pressure diesel injection nozzles[J]. Transactions of CSICE, 2010, 28(3): 193-198. (in Chinese with English abstract)

[23] 崔慧峰,羅福強,董少鋒,等. 柴油機漸縮形噴孔噴嘴流動特性研究[J]. 農業機械學報,2013,44(11):19-25. Cui Huifeng, Luo Fuqiang, Dong Shaofeng, et al. Flow characteristics in diesel nozzle with convergent conical orifice[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(11): 19-25. (in Chinese with English abstract)

[24] Payri F, Bermúdez V, Payri R, et al. The influence of cavitation on the internal flow and the spray characteristics in diesel injection nozzles[J]. Fuel, 2004, 83(4): 19-31.

[25] 錢耀義,李云清,于秀敏,等. 小型直噴式柴油機噴霧特性的試驗研究[J]. 內燃機學報,2001,19(2):97-101. Qian Yaoyi, Li Yunqing, Yu Xiumin, et al. An experiment study on fuel spray on small direct injection diesel engine [J]. Transactions of CSICE, 2001, 19(2): 97-101. (in Chinese with English abstract)

Building 3-D model of diesel injector used in agriculture verified by injection rate of each hole and simulation on internal flow characteristics

Luo Fuqiang1, Zhou Qun1, Xue Fuying1, Wu Xiwen1,2, Zhong Da1
(1. School of Automobile ɑnd Trɑffic Engineering, Jiɑngsu University, Zhenjiɑng 212013, Chinɑ;
2. Dynɑmicɑl Commɑnding Depɑrtment of Zhenjiɑng Wɑtercrɑft College of PLA, Zhenjiɑng 212003, Chinɑ)

Abstract:Agriculture-used diesel engine is widely used because of its simple structure, low engine cost and popularity. Because of the offset of the injector position to the cylinders’ center axis in a two-valve diesel engine, the angles between the nozzle hole axis and the needle axis are different, which hence enhances efficient distribution of the mixture. It was observed from investigations that the injection rate of each nozzle hole of the injector was different but smaller for the nozzle hole with the higher angle (between the nozzle hole axis and the needle axis). The injection process is important to the spray process,mixture formation and combustion. The internal flow characteristics of the injector hole is the boundary condition for the spray,combustion and so on, which play a crucial role in improving the spray quality, optimizing the combustion process and decreasing the pollutant emissions. In the present study, a three-dimension model of valve covered orifice (VCO) injector with 5 holes used in a two-valve diesel was established. The simulation of internal cavitation and velocity distributions of each hole in the VCO injector was based on the two-fluid model and the cavitation model. Because of the needle movement and the fluctuations of the injection pressure, the internal flows in the nozzle holes were unsteady. The internal transient flow could be technically reflected by the moving mesh. The simulated and measured fuel injection rates and cyclical fuel injection quantity of each nozzle hole were compared and analyzed. Experimental validation showed that their differences were under limits, and the relative error of the cyclical fuel injection quantity per cycle of each hole between the simulated and experimental value was less than 5%, which proved that such model could be used to study the transient flow characteristics and the influences on angle between each nozzle hole axis and needle axis of the nozzle. Comparison and analysis were done, and the results showed that there were significant differences in fuel flow characteristics and cavitation among nozzle holes, which were variable during the injection process. Firstly, the continuous changing of injection pressure destabilized the internal cavitation of each hole, which influenced the injection rate at the nozzle outlet in cam angle at maximum needle lift. The increasing injection pressure resulted in the bubble’s collapse, which made the effective flow area increase and the injection rate decrease, and vice versa. During the initial part of injection, the internal cavitations of the 5 holes were different and did not progress to the outlet of the nozzle holes. This extension in length of the internal cavitation did not affect the injection rate of each hole. Secondly,the bigger internal cavitation zone of the holes moved to the center with the increase in the angle between each nozzle hole axis and needle axis of the nozzles. This increased the flow velocity at the center of the holes, which enhanced the spray characteristics. The results obtained indicate that the spray characteristics and the injection rate should be comprehensively considered when designing and installing the two-valve multi-hole nozzle to ensure the optimum mixture formations, the combustion optimization and the reduction of emissions.

Keywords:diesel engines; models; fuel injection; injector; fuel injection rate; simulation calculation

作者簡介:羅福強,男,湖南人,教授,博士生導師,主要從事動力機械工作過程及排放控制研究。鎮江江蘇大學汽車與交通工程學院,212013。Email:15262906575@163.com

基金項目:國家自然科學基金資助項目(51476072);江蘇省高校優勢學科建設工程資助項目;江蘇省博士創新基金(CXZZ12_0674)

收稿日期:2015-08-24

修訂日期:2015-12-16

中圖分類號:TK421+.4

文獻標志碼:A

文章編號:1002-6819(2016)-02-0058-06

doi:10.11975/j.issn.1002-6819.2016.02.009

猜你喜歡
模型
一半模型
一種去中心化的域名服務本地化模型
適用于BDS-3 PPP的隨機模型
提煉模型 突破難點
函數模型及應用
p150Glued在帕金森病模型中的表達及分布
函數模型及應用
重要模型『一線三等角』
重尾非線性自回歸模型自加權M-估計的漸近分布
3D打印中的模型分割與打包
主站蜘蛛池模板: 国产精品专区第1页| 欧美翘臀一区二区三区| 免费人成又黄又爽的视频网站| 国产亚洲一区二区三区在线| 国产噜噜在线视频观看| 亚洲天堂精品在线| 日韩福利在线视频| 日本福利视频网站| 9丨情侣偷在线精品国产| 成年人视频一区二区| 久久黄色一级视频| 无码视频国产精品一区二区| 日韩精品一区二区深田咏美| 伊人成人在线| 18禁色诱爆乳网站| 亚洲综合香蕉| 五月天综合网亚洲综合天堂网| 国产精品久久久久鬼色| 国产91特黄特色A级毛片| 久久免费视频播放| 欧美有码在线| 婷五月综合| 国产精品亚洲一区二区三区在线观看 | 成人在线观看一区| 67194亚洲无码| 欧美在线三级| 亚洲日韩AV无码一区二区三区人| 亚洲国产日韩在线观看| 小蝌蚪亚洲精品国产| 日本爱爱精品一区二区| 亚洲av无码片一区二区三区| 亚洲人成人无码www| 国产sm重味一区二区三区| 中文字幕在线看| 成年人免费国产视频| 日韩精品无码免费专网站| 国产精品欧美亚洲韩国日本不卡| 欧美综合成人| 亚洲精品爱草草视频在线| 精品第一国产综合精品Aⅴ| av在线5g无码天天| 好紧好深好大乳无码中文字幕| 日韩黄色大片免费看| 亚洲成人一区在线| 国产精品久久久久久久伊一| 国产区免费| 国产高潮流白浆视频| 香蕉视频在线观看www| 老色鬼欧美精品| 都市激情亚洲综合久久| 久久久久中文字幕精品视频| 国产成人精品第一区二区| 日本亚洲欧美在线| 亚洲欧美日韩成人高清在线一区| AV网站中文| 成人午夜视频在线| 国产成人综合亚洲欧美在| 国产毛片一区| 热思思久久免费视频| AV在线天堂进入| 99这里只有精品在线| 久久精品波多野结衣| 国产乱子伦手机在线| 欧美国产日本高清不卡| 国产欧美日韩91| 玖玖精品在线| 国产精品护士| 欧美国产综合视频| 2022国产无码在线| 美女一级免费毛片| 亚洲毛片网站| 手机看片1024久久精品你懂的| 国产一二视频| 午夜福利网址| 精品久久久久久成人AV| 成人在线综合| 亚洲美女高潮久久久久久久| 久久91精品牛牛| 日日拍夜夜操| 毛片在线区| 真人免费一级毛片一区二区| 欧美午夜久久|