喬如穎,李明,鄭新強,陸建良,葉儉慧,王開榮,梁月榮*
1. 浙江大學茶葉研究所,浙江 杭州 310058;2. 余姚市林業特產技術推廣總站,浙江 余姚 315499;3. 寧波黃金韻茶業科技有限公司,浙江 余姚 315400
茶葉及其兒茶素類對乳腺癌的抑制作用
喬如穎1,李明2,鄭新強1,陸建良1,葉儉慧1,王開榮3,梁月榮1*
1. 浙江大學茶葉研究所,浙江 杭州 310058;2. 余姚市林業特產技術推廣總站,浙江 余姚 315499;3. 寧波黃金韻茶業科技有限公司,浙江 余姚 315400
茶葉對人體健康有眾多益處是因為它富含兒茶素類化合物。茶葉中的兒茶素類化合物有10種以上,其中含量最高的是表沒食子兒茶素沒食子酸酯(EGCG)。許多研究表明,以EGCG為代表的茶葉兒茶素類化合物對乳腺癌具有抑制作用,其作用包括:抑制致癌物誘導的活性氧自由基(ROS)升高及其引起的DNA損傷、降低細胞對腫瘤壞死因子的響應、阻礙雌激素與雌激素受體的結合、抑制DNA甲基化、保護線粒體免受氧化損傷、抑制腫瘤血管生成、減少癌細胞的轉移和增殖、改善代謝綜合征以減少抗癌藥物副作用、與抗癌藥物產生協同效應等。本文綜述了該研究領域的進展,并討論導致研究結果不一致的原因和未來的研究方向。
茶;兒茶素;抗癌;抗氧化劑;雌激素受體;抗增殖;轉移
乳腺癌是女性最常見的癌癥之一,全世界平均每年約有120萬人被確診為乳腺癌,約占總癌癥患者的四分之一[1]。盡管人類對乳腺癌治療的研究已取得眾多進展,但是乳腺癌的死亡率仍然很高,美國女性癌癥患者的死亡率排名第二[2]。膳食被認為是預防乳腺癌的一個重要途徑[2-3]。
茶是全世界最受歡迎的飲料之一。茶樹鮮葉富含兒茶素類物質,這使得茶葉對人體健康有眾多益處。茶樹鮮葉中主要的兒茶素類物質有表沒食子兒茶素沒食子酸酯(EGCG)、表兒茶素沒食子酸酯(ECG)、表沒食子兒茶素(EGC)和表兒茶素(EC)等;但在不同茶類的成品茶中檢出的兒茶素類超過10種,這是因為在茶葉加工過程中,表型兒茶素類物質發生異構反應而衍化產生多種異構體[4]。根據發酵過程中兒茶素類氧化程度的不同,茶葉可分為全發酵的紅茶、半發酵的烏龍茶和不發酵的綠茶。EGCG是綠茶中含量最多的兒茶素類物質,占總兒茶素含量的40%以上[5]??們翰杷仡惡吭诰G茶中為58.0~183.9mg·g-1[4],在烏龍茶中為74.8~105.7mg·g-1[6],在紅茶中為11.7~55.3mg·g-1[7]。兒茶素類是一組具有抗氧化活性的物質,也是茶葉中主要的功能化合物[8]。已有的流行病學和體外研究證明,茶葉攝入量與乳腺癌發病率之間存在相關性[9-10]。但是,茶及其兒茶素類物質對乳腺癌的預防效果仍然需要進一步驗證,并有爭議[11-12]。本文擬從流行病學、體內和體外試驗等方面的研究結果闡述茶及其兒茶素類物質對乳腺癌的抑制效果,并分析討論導致體內、體外研究結果出現分歧的原因以及未來的研究方向。
中國有流行病學研究顯示,綠茶的攝入量與降低乳腺癌風險之間存在弱相關[13]。上海一項基于74 942名中國女性的群體研究表明,乳腺癌發病率與開始飲用綠茶的年齡具有相關性(P=0.03);與不喝茶的女性相比,25歲及以下開始飲茶的女性在絕經前期患乳腺癌的風險比(Hazard ratio, HR)為0.69(95%置信區間(CI):0.41~1.17)[14]。飲茶頻率(如每月消費茶葉大于100g)與0至Ⅲ期乳腺癌患者的抑郁癥呈負相關,其機會比(Odds ratio, OR)為0.39(CI95%:0.19~0.84)[9]。1995~1998年在美國洛杉磯進行了一項人群調查,對501名乳腺癌患者組和594名對照組的分析結果顯示:隨著綠茶攝入量增加,乳腺癌患病幾率明顯下降[15]。2004~2005年中國東南地區進行的一項病例對照研究表明:在絕經前和絕經后的華人女性群體中,飲用綠茶有助于降低乳腺癌患病風險;另外,綠茶與蘑菇有協同效應,能產生更好的降低乳腺癌患病風險效果[12,16]。在新加坡華裔中開展了一項巢式病例對照研究,選取了297名乳腺癌患者和665名對照,研究結果顯示,血管緊張素轉化酶(ACE)基因型(P=0.039)高活性的女性,綠茶攝入頻率與乳腺癌患病幾率呈負相關[17]。新加坡的另一項巢式病例對照研究,對380名乳腺癌患者和662名對照研究顯示,葉酸攝入量低或者MTHFR/TYMS基因型活性強的女性,綠茶攝入量高者患乳腺癌的幾率明顯降低[18]。據此認為抑制葉酸通路可能是綠茶預防乳腺癌的機制之一。香港的一項以醫院病例為基礎的對比研究顯示,經常飲茶的女性,絕經前乳腺癌患病風險低(OR=0.62;CI95%:0.40~0.97)[10]。還有研究證明,女性攝入含咖啡因飲料的數量與絕經后乳腺癌患病風險呈負相關[19],飲茶者在50歲之前患乳腺癌的風險顯著降低[20]。每天喝茶3杯以上的女性,患乳腺癌的幾率比不喝茶的女性低37%[20]。
2.1抑制致癌物誘導的活性氧自由基(ROS)升高及其造成的DNA損傷
ROS是一組化學活性分子,包括過氧化氫、超氧陰離子自由基、單態氧和羥基自由基等,它們與癌變的多個階段都有重要的關系[21]。茶葉兒茶素類的抗癌活性可以通過減輕ROS脅迫、保護DNA免受活性氧誘導損傷。茶多酚類物質如綠茶兒茶素類和紅茶茶黃素類等化合物,具有抑制過氧化氫結合細胞色素C引起的DNA裂解[22-23]。
兒茶素類物質減輕ROS脅迫的機制包括:(1)提高抗氧化物酶活性,如過氧化氫酶、超氧化物歧化酶(SOD)和谷胱甘肽過氧化物酶(GHS-Px)等[24];(2)直接清除ROS[25];(3)通過螯合鐵離子抑制鐵離子發生“哈伯-韋斯和芬頓反應”(Haber-Weiss and Fenton reactions)形成羥基自由基[26]。
2.2降低細胞對腫瘤壞死因子的響應
長期暴露在致癌物環境中會引起散發性乳腺癌的發生。在對細胞無毒的劑量濃度范圍,兒茶素類通過上調COX17(細胞色素C氧化酶同工酶-17)、S100P(S100鈣結合蛋白P)和ATM(共濟失調性毛細血管擴張癥突變基因)等基因的表達,下調TNFRSF8基因(腫瘤壞死因子超家族-8)的表達,能有效抑制致癌物如NNK、B[a]P和2-氨基-1-甲基-6-苯基咪唑基[4,5-b]吡啶(PhIP)等誘導的細胞癌病變[27-28]。
在癌細胞中,PI3K/Akt/mTOR(磷脂酰肌醇-3-激酶/蛋白激酶B/哺乳動物雷帕霉素靶蛋白)信號通路通常被激活,而其通路中的重要節點是癌癥治療過程中的關鍵治療靶點。EGCG能夠抑制乳腺癌細胞MDA-MB-231中的PI3K和mTOR信號通路,其Ki值范圍為320~380nmol·L-1之間[29]。
雌性激素是影響乳腺癌發生和癌細胞生長的關鍵因子;雌激素受體蛋白α(Erα)是治療乳腺癌的靶標分子。TFF1(Trefoil factor 1)是一種雌性激素誘導蛋白,可作為ERα活力的指標。綠茶EGCG等兒茶素類可以明顯降低TFF1表達,并與17-β-雌二醇產生競爭作用,減少17-β-雌二醇與ERα和ERβ結合,從而下調乳腺癌細胞MCF-7中ERα和ERβ的功能[30]。
基質金屬蛋白酶系(MMPs)是一個有鋅依賴性的內肽酶家族,在乳腺癌細胞入侵和轉移過程中起到關鍵作用[31],其中最常見的是MMP-2在癌細胞中的過量表達[32]。MMP-2在不同腫瘤細胞中以酶原的形式存在,受膜質金屬蛋白酶-1(MT1-MMP)的激活[33]。MMPs的表達和活化受到整合素與粘著斑激酶(FAK)的共同控制[34]。EGCG處理可以有效地降低FAK、MT1-MMP、核因子-κB(NF-κB)以及血管內皮生長因子(VEGF)的表達,進而降低MMP-2的活力[35]。
2.3阻礙雌激素與雌激素受體的結合
雌激素對原癌基因和乳腺細胞增殖有促進作用,因而雌激素與乳腺癌的發生和擴展密切相關[36]。在乳腺癌病理學和臨床治療研究中,雌激素與其特定受體之間的互相作用越來越受到關注。雌激素受體(ERs)有兩類:一類是細胞核ERs,屬于轉錄因子家族[37];另一類是細胞膜ERs,屬于G蛋白偶合受體GPER(GPR30,ER-X和Gq-mER)。人體乳腺癌可以分為ER陽性和ER陰性兩種亞型[38]。與ER陰性乳腺癌相比,ER陽性乳腺癌對激素治療的臨床反應更明顯[39]。人工合成抗雌激素可以占據配體結合位點的相關結構,阻止雌激素與ERs的結合,在乳腺癌的激素臨床治療中被廣泛應用。但合成藥物對非靶標組織有副作用,長期使用還會產生耐藥性。因此在臨床中,非常重視開發和尋找具有抗雌激素活性的植物化學物質,用以替代人工合成的抗雌激素。這些具有抗雌激素作用的植物化學物質通常被稱為“植物雌激素”。
異黃酮類化合物是眾所周知的植物雌激素,茶葉兒茶素類的化學結構與異黃酮類非常相似[40],因而被認為是一類具有ER拮抗劑潛質的化合物。有關兒茶素類物質對ERs調節作用的體內體外試驗已有不少報道[30,41-42]。MCF-7、ZR75和T47D屬于ER陽性乳腺癌細胞,曾被用于驗證ERs對兒茶素類的響應[43]。ERs對兒茶素類的響應取決于其分子結構、兒茶素的濃度水平以及ER的亞型。與非酯型兒茶素類相比,酯型兒茶素對ERα和ERβ有更高的親和性,生物活性更強[42]。
兒茶素類物質對ER陰性乳腺癌細胞的影響也被研究者所關注。研究表明,在ER陰性乳腺癌細胞MDA-MB-231中,EGCG可以重新激活ERα的表達,這可能是因為EGCG可以通過改變組蛋白乙?;图谆?,使得ERα啟動子的染色質結構發生重構效應[44]。實驗表明,EGCG通過降低ERα的表達有效抑制癌癥細胞的生長[40]。這些結果都支持將EGCG作為一種臨床前期和臨床期ER陰性乳腺癌治療的選擇之一。
2.4抑制DNA甲基化
DNA甲基化由DNA甲基轉移酶(DNMT)或者兒茶酚-O-甲基轉移酶(COMT)來催化,其甲基供體為S-腺苷-L-甲硫氨酸(SAM)。近期研究表明,茶葉兒茶素類化合物通過兩種機制來抑制人體DNMT引起的DNA甲基化,一種是兒茶素類直接抑制DNMTs活性,另一種是通過提高SAH水平間接抑制DNMTs活性。根據半抑制濃度(IC50)將兒茶素類化合物的抑制效果排序,其抑制活力大小順序是:EGCG>ECG>EGC>EC[45]。EGCG通過與DNMT活性中心的脯氨酸、谷氨酸、半胱氨酸、色氨酸和精氨酸形成氫鍵,與DNMTs產生互作;其中EGCG的B環和D環起關鍵作用[46]。EGCG的人工合成類似物對COMT的作用效果,與EGCG相當[47]。EGCG對DNA甲基化的抑制效果與其抗腫瘤活性緊密相關[49]。研究還表明,EGCG本身也可以被甲基化,EGCG被甲基化后會降低它對蛋白酶的抑制效果和癌癥預防效果[48-49]。
2.5保護線粒體免受過氧化脅迫損傷
茶葉兒茶素類具有優越的抗氧化活性和抗癌活性[50-51],可以減輕抗癌藥物對正常組織細胞的過氧化損傷,還可有效降低抗癌藥物對正常細胞引起的線粒體過氧化損傷??拱┧幬颰AM可以擾亂促氧化劑和抗氧化劑之間的平衡,進而引起細胞機能失調。小鼠實驗證明,兒茶素類化合物對TAM誘導的線粒體氧化損傷具有保護效果,可以減輕由TAM誘導的正常細胞的線粒體過氧化損傷。
兒茶素類物質減輕線粒體氧化損傷的機制可能與它對ROS的抑制有關。因為ROS可以引起細胞凋亡[52-53],所以可以將兒茶素類作為ROS清除劑,以緩解正常細胞的凋亡[54]。經過兒茶素類預處理后,有利于線粒體抗氧化酶活性在TAM處理后的自我恢復。
2.6抑制腫瘤血管生成
血管生成可以為腫瘤生長提供營養和氧氣,是腫瘤生長必不可少的過程[55]。血管內皮生長因子(VEGF)是最重要的血管生成因子。在腫瘤血管增殖過程中,VEGF促進內皮細胞生長,內皮細胞的增殖進而促使新血管的形成[55-56],抑制血管生成有助于抑制腫瘤生長。
茶葉兒茶素類物質,尤其是EGCG,具有突出的抗血管增生作用[57-59]。綠茶提取物(Green tea extract,GTE)和EGCG對VEGF肽分泌、VEGF轉錄、VEGF啟動子活性、c-jun轉錄、c-fos轉錄以及蛋白激酶C(PKC)等都有抑制效果[60]。40mg·L-1GTE或EGCG可顯著抑制VEGF基因轉錄和VEGF蛋白生物合成。GTE還可以抑制VEGF啟動子的重要組分c-jun和c-fos基因的表達。此外,GTE和EGCG還可以抑制另一個VEGF調節因子PKC的表達[60]。說明兒茶素類物質能夠有效抑制乳腺癌細胞中VEGF的表達,進而抑制血管內皮細胞的生長和血管生成。
兒茶素類化合物抗血管生成的機制與它干預VEGF信號傳導密切相關。VEGF誘導血管生成的信號通路受多元受體啟動,該多元受體由VEGF-2、β-鏈蛋白、VE-鈣粘素和PI3激酶組成。EGCG對VEGF誘導的VE-鈣粘素的磷酸化作用和Akt激活有抑制效果。因此,兒茶素類抗血管生成的機制可以解釋為:兒茶素類化合物可抑制多元受體的形成,阻礙VEGF信號通路,進而抑制內皮細胞形成。
2.7抗乳腺癌細胞增殖并誘導細胞凋亡
抗癌藥物的作用機制是基于其誘導癌細胞凋亡的能力。50μmol·L-1的EGCG、沒食子兒茶素沒食子酸酯(GCG)和沒食子兒茶素(GC)對乳腺癌細胞增殖的抑制效果分別達到100%、97%和95%[61]。茶葉兒茶素類抑制乳腺癌細胞增殖和誘導乳腺癌細胞凋亡的途徑主要有:(1)引起細胞周期停滯;(2)促進腫瘤蛋白P53(TP53)/caspase介導的細胞凋亡;(3)下調抗凋亡因子的表達;(4)抑制脂肪酸合成酶(FAS)活力;(5)調節NO/NOS系統;(6)誘導鈣離子相關的細胞凋亡。
2.8抗乳腺癌細胞的轉移擴散
癌細胞的轉移包括3個關鍵步驟:粘附、遷移和侵染。EGCG可以有效抑制乳腺癌細胞的遷移和侵染,進而減少向肺部和肝部的轉移,并保護骨結構[62]。兒茶素類對乳腺癌細胞的游走性和侵染性具有抑制效果[63-64]。兒茶素類化合物的抗轉移作用是由多種因素引起的,如:調節蛋白水解酶活性、調節信號通路和生長因子/受體、阻礙上皮間質轉化進程以及抑制血管生成[64-65]。
EGCG對抑制腫瘤轉移信號通路的調節有非常重要的作用,其調節機制主要有:β1整合素介導的信號通路調節[66]、通過Rac1通路下調血管擴張刺激磷蛋白(VASP)的表達[64]、通過調節PI3K/AKT通路提高α1-抗胰蛋白酶的表達[67],以及下調表皮生長因子受體(EGFR)信號通路的表達[68]。
2.9與抗癌藥物產生協同作用
TAM是乳腺癌治療的常用抗癌藥物。在體外實驗中,EGCG通過降低ERα水平,增強TAM對ER陽性人體乳腺癌細胞MCF-7、ZR75和T47D的抑制作用。在誘導乳腺癌細胞凋亡方面,兩者組合使用的療效比任意單種成分的治療效果都好[43]。兒茶素類和TAM同時使用,能顯著降低TAM誘導的脂質過氧化物(LPO)和氫過氧化物水平,兒茶素類可以緩解化療過程中TAM的副毒作用[69]。
環氧化酶(COX)是催化花生四烯酸轉變為前列腺素的一種酶,而COX抑制劑如非甾體抗炎藥(NSAIDS)可以用于預防乳腺癌[70]。兒茶素類化合物被證實是一種COX-1特異性抑制劑。體外實驗證明,兒茶素類物質與NS398(一種COX-2的特異性抑制劑)對抑制乳腺癌表現出協同效應,對乳腺癌細胞HTB26和MCF-7具有抑制增殖效果[71]。每天對患乳腺癌裸鼠模型飼喂兒茶素類化合物(25mg·kg-1)、槲皮素(5mg·kg-1)和白藜蘆醇(0.5mg·kg-1)復合物,可以減少原發腫瘤的生長;但是這3種物質分別處理時(0.5μmol·L-1),并沒有表現出抑制癌細胞增殖或影響細胞周期進程的功能[72]。
3.1研究結果的不一致性
盡管動物實驗和體外實驗都證明茶葉兒茶素類化合物有抗乳腺癌的作用,但也存在體內、人體流行病學研究結果不一致的現象。
首先,不同茶類對乳腺癌的抑制效果并不相同。攝入綠茶可以顯著降低乳腺癌患病風險,但攝入紅茶并無明顯效果[10-11,15,17,73]。茶葉中主要的生物活性成分是兒茶素類化合物,尤其是EGCG。紅茶是全發酵茶,在發酵過程中,80%的兒茶素類物質被氧化,并轉化為茶紅素類或茶黃素類,這可能是攝入紅茶無法顯著降低乳腺癌患病風險的原因之一。
第二,不同人群的調查結果相互矛盾。一項流行病學研究證明,日常飲茶可以降低絕經前女性患乳腺癌風險(OR=0.62,CI95%:0.40~0.97),但卻增加絕經后女性患乳腺癌風險(OR=1.40,CI95%:1.00~1.96)。綠茶攝入量與乳腺癌患病幾率之間的相關性在絕經后ER陽性婦女(OR=1.22,CI95%:0.43~3.43)與ER陰性婦女(OR=0.61,CI95%:0.25~1.49)之間也存在差異[10]。對男性與女性人群的調查結果也是不同的。有調查顯示,喝茶可以顯著增加男性患乳腺癌的風險,但是與女性患乳腺癌風險并無顯著相關[74]。對具有高活性血管緊張素轉化酶(ACE)基因型的婦女來說,綠茶攝入頻率高可以顯著降低其患乳腺癌風險;但與低活性ACE基因型的婦女患乳腺癌風險之間并無關聯[17]。這些有爭議的研究結果可能起因于不同人群的生理狀態不同,以致對茶葉中生物活性成分的響應存在差異。
第三,體內與體外試驗結果有矛盾。體內與體外試驗結果的矛盾可能與兒茶素類化合物的生物可利用率低或者體內的生物轉化有關。對小鼠飼喂同位素標記的3H-EGCG揭示,3H-EGCG廣泛分布于消化道、肝、肺、胰腺、乳腺、腦、腎、子宮和卵巢;但血液中的放射性則很低。在飼喂6 h后,血液的放射性只占總3H-EGCG攝入量的2%,并且該水平可維持24 h。在24 h內,全部攝入的放射性EGCG中有37.1%會隨著糞便排出,約6.6%隨尿液排出[75]。而且,茶葉兒茶素類化合物在消化道中發生化學修飾,這可能也與其低生物利用率有關。在人體生理條件下,COMT可以將EGCG轉化為4″-O-甲基-EGCG(MeEGCG)和4′,4″-2-O-甲基-EGCG(DiMeEGCG),從而降低EGCG的口服生物利用率,而且也降低了EGCG的抗癌生物活性。有體內研究表明,EGCG與一種COMT抑制劑托卡朋(TOL)同時使用,可提高EGCG的生物利用率;同時抑制COMT介導的EGCG甲基化作用,提升EGCG的抗癌效果[76]。
3.2未來研究建議
提高兒茶素類生物活性物質的生物可利用率應該是今后的研究熱點。開發具有提高茶葉兒茶素類物質穩定性的方法,則可以提高其口服生物可利用率。有研究顯示,將茶葉兒茶素類化合物包埋在殼聚糖納米顆粒(NPs)中,可以提高兒茶素類如EGCG和兒茶素(C)等在體內的穩定性,并可以顯著增加其腸道吸收率[77]。用牛血清蛋白包埋兒茶素(C)和表兒茶素(EC)NPs,也可以提升其在細胞A549中的穩定性及抗氧化能力[78]。
利用兒茶素類化合物與其他生物活性成分開發研制出復合制劑,也有助于提高茶葉兒茶素類化合物的穩定性和生物可利用率。例如,EC不能誘導PC-9肺癌細胞凋亡,但將100μmol·L-1的EC與EGCG同時使用時,可以使EGCG的IC50從60μmol·L-1降到15μmol·L-1。說明EC具有提高EGCG抗癌活性的作用。10μmol·L-1或100μmol·L-1的舒林酸(Sulindac)與75μmol·L-1EGCG同時使用,誘導PC-9細胞凋亡的能力是單獨使用舒林酸的10倍[75]。將EC與其他兒茶素類物質尤其是酯型兒茶素類結合使用,可以提高EC在細胞中的累積[79]。用木糖醇、維生素C、綠茶兒茶素類制成復合配方,再用g-環糊精(g-CD)或羥丙基甲基纖維素鄰苯二甲酸酯(HPMCP)包埋成納米顆粒,可以顯著增加兒茶素類在腸道的吸收率[80]。通過兩步乳化法將親水性兒茶素和疏水性姜黃素制成“水包油包水”(W/O/W)的雙重乳化劑,兒茶素類在模擬胃液或腸液中的穩定性得到明顯提高,其生物可利用率相應提高4倍[81]。
然而,為了使EGCG最大限度地被吸收利用,EGCG膠囊最好不要用普通食物送服。有研究表明,若將EGCG用早餐食物或草莓沙冰等送服,體內或血液中的EGCG濃度明顯低于單獨服用[82]。
茶葉含有10余種兒茶素類化合物,其中EGCG對乳腺癌表現出最強的抑制活性。含有EGCG的兒茶素類物質在體外研究中表現出抑制乳腺癌的作用,體內試驗還有緩解癌癥患者的代謝綜合征的效果;EGCG等與其他抗癌藥物同時使用時具有協同作用,可以增強抗癌藥物對乳腺癌的抗癌效果。非發酵的綠茶EGCG含量高,飲用綠茶對降低乳腺癌患病幾率效果最明顯。但綠茶對乳腺癌的抑制效果在不同飲茶人群之間存在差異,在絕經前女性、ER陽性的絕經后女性以及具有高活性ACE基因型的女性中,飲用綠茶對降低乳腺癌患病幾率的作用較明顯。兒茶素類抗乳腺癌效果在體內、體外試驗之間也出現結果不一致的現象,這種差異可能與兒茶素類的生物可利用率低及其在體內產生生物轉化有關。開發兒茶素類的納米制劑或者與其他生物活性成分制成復方制劑,將有助于提高兒茶素類在消化道中的穩定性與吸收利用率,進而提高其抗癌效果,是未來研究的方向和重點。
[1] Stewart BW, Wild CP. World cancer report 2014 [R]. French: World Health Organization, 2014: 16-53, 362-373.
[2] Kushi L H, Doyle C, McCullough M, et al. American Cancer Societyguidelines on nutrition and physical activity for cancer prevention [J]. CA: a cancer journal for clinicians, 2012, 62(1): 30-67.
[3] Thomson C A. Diet and breast cancer understanding risks and benefits [J]. Nutrition in Clinical Practice, 2012, 27(5): 636-650.
[4] Liang Y R, Ye Q, Jin J, et al. Chemical and instrumental assessment ofgreen tea sensory preference [J]. International Journal of Food Properties, 2008, 11(2): 258-272.
[5] Dong J J, Ye J H, Lu J L, et al. Isolation of antioxidant catechins fromgreen tea and its decaffeination [J]. Food and Bioproducts Processing, 2011, 89(1): 62-66.
[6] Lin S Y, Chen Y L, Lee C L, et al. Monitoring volatile compound profiles and chemical compositions during the process of manufacturing semi-fermented Oolong tea [J]. Journal of Horticultural Science and Biotechnology, 2013, 88(2): 159-164.
[7] Liang Y, Lu J, Zhang L, et al. Estimation of black tea quality by analysis of chemical composition and colour difference of tea infusions [J]. Food Chemistry, 2003, 80(2): 283-290.
[8] Xu J Y, Wu L Y, Zheng X Q, et al. Green Tea polyphenols attenuating ultraviolet B-induced damage to human retinal pigment epithelial cells in vitro [J]. Investigative Ophthalmology and Visual Science, 2010, 51(12): 6665-6670.
[9] Chen X, Lu W, Zheng Y, et al. Exercise, tea consumption, and depression among breast cancer survivors [J]. Journal of Clinical Oncology, 2010, 28(6): 991-998.
[10] Li M, Tse L A, Chan W, et al. Evaluation of breast cancer risk associated with tea consumption by menopausal and estrogen receptor status among Chinese women in Hong Kong [J]. Cancer Epidemiology, 2016, 40: 73-78.
[11] Suzuki Y, Tsubono Y, Nakaya N, et al. Green tea and the risk of breast cancer: pooled analysis of two prospective studies in Japan [J]. British Journal of Cancer, 2004, 90(7): 1361-1363.
[12] Zhang M, Holman C D A J, Huang J, et al. Green tea and the prevention of breast cancer: a case-control study in Southeast China [J]. Carcinogenesis, 2007, 28(5): 1074-1078.
[13] Shrubsole M J, Lu W, Chen Z, et al. Drinkinggreen tea modestly reduces breast cancer risk [J]. Journal of Nutrition, 2009, 139(2): 310-316.
[14] Dai Q, Shu X O, Li H, et al. Isgreen tea drinking associated with a later onset of breast cancer? [J]. Annals of Epidemiology, 2010, 20(1): 74-81.
[15] Wu A H, Yu M C, Tseng C C, et al. Green tea and risk of breast cancer in Asian Americans [J]. International journal of Cancer, 2003, 106(4): 574-579.
[16] Zhang M, Huang J, Xie X, et al. Dietary intakes of mushrooms andgreen tea combine to reduce the risk of breast cancer in Chinese women [J]. International Journal of Cancer, 2009, 124(6): 1404-1408.
[17] Yuan J M, Koh W P, Sun C L, et al. Green tea intake, ACEgene polymorphism and breast cancer risk among Chinese women in Singapore [J]. Carcinogenesis, 2005, 26(8): 1389-1394.
[18] Inoue M, Robien K, Wang R, et al. Green tea intake, MTHFR/TYMSgenotype and breast cancer risk: the Singapore Chinese health study [J]. Carcinogenesis, 2008, 29(10): 1967-1972.
[19] Ganmaa D, Willett W C, Li T Y, et al. Coffee, tea, caffeine and risk of breast cancer: A 22-year follow-up [J]. International Journal of Cancer, 2008, 122(9): 2071-2076.
[20] Kumar N, Titus-Ernstoff L, Newcomb P A, et al. Tea consumption and risk of breast cancer [J]. Cancer Epidemiology Biomarkers and Prevention, 2009, 18(1): 341-345.
[21] Guyton K Z, Kensler T W. Oxidative mechanisms in carcinogenesis [J]. British Medical Bulletin, 1993, 49(3): 523-544.
[22] Birnboim H C, Sandhu J K. Levels of DNA strand breaks and superoxide in phorbol ester-treated humangranulocytes [J]. Journal of Cellular Biochemistry, 1997, 66(2): 219-228.
[23] Ruch R J, Cheng S, Klaunig J E. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidantcatechins isolated from Chinesegreen tea [J]. Carcinogenesis, 1989, 10(6): 1003-1008.
[24] Abrahim N N, Kanthimathi M S, Abdul-Aziz A. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase [J]. BMC Complementary and Alternative Medicine, 2012, 12(1): 220-230.
[25] Rathore K, Choudhary S, Wang H C R. Green tea catechin intervention of reactive oxygen species-mediated ERK pathway activation and chronically induced breast cell carcinogenesis [J]. Carcinogenesis, 2012, 33(1): 174-183.
[26] Saewong T, Ounjaijean S, Mundee Y, et al. Effects of Green Tea on iron accumulation and oxidative stress in livers of iron-challenged thalassemic mice [J]. Medicinal Chemistry, 2010, 6(2): 57-64.
[27] Rathore K, Wang H C R. Green tea catechin extract in intervention of chronic breast cell carcinogenesis induced by environmental carcinogens [J]. Molecular Carcinogenesis, 2012, 51(3): 280-289.
[28] Choudhary S, Sood S, Donnell R L, et al. Intervention of human breast cell carcinogenesis chronically induced by 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine [J]. Carcinogenesis, 2012, 33(4): 876-885.
[29] Van Aller G S, Carson J D, Tang W, et al. Epigallocatechingallate (EGCG), a major component ofgreen tea, is a dual phosphoinositide-3-kinase/mTOR inhibitor [J]. Biochemical and Biophysical Research Communications, 2011, 406(2): 194-199.
[30] Farabegoli F, Barbi C, Lambertini E, et al. (-)-Epigallocatechin-3-gallate downregulates estrogen receptor alpha function in MCF-7 breast carcinoma cells [J]. Cancer Detection and Prevention, 2007, 31(6): 499-504.
[31] Curran S, Murray G I. Matrix metalloproteinases in tumour invasion and metastasis [J]. Journal of Pathology, 1999, 189(3): 300-308.
[32] Nelson A R, Fingleton B, Rothenberg M L, et al. Matrix metalloproteinases: biologic activity and clinical implications [J]. Journal of Clinical Oncology, 2000, 18(5): 1135-1149.
[33] Nakamura H, Ueno H, Yamashita K, et al. Enhanced production and activation of progelatinase A mediated by membrane-type 1 matrix metalloproteinase in human papillary thyroid carcinomas [J]. Cancer research, 1999, 59(2): 467-473.
[34] Sieg D J, Hauck C R, Ilic D, et al. FAK integratesgrowth-factor and integrin signals to promote cell migration [J]. Nature Cell Biology, 2000, 2(5): 249-256.
[35] Sen T, Moulik S, Dutta A, et al. Multifunctional effect of epigallocatechin-3-gallate (EGCG) in downregulation ofgelatinase-A (MMP-2) in human breast cancer cell line MCF-7 [J]. Life Sciences, 2009, 84(7): 194-204.
[36] Pike M C, Spicer D V, Dahmoush L, et al. Estrogens progestogens normal breast cell proliferation and breast cancer risk [J]. Epidemiologic Reviews, 1993, 15(1): 17-35.
[37] Haldosen LA, Zhao CY, Dahlman-Wright K. Estrogen receptor beta in breast cancer [J]. Molecular and Cellular Endocrinology, 2014, 382(1): 665-672.
[38] Yue W, Yager JD, Wang JP, et al. Estrogen receptor-dependent and independent mechanisms of breast cancer carcinogenesis [J]. Steroids, 2013, 78(2): 161-170.
[39] Paech K, Webb P, Kuiper GGJM, et al. Differential ligand activation of estrogen receptors ER alpha and ER beta at AP1 sites [J]. Science, 1997, 277(5331): 1508-1510.
[40] Pan XH, Zhao BW, Song Z, et al. Estrogen receptor-α 36 is involved in epigallocatechin-3-gallate inducedgrowth inhibition of ER-negative breast cancer stem/progenitor cells [J]. Journal of Pharmacological Sciences, 2016, 130(2): 85-93.
[41] Kuruto-Niwa R, Inoue S, Ogawa S, et al. Effects of tea catechins on the ERE-regulated estrogenic activity [J]. Journal of Agricultural and Food Chemistry, 2000, 48(12): 6355-6361.
[42] Goodin MG, Fertuck KC, Zacharewski TR, et al. Estrogen receptor-mediated actions of polyphenolic catechins in vivo and in vitro [J]. Toxicological Sciences, 2002, 69(2): 354-361.
[43] Sartippour MR, Pietras R, Marquez-Garban DC, et al. The combination ofgreen tea and tamoxifen is effective against breast cancer [J]. Carcinogenesis, 2006, 27(12): 2424-2433.
[44] Li YY, Yuan YY, Meeran SM, et al. Synergistic epigenetic reactivation of estrogen receptor-alpha (ERα) by combinedgreen tea polyphenol and histone deacetylase inhibitor in ER alpha-negative breast cancer cells [J]. Molecular Cancer, 2010, 9(1): 274-285.
[45] Lee W J, Shim J Y, Zhu B T. Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids [J]. Molecular Pharmacology, 2005, 68(4): 1018-1030.
[46] Fang M Z, Wang Y, Ai N, et al. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silencedgenes in cancer cell lines [J]. Cancer Research, 2003, 63(22): 7563-7570.
[47] Huo C, Yang H, Cui Q C, et al. Proteasome inhibition in human breast cancer cells with high catechol-O-methyltransferase activity bygreen tea polyphenol EGCG analog [J]. Bioorganic and Medicinal Chemistry, 2010, 18(3): 1252-1258.
[48] Landis-Piwowar K R, Wan S B, Wiegand R A, et al. Methylation suppresses the proteasome-inhibitory function ofgreen tea polyphenols [J]. Journal of Cellular Physiology, 2007, 213(1): 252-260.
[49] Landis-Piwowar K, Chen D, Chan T H, et al. Inhibition of catechol-O-methyltransferase activity in human breast cancer cells enhances the biological effect of thegreen tea polyphenol (-)-EGCG [J]. Oncology Reports, 2010, 24(2): 563-569.
[50] Conklin K A. Dietary antioxidants during cancer chemotherapy: impact on chemotherapeutic effectiveness and development of side effects [J]. Nutrition and Cancer, 2000, 37(1): 1-18.
[51] Zaveri NT. Green tea and its polyphenolic catechins: Medicinal uses in cancer and noncancer applications [J]. Life Science, 2006, 78(18): 2073-2080.
[52] Stapleton AE, Walbot V. Flavonoids can protect maize DNA from the induction of ultraviolet radiation damage [J]. Plant Physiology, 1994, 105(3): 881-889.
[53] Landry LG, Chapple CCS, Last RL. Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage [J]. Plant Physiology, 1995, 109(4): 1159-1166.
[54] Vayalil PK, Elmets CA, Katiyar SK. Treatment ofgreen tea polyphenols in hydrophilic cream prevents UVB-induced oxidation of lipids and proteins, depletion of antioxidant enzymes and phosphorylation of MAPK proteins in SKH-1 hairless mouse skin [J]. Carcinogenesis, 2003, 24(5): 927-936.
[55] Folkman J. Angiogenesis in cancer, vascular, rheumatoid and otherdisease [J]. Nature Medicine, 1995, 1(1): 27-31.
[56] Ferrara N, Davis-Smyth T. The biology of vascular endothelialgrowth factor [J]. Endocrine Reviews, 1997, 18(1): 4-25.
[57] Mukhtar H, Katiyar S K, Agarwal R. Green tea and skin—anticarcinogenic effects [J]. Journal of Investigative Dermatology, 1994, 102(1): 3-7.
[58] Stoner G D, Mukhtar H. Polyphenols as cancer chemopreventive agents [J]. Journal of Cellular Biochemistry, 1995, 59(S22): 169-180.
[59] Tang F Y, Meydani M. Green tea catechins and vitamin E inhibit angiogenesis of human microvascular endothelial cells through suppression of IL-8 production [J]. Nutrition and Cancer, 2001, 41(1/2): 119-125.
[60] Sartippour M R, Shao Z M, Heber D, et al. Green tea inhibits vascular endothelialgrowth factor (VEGF) induction in human breast cancer cells [J]. Journal of Nutrition, 2002, 132(8): 2307-2311.
[61] Seeram N P, Zhang Y, Nair M G. Inhibition of proliferation of human cancer cells and cyclooxygenase enzymes by anthocyanidins and catechins [J]. Nutrition and Cancer, 2003, 46(1): 101-106.
[62] Luo K W, Ko C H, Yue G G L, et al. Green tea (Camellia sinensis) extract inhibits both the metastasis and osteolytic components of mammary cancer 4T1 lesions in mice [J]. Journal of Nutritional Biochemistry, 2014, 25(4): 395-403.
[63] Slivova V, Zaloga G, DeMichele S, et al. Green tea polyphenols modulate secretion of urokinase plasminogen activator (uPA) and inhibit invasive behavior of breast cancer cells [J]. Nutrition And Cancer-An International Journal, 2005, 52(1): 66-73.
[64] Zhang Y, Wu H, Chen Y, et al. Green tea (-)-epigallocatechin-3-gallate down-regulates VASP expression and inhibits breast cancer cell migration and invasion by attenuating Rac1 activity [J]. European Journal of Pharmacology, 2009 , 606(1/2/3): 172-179.
[65] Annabi B, Lachambre M P, Bousquet-Gagnon N, et al. Green tea polyphenol (?)-epigallocatechin 3-gallate inhibits MMP-2 secretion and MT1-MMP-driven migration inglioblastoma cells [J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2002, 1542(1): 209-220.
[66] Sen T, Chatterjee A. Epigallocatechin-3-gallate (EGCG) downregulates EGF-induced MMP-9 in breast cancer cells: involvement of integrin receptor alpha 5 beta 1 in the process [J]. European Journal of Nutrition, 2011, 50(6): 465-478.
[67] Xiaokaiti Y, Wu H M, Chen Y. et al. EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating alpha1-AT [J].Scientific Report, 2015, 7: 1-14.
[68] Farabegoli F, Papi A, Orlandi M. (-)-Epigallocatechin-3-gallate down-regulates EGFR, MMP-2, MMP-9 and EMMPRIN and inhibits the invasion of MCF-7 tamoxifen-resistant cells [J]. Bioscience Report, 2010, 31(2): 99-108.
[69] Parvez S, Tabassum H, Rehman H, et al. Catechin prevents tamoxifen-induced oxidative stress and biochemical perturbations in mice [J]. Toxicology, 2006, 225(2): 109-118.
[70] Harris R E, Chlebowski R T, Jackson R D, et al. Breast cancer and nonsteroidal anti-inflammatory drugs prospective results from the women’s health initiative [J]. Cancer Research, 2003, 63(18): 6096-6101.
[71] McFadden D W, Riggs D R, Jackson B J, et al. Additive effects of Cox-1 and Cox-2 inhibition on breast cancer in vitro [J]. International Journal of Oncology, 2006, 29(4): 1019-1024.
[72] Schlachterman A, Valle F, Wall K M, et al. Combined resveratrol, quercetin, and catechin treatment reduces breast tumorgrowth in a nude mouse model [J]. Translational Oncology, 2008, 1(1): 19-27.
[73] Baker J A, Beehler G P, Sawant A C, et al. Consumption of coffee, but not black tea, is associated with decreased risk of premenopausal breast cancer [J]. Journal of Nutrition, 2006, 136(1): 166-171.
[74] Rosenblatt K A, Thomas D B, Jimenez L M, et al. The relationship between diet and breast cancer in men (United States) [J]. Cancer Causes and Control, 1999, 10(2): 107-113.
[75] Suganuma M, Okabe S, Sueoka N, et al. Green tea and cancer chemoprevention [J]. Mutation Research, 1999, 428(1): 339-344.
[76] Forester S C, Lambert J D. The catechol-O-methyltransferase inhibitor, tolcapone, increases the bioavailability of unmethylated (-)-epigallocatechin-3-gallate in mice [J]. Journal of Functional Foods, 2015, 17: 183-188.
[77] Dube A, Nicolazzo J A, Larson I. Chitosan nanoparticles enhance the intestinal absorption of thegreen tea catechins (+)-catechin and (?)-epigallocatechingallate [J]. European Journal of Pharmaceutical Sciences, 2010, 41(2): 219-225.
[78] Yadav R, Kumar D, Kumari A, et al. Encapsulation of catechin and epicatechin on BSA NPs improved their stability and antioxidant potential [J]. Excli Journal, 2014, 13: 331-346.
[79] Tagashira T, Choshi T, Hibino S, et al. Influence ofgallate and pyrogallol moieties on the intestinal absorption of (?)-epicatechin and (?)-epicatechingallate [J]. Journal of Food Science, 2012, 77(10): H208-H215.
[80] Naumovski N, Blades B L, Roach P D. Food inhibits the oral bioavailability of the majorgreen tea antioxidant epigallocatechingallate in humans [J]. Antioxidants, 2015, 4(2): 373-393.
[81] Son Y R, Chung J H, Ko S, et al. Combinational enhancing effects of formulation and encapsulation on digestive stability and intestinal transport ofgreen tea catechins [J]. Journal of Microencapsulation, 2016, 33(2): 183-190.
[82] Garcia J P D, Hsieh M F, Doma B T, et al. Synthesis ofgelatin-γ-polyglutamic acid-based hydrogel for the in vitro controlled release of epigallocatechingallate (EGCG) from Camellia sinensis [J]. Polymers, 2013, 6(1): 39-58.
Inhibitory Effects of Tea and Tea Catechins on Breast Cancer
QIAO Ruying1, LI Ming2, ZHENG Xinqiang1, LU Jianliang1, YE Jianhui1, WANG Kairong3, LIANG Yuerong1*
1. Tea Research Institute, Zhejiang University, Hangzhou 310058, China; 2. General Station of Forestry Speciality Technology Extension of Yuyao City, Yuyao 315499, China; 3. Ningbo Huangjinyun Tea Science and Technology Co., Ltd., Yuyao 315400, China
Tea with high catechin contents has various health benefits. There are more than ten catechins in tea, among which epigallocatechingallate (EGCG) is the most abundant. The inhibitory effects of tea and its major catechin (EGCG) on breast cancer were reviewed in the present paper, which included their abilities of suppressing carcinogen-induced ROS elevation and DNA damages, decreasing the responsiveness of cells to tumor necrosis factors, blocking the binding of estrogen to estrogen receptor, inhibiting DNA methylation, protecting mitochondria from oxidative damages and inhibiting tumor angiogenesis. The anti-proliferation and anti-metastasis of cancer cells and their synergistic effects with anticancer drugs were also mentioned. The inconsistent results in previous studies and directions for future research were finally discussed.
tea, catechins, anticancer, antioxidant, estrogen receptor, anti-proliferation, metastasis
TS272;Q946.84+1;R73
A
1000-369X(2016)06-557-10
2016-06-24
2016-08-07
2014年度寧波市農業攻關項目(2014C10008)
喬如穎,女,碩士研究生,主要從事茶樹生物技術與資源利用研究。*通訊作者:yrliang@zju.edu.cn