999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

量子點敏化太陽能電池研究進展

2016-04-07 02:54:16陳云霞馮詩樂蘇小麗
陶瓷學報 2016年6期

程 磊,曾 濤,陳云霞,馮詩樂,蘇小麗,施 瑋

(景德鎮陶瓷大學,江西 景德鎮 333403)

量子點敏化太陽能電池研究進展

程 磊,曾 濤,陳云霞,馮詩樂,蘇小麗,施 瑋

(景德鎮陶瓷大學,江西 景德鎮 333403)

量子點敏化太陽能電池因其具有低廉制備成本、較高的理論效率等優勢,使其成為極具潛力的“第三代太陽能電池”。而電池的工作性能優劣主要依賴于器件的光陽極、量子點敏化劑、電解質及對電極的協同作用。因此,優化該四部分成為改善電池光電轉換效率最直接途徑。本文綜述了量子點敏化太陽能電池中各部分最新研究動態,并提出今后制備實用高效率量子點敏化太陽能電池可能發展方向。

太陽能電池;光陽極;量子點敏化劑;量子點敏化劑;電解液;對電極;光電轉換效率

0 引 言

隨著全球溫室氣體排放量的逐年加劇及石化能源類資源的有限儲量,開發利用清潔可再生能源已成全球能源界共識,也是國際學術界關注的重點。太陽能作為清潔可再生能源中的一種,“取之不盡,用之不竭”的特點使其成為社會能源發展的主要方向之一[1,2]。早在上個世紀50年代,第一塊晶硅太陽能電池的出現,揭開了現代太陽能電池的研究和商用化的序幕。隨著科技不斷發展,納米技術在太陽能電池研究領域不斷植入催生了多種低成本、高效率的新型太陽能電池,如量子點敏化太陽能電池等[3,4]。

作為第三代太陽能電池代表器件之一,量子點敏化太陽能電池(Quantum dots-sensitized solar cells,簡稱QDSSCs)不但制備工藝簡單且使用材料成本較低[5]。此外,通過大量研究已證實無機半導體量子點(quantum dots,簡稱QDs)材料擁有特殊的理化性質,如光學帶隙的尺寸及組分依賴性、超高消光系數、較大極化動量及撞擊離化引發的“多子效應”,以其作為光敏劑替代傳統染料敏化太陽能電池(Dye-sensitized solar cells,簡稱DSSCs)中的有機染料有望大幅度提高該類型太陽能電池的光電轉換效率,從而突破Shockley-Queisser所提出的理論極限值31%[6]。與DSSCs結構類似,QDSSCs器件也由四部分構成:光陽極、敏化劑、電解液及對電極。不同之處在于利用QDs作為敏化劑替代傳統的有機染料作為光敏劑,且對電極材質選擇也隨之發生改變,其工作原理可簡要概括如下[7]:吸附在寬帶隙金屬氧化物半導體光陽極上的QDs受光激發而產生電子-空穴對,光生電子從QDs價帶進入較高的導帶激發態能級后在價帶留下對應的空穴,由于能級的匹配,QDs導帶中的電子可以注入到光陽極材料的導帶中,而相應空穴則繼續留在QDs中,使其處于氧化狀態且帶正電。此時,注入電子經由光陽極、導電玻璃和外電路到達對電極,在對電極的催化作用下,被氧化的QDs敏化劑通過氧化-還原電解液重新獲得電子回到基態,至此完成一個工作循環,如圖1所示。

然而就目前研究狀況來看,QDSSCs最高報道光電轉換效率(-9.48%[9])距離DSSCs的效率值(-13.0%[10])還有一定差距。因此,如何進一步提高QDSSCs光電轉換效率(photoelectric conversion efficiency,簡稱PCE)使之與傳統DSSCs抗衡,甚至與商用硅基電池形成競爭成為科研工作者為之奮斗的目標。如何提高QDSSCs的PCE主要依賴于其四個構成部分的協同優化[11]。因此,本文主要從光陽極、敏化劑、電解液及對電極這四個方面來介紹QDSSCs研究領域最新的研究動態。

圖1 QDSSCs器件結構與工作原理[8]Fig.1 The general scheme of a typical QDSSCs device and its working principle

1 光陽極

在QDSSCs中,光陽極不但提供“平臺”供QDs吸附,且還扮演著光生電子輸運至外電路的角色。目前,在QDSSCs器件中最常見光陽極為TiO2或ZnO等寬帶隙金屬氧化物半導體納米顆粒組成的多孔膜,因為該類形貌的光陽極擁有超高的比表面積可供QDs足量吸附,使得器件對入射光子俘獲利用效率增大,進而提高QDSSCs的短路電流密度輸出(Jsc)[12]。然而,光陽極表面積的增大的同時也必然增加光生電子在光陽極中的復合幾率,這直接影響QDSSCs的開路電壓及填充因子的輸出(Voc和F.F.)[13]。因此,平衡入射光子利用效率及光生電子復合問題是提高QDSSCs的光電轉換效率需解決的首要問題[14]。目前在這塊領域研究熱點是通過調控光陽極微觀形貌,借助于光陽極的“一維”高度有序化所帶來的光生電子超快輸運特性來提高QDSSCs的PCE數值。Toyoda等提出利用TiO2納米管陣列有序形貌的光陽極所具有的高效電子傳輸能力、陷光能力及良好的電解液浸潤能力均可以改善QDSSCs的PCE數值[15]。但是比表面積過低限制了基于“一維”納米陣列結構光陽極QDSSCs器件PCE的進一步提高。Zhu等人提出在ZnO納米棒陣列基礎上輔以具有“枝杈”形貌的納米四角棒作為散光層,制成具有雙層結構的光陽極,所對應的QDSSCs器件的PCE較表面光滑的ZnO納米棒陣列相比大幅度提高,PCE數值可達到5.24%[16]。同樣Rao等人基利用簡單的水熱法制備了具有高比表面積的納米“枝杈”形貌的TiO2陣列形貌的,將該光陽極用于QDSSCs器件中所得到的PCE數值達到4.2%,優于基于表面光滑的TiO2納米絲陣列光陽極的QDSSCs器件[17]。此外,在“多級結構”光陽極研究方面,Liu等人報道了新型基于FTO透明導電玻璃具有“三維”TiO2納米管-枝杈狀納米棒陣列作為QDSSCs的光陽極能夠有效的提高電池的光電轉換效率,原因在于光陽極超高的比表面積及優良的散光能力。同時光陽極中存在金紅石-銳鈦礦同質結也有助于金紅石TiO2納米棒陣列從銳鈦礦TiO2納米管收集光生電子,從而降低了整個器件內部的暗電流。當光陽極的厚度僅為1 μm時,電池的光電轉換效率已經達到1.04%,比僅用TiO2納米棒陣列為光陽極的電池高出2.7倍[18]。

2 量子點敏化劑

2.1 量子點敏化劑設計

從目前研究動態來看,協同敏化、摻雜及核-殼結構提出成為QDs敏化劑設計與合成主要熱點方向。Lee等人設計了“瀑布”能帶結構CdSe/CdS QDs協同敏化QDSSCs,不斷拓寬器件光譜響應范圍,還改善電子注入效率[19]。Kamat課題組在CdSe/ CdS QDs敏化劑中引入Mn2+離子,利其d-d軌道電子躍遷(4T1-6A1)來提高QDs中光生電子壽命,器件性能在原有基礎上得到改善[20]。為了保留QDs敏化劑原有特性,進一步提升QDSSCs的PCE,Pan等人基于能帶理論設計出單分散優良的反-I型能帶結構CdS@CdSe核-殼QDs,并將其應用于QDSSCs,敏化光陽極經過后期于惰性環境熱處理去除包覆有機分子后,電池的PCE可達到5.32%[21]。最近,Jiao等人在此工作基礎上設計合成出單分散II-型能帶結構ZnTe@CdSe核殼QDs敏化劑,利用ZnTe與CdSe較高導帶能級失配度(1.22 eV)促使光生電子在QDs敏化劑表面與TiO2界面上積累誘發的電偶極化效應(Photo-induced dipole,簡稱PID),從而提高TiO2導帶中電子的準費米能級以獲得更高的開路電壓(Voc)輸出,優化后的電池PCE可達7.17%[22]。Yang等人報道通過連續離子層吸附反應工藝在CdSeTe量子點表面引入CdS薄層作為鈍化層形成能帶結構為I型核殼結構,不僅可以減少CdSeTe量子點表面態,還可增加其受光照后的穩定性,通過優化CdS鈍化層的厚度及后期光陽極的鈍化工藝實施,QDSSCs的PCE可達到9.48%[9]。

2.2 附載途徑

QDs敏化劑附載直接決定了其在光陽極中的附載量及分布的均勻性,這對QDSSCs器件的工作性能表現至關重要。一般來說QDs附載于光陽極的途徑大體可分為2類:(1)原位沉積技術,如常用的化學浴沉積法(Chemical bath deposition,簡稱CBD)[23]和連續離子層吸附反應法(Successive ionic layer adsorption and reaction,簡稱SILAR)[24];(2)預先合成后期沉積技術[25]。

對于原位沉積技術,該類方法雖然操作簡單,但光陽極中所生成QDs尺寸分布不均勻,且結晶性較差。為了克服這些缺點,最近Liu等人在原有的SILAR工藝基礎上輔以周期性循環電(potentialinduced ionic layer adsorption and reaction,簡稱PILAR),改善了CdSe QDs在TiO2多孔光陽極中附載量及分布狀態,將PCE從-2.53%(SILAR)提升至-4.30%(PILAR)[26]。

對于預先合成后期沉積技術,這類技術可通過前期QDs合成工藝參數精確調控QDs組分、尺寸大小及分布,并能夠通過陽離子或陰離子交換工藝實現QDs各種復雜的合金化和核-殼結構[27]。早期對于預先合成的QDs敏化劑后期沉積方式是將光陽極直接浸泡于QDs敏化劑的有機溶液中讓其自行吸附,該過程屬于物理直接吸附,又稱直接沉積法(Direct adsorption,簡稱DA法)。沉積過程十分耗時,且考慮到QDs尺寸無法達到分子級別,因此QDs很難均勻修飾整個光陽極,整個光陽極的飽和覆蓋率僅為14%[28]。

預先合成出QDs還可通過自組裝的方式錨接到光陽極上并應用到QDSSCs[25],該方法又稱為分子輔助吸附法(linker-assisted adsorption,簡稱LA法)。輔助分子(又稱為linker)一般為含有硫醇(-SH)和羧基(-COOH)官能團的小分子,如巰基丙酸(簡稱MPA)[29]等。2009年,Robel等人將MPA分子修飾的TiO2納米顆粒薄膜光陽極浸漬于三辛基氧膦包覆的CdSe QDs甲苯溶液中,很好的將QDs敏化劑附載于光陽極上[30]。最近,Pan等人利用配體交換工藝將預先合成出的CdSe0.45Te0.55QDs表面包覆的有機配體轉換成MPA分子,并通過LA法將QDs敏化劑沉積于TiO2多孔薄膜光陽極上,2 h即可使得光陽極達到飽和吸附(覆蓋率為~34%),所得電池器件PCE可達6.36%[31]。

圖2 ZnTe/CdSe與CdTe/CdS核殼QDs的能帶結構圖及所測QDSSCs的伏安特性圖[22]Fig.2 (a) Schematic diagram of the band gap and band offsets (Unit: eV) for the interfaces between bulk ZnTe/CdSe and CdTe/CdSe; (b) Photovoltaic performance in terms of J-V curves of Champion ZnTe/CdSe, Certified ZnTe/CdSe and Champion CdTe/CdSe QDs based solar cells[22]

2.3 表面鈍化

盡管圍繞QDSSCs展開的研究工作很多,但其PCE仍難以與傳統的DSSCs相提并論,原因之一在于QDs表面存在著太多的表面態(表面缺陷),會造成QDSSCs內部的固-液界面發生逆向電子遷移[32,33]。表面態通常又被為束縛態,是光生電子的復合中心,可以干擾電子從QDs注入光陽極的過程,圖3給出了QDSSCs中光生電子的4類逆向電子遷移發生復合的途徑(R1-R4),亦稱之為“背向反應”過程[34,35]。在實際QDSSCs應用中,通常采用某些有機分子[35]或第二相半導體來對QDs及光陽極表面態進行鈍化處理,以降低QDSSCs中“背向反應”過程發生的幾率。例如利用一層很薄的ZnS層對CdSe QDs的表面態進行鈍化處理后,電池的Jsc輸出可以提升近一倍[14,36]。此外,還可以通過對QDs表面包覆無定形的TiO2[33]、SiO2[37]、SeO2[38]薄膜、F-離子處理[39]及致密阻擋層[40]均可對QDs、光陽極表面及FTO導電玻璃表面起到鈍化作用。最近,Zhao等人利用亞皮秒太赫茲光譜(sub-picosecond THz spectroscopy)手段證實無機半導體鈍化層可以有效的抑制QDSSCs器件中光電子參與“背向反應”幾率,利用ZnS/SiO2雙層鈍化層可將以CdSexTe1-xQDs為敏化劑的電池的PCE提升至8.55%,且器件工作穩定性得以改善[41]。

圖3 光生電子在QDSSCs中遷移、復合途徑示意圖。T1:量子點導帶中光生電子遷移至寬帶隙半導體(WBSC)光陽極導帶;T2:電子在光陽極中輸運過程;R1:QDs中電子被電解液中氧化性物質俘獲;R2:QDs內部電子直接或通過表面態間接復合過程;R3:被電解液中氧化性物質俘獲;R4:電子在QDs/WBSC界面復合[34]Fig.3 A scheme illustrating charge transfer, transport, and recombination processes in QDSSCs. T1: photon exited electron transfer from the CB of QDs to the CB of the WBSC; T2: electron transport via WBSC; T3: hole transfer from the VB of QDs to the electrolyte; R1: electron back injection from QDs to the electrolyte; R2: electron recombination in QDs; R3: electron back injection from WBSC to the electrolyte; R4: electron recombination at the WBSC/QDs interface. SS denotes surface states[34]

3 電解液

Ye等人指出電解液對光陽極良好浸潤性、高效離子遷移特性、對敏化劑還原再生能力及其較低過電位在電解液/對電極界面處引發超快電子輸運性能是高效DSSCs或QDSSCs器件電解液設計的準則[42]。此外,考慮到QDSSCs的開路電壓(Voc)是由光陽極中電子的準費米能級與電解液能斯特電位差值決定,因此通過電解液組分及添加劑的精細調控獲得較低的氧化還原電勢也是高Voc輸出保證[43]。目前根據QDSSCs器件中所涉電解液的物理形態可將其簡單的分為以下三類:

3.1 液態電解質

雖然I-/I3-有機電解液與Pt對電極組合在傳統DSSCs器件中獲得不錯的光電轉換效率,然而多數無機窄帶半導體QDs在該電解液環境中較容易發生光腐蝕現象,導致QDSSCs器件性能下降[44]。2008年,Lee等人提出以改性的水基多硫電對(S2-/ Sn2-)作為器件電解液,通過添加KCl提高電解液離子遷移特性并輔以甲醇增加其對光陽極的浸潤性,在原有基礎上改善器件輸出性能[45]。須指出的是,甲醇作為一種高效的空穴俘獲劑在光陽極附近所發生氧化反應為不可逆過程,因此電解液中添加甲醇往往會造成器件效率被過高估計及輸出性能不穩定[46]。此后,多種基于有機溶劑改性S2-/Sn2-電解液陸續提出,如Li等人將[(CH3)4N]2S/[(CH3)4N]2Sn氧化-還原電對溶解于有機溶劑3-甲氧基丙腈中,作為CdS QDSSCs器件的電解液獲得了超高Voc輸出(1.2 V),同時F.F.也高達0.89[47]。

3.2 準固態電解質

為了克服QDSSCs器件中液體電解液中有機溶劑易揮發使得器件不易封裝且長程性能不穩定缺點,準固態凝膠及全固態電解質概念被相應提出[48]。一些以聚合物“三維”多孔凝膠為基體,內含常見氧化-還原電對,如S2-/Sn2-、I-/I3-、[Co(σ-phen)3]3+/[Co(σ-phen)3]2+等準固態電解質已在QDSSCs器件中得到應用[49-52]。但考慮到常溫條件下準固態電解質無法像液態電解質對整個敏化光陽極保持良好的浸潤性且離子遷移率較低,因此整個準固體QDSSCs器件的輸出性能并不十分理想,目前該類型電池的PCE數值一般維持在1-4%[53-55]。

3.3 固態電解質

全固態電解質成功應用于QDSSCs器件克服了涉及以上兩類電解質器件封裝難題,成為此類器件研究的熱點方向之一。QDSSCs用固態電解質一般為空穴導體材料,按材料屬性又可分為有機和無機兩大類。目前有機空穴導體主要為3,4-乙撐二氧噻吩單體聚合物(PEDOT:PSS)[56]、2,2’,7,7’-四溴-9,9’-螺二、三(4-碘苯)胺(spiro-MeOTAD)[48]、3-己基噻吩聚合物(P3HT)[57]等,直接作為QDSSCs器件固態電解質來萃取激發態QDs中的空穴已獲得不錯的器件PCE輸出,但是有機空穴導體的空穴遷移率、穩定性及制造成本又阻止其在QDSSCs器件中的進一步實際應用[58];無機空穴導體一般為CuSCN,雖然該種無機空穴導體具有較高的空穴遷移速率,然而在引入溶液中超快結晶性質使得其對敏化光陽極的整體“浸潤性”不佳,影響QDSSCs器件性能輸出[59]。值得注意的是鈣鈦礦結構無機空穴導體CsSnI3已經在全固態DSSCs得到了成功的應用,并獲得10.2%不錯的光電轉換效率[60]。然而以CsSnI3作為QDSSCs器件固態電解質鮮有報道,其對敏化光陽極良好的“浸潤”性及空穴遷移特性有可能使全固態QDSSCs器件的輸出性能在現有基礎上大幅度提高。

4 對電極

早期QDSSCs器件中對電極材料的研究還是借鑒了DSSCs中的貴金屬材質對電極,如Pt、Au。然而,多數貴金屬對QDSSCs器件常用S2-/Sn2-電解液催化活性較差,如Pt對電極表面極容易對S2-離子產生強烈的化學吸附而“中毒”導致其催化活性的惡化,這直接影響了QDSSCs性能輸出[19]。此外,考慮到貴金屬材料成本問題,越來越多其它類型對電極材料被開發以用于取代貴金屬材料對電極,大致可以分為以下幾類:

4.1 碳基材料

由于成本低廉,對常用S2-/Sn2-電解液有著良好且穩定的電導催化性能,碳基材料作為對電極已被廣泛應用于QDSSCS器件中,如納米結構碳[61]、石墨烯[62]等。研究表明碳基對電極材料超大比表面積及優良導電性是獲得QDSSCs良好性能輸出的保證[63]。

4.2 無機化合物半導體材料

目前基于無機化合物半導體材料的研究主要集中在多元金屬硫化物薄膜,如Cu2S[64]、CuS[65]、PbS[66]等。以該類材料作為對電極的最大優點在于價格低廉、適宜規?;a。此外,對電解液催化活性隨“組分”可調也是該類對電極材料一大優勢[67]。最近,華東理工大學鐘新華教授課題組克服在黃銅片上制備的Cu2S對電極導致器件長時間工作不穩定、抗機械損傷性能差等缺點,利用電鍍法在FTO透明基底上沉積Cu膜,后期利用以甲醇為溶劑的多硫溶液對所得Cu膜處理以原位生成多孔片狀Cu2S膜,所組裝的電池表現出高效且穩定的輸出性能[68]。同時該工作也為在柔性透明導電基底上(如PET-ITO、PEN-ITO等)制備高質量Cu2S對電極以實現QDSSCs全柔性化奠定前期工作基礎。

4.3 聚合物材料

導電聚合物(Conductive polymers)由于高電導率、透明性及穩定性,作為一種新型DSSCs對電極材料也受到廣泛關注,尤其是在柔性DSSCs器件中,常用的如聚苯胺(PANI)、3, 4-乙撐二氧噻吩單體聚合物(PEDOT)、聚吡咯(PPy)、聚噻吩(PT)及它們的摻雜改性體等[69-71]。2011年Yeh等人利用PT、PPy、PEDOT作為QDSSCs器件對電極材料,并比較三種導電聚合物對電極優劣。研究表明PEDOT材質對電極擁有較高孔隙率及表面粗糙度,與S2-/Sn2-電解液接觸面積在三種材質之中最為充分,因此表現出不錯的催化活性。然而以此類材料為QDSSCs的對電極最大不足在于所組器件的PCE數值太低[72]。

5 結語

目前QDSSCs的最高PCE已與商品非晶硅薄膜太陽能電池相當,然而距離其理論值31%仍有較大差距,電池發展還處于實驗室研究階段。如何在成本可控范圍內進一步提高QDSSCs的PCE以推動其商用化進程,可以從以下幾個方面入手:

(1)在考慮與光陽極能級匹配的前體下選擇合適材質的敏化劑,使得電池光譜響應范圍拓寬至近紅外區甚至更長波段,合金化QDs是該研究領域的發展趨勢;

(2)QDs表面引入鈍化層形成核-殼結構,在減少表面缺陷復合中心的同時利用核-殼之間所形成的特定能帶結構(如能帶I、反能帶I及能帶II等)來改善光生電子注入效率,提高電池的開路電壓輸出;

(3)如何將QDs均勻足量的附載于光陽極,提高其飽和附載率成為獲得高Jsc及Voc輸出的前提條件。除去已報到電場所提供的外力輔助,在LA吸附量子點工藝中,通過高真空輔助提高QDs敏化劑附載量也是一條有益思路。

[1] NOZIK A J, MILLER J. Introduction to solar photon conversion[J]. Chem. Rev., 2010, 110: 6443-6445.

[2] SUN K, SHEN S H, et al. Enabling silicon for solar-fuel production [J]. Chem. Rev., 2014, 114: 8662-8719.

[3] KAMAT P V. Meeting the clean energy demand: Nanostructure architectures for solar energy conversion [J]. J. Phys. Chem. C, 2007, 111: 2834-2860.

[4] GONZALEZ-PEDRO V, XU X Q, et al. Modeling highefficiency quantum dot sensitized solar cells [J]. ACS Nano, 2010, 4: 5783-5790.

[5] KRAMER I J, SARGENT E H. The architecture of colloidal quantum dot solar cells: Materials to devices [J]. Chem. Rev., 2014, 114: 863-882.

[6] SEMONIN O E, LUTHER J M, et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell [J]. Science, 2011, 334: 1530-1533.

[7] HOD I, ZABAN A. Materials and interfaces in quantum dot sensitized solar cells: Challenges, advances and prospects [J]. Langmuir, 2014, 30: 7264-7273.

[8] TIAN J J, CAO G Z. Control of nanostructures and interfaces of metal oxide semiconductors for quantum-dots-sensitized solar cells [J]. J. Phys. Chem. Lett., 2015, 6: 1859-1869.

[9] YANG J W, WANG J, et al. CdSeTe/CdS type-I core/shell quantum dot sensitized solar cells with efficiency over 9% [J]. J. Phys. Chem. C, 2015, 119: 28800-28808.

[10] MATHEM S, YELLA A, et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers [J]. Nat. Chem., 2014, 6 (3): 242-247.

[11 KIM M R, MA D L. Quantum-dot-based solar cells: Recent advances, strategies, and challenges [J]. J. Phys. Chem. Lett., 2015, 6 (1): 85-99.

[12] WANG S M, DONG W W, et al. CdS and CdSe quantum dot co-sensitized nanocrystalline TiO2electrode: Quantum dot distribution, thickness optimization, and the enhanced photovoltaic performance [J]. J. Power Sources, 2015, 273: 645-653.

[13] SUDHAGAR P, SONG T, et al. High open circuit voltage quantum dot sensitized solar cells manufactured with ZnO nanowire arrays and Si/ZnO branched hierarchical structures [J]. J. Phys. Chem. Lett., 2011, 2: 1984-1990.

[14] XU J, YANG X, et al. Arrays of ZnO/ZnxCd1-xSe nanocables: Band gap engineering and photovoltaic applications [J]. Nano Lett., 2011, 11: 4138-4143.

[15] TOYODA T, SHEN Q. Quantum-dot-sensitized solar cells: Effect of nanostructured TiO2morphologies on photovoltaic properties [J]. J. Phys. Chem. Lett., 2012, 3: 1885-1893.

[16] ZHU Z L, QIU J H, et al. Building high-efficiency CdS/CdSesensitized solar cells with a hierarchically branched doublelayer architecture [J]. ACS Appl. Mater. Interfaces, 2013, 5: 4000-4005.

[17] RAO H S, WU W Q, et al. CdS/CdSe co-sensitized vertically aligned anatase TiO2nanowire arrays for efficient solar cells [J]. Nano Energy, 2014, 8: 1-8.

[18] LIU B K, SUN Y J, et al. Branched hierarchical photoanode of anatase TiO2nanotubes on rutile TiO2nanorod arrays for efficient quantum dot-sensitized solar cells [J]. J. Mater. Chem. A, 2015, 3: 4445-4452.

[19] LEE Y L, LO Y S, et al. Highly efficient quantum-dotsensitized solar cell based on co-sensitization of CdS/CdSe [J]. Adv. Funct. Mater., 2009, 19: 604-609.

[20] SANTEA P K, KAMAT P V. Mn-doped quantum dot sensitized solar cells: A strategy to boost efficiency over 5% [J]. J. Am. Chem. Soc., 2012, 134(5): 2508-2511.

[21] PAN Z X, ZHANG H, et al. Highly efficient inverted type-I CdS/CdSe core/shell structure QD-sensitized solar cells [J]. ACS Nano, 2012, 6: 3982-3991.

[22] JIAO S, SHEN Q, et al. Band engineering in core/shell ZnTe/ CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells [J]. ACS Nano, 2015, 9: 908-915.

[23] NIITSOO O, SARKAR S K, et al. Chemical bath deposited CdS/CdSe-sensitized porous TiO2solar cells [J]. J. Photochem. Photobiol. A, 2006, 181: 306-313.

[24] LEE H J, WANG M K, et al. Efficient CdSe quantum dotsensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process [J]. Nano Lett., 2009, 9: 4221-4227.

[25] WANG J, MORA-SERO I, et al. Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells [J]. J. Am. Chem. Soc., 2013, 13: 15913-15922.

[26] LIU I P, CHANG C W, et al. Performance enhancement of quantum-dot-sensitized solar cells by potential-induced ionic layer adsorption and reaction [J]. ACS Appl. Mater. Interfaces, 2014, 6: 19378-19384.

[27] RIVESTA J B, JAIN P K, et al. Cation exchange on the nanoscale: An emerging technique for new material synthesis, device fabrication, and chemical sensing [J]. Chem. Soc. Rev., 2013, 42: 89-96.

[28] GIMENEZ S, MORA-SERO I, et al. Improving the performance of colloidal quantum dot sensitized solar cells [J].Nanotech., 2009, 20: 295204.

[29] LIN S C, LEE Y L, et al. Quantum-dot-sensitized solar cells: Assembly of CdS-quantum-dots coupling techniques of selfassembled monolayer and chemical bath deposition [J]. Appl. Phys. Lett., 2007, 90: 143517.

[30] ROBEL I, SUBRAMANIAN V, et al. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2films [J]. J. Am. Chem. Soc., 2006, 128: 2385-2393.

[31] PAN Z X, ZHAO K, et al. Near infrared absorption of CdSexTe1-xalloyed quantum dot sensitized solar cells with more than 6% efficiency and high stability [J]. ACS Nano, 2013, 7: 5215-5222.

[32] SHEN Q, KOBAYASHI J, et al. Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells [J]. J. Appl. Phys., 2008, 103: 084304

[33] SHALOM M, DOR S, et al. Core/CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating [J]. Phys. Chem. C, 2009, 113: 3895-3898.

[34] HETSCH F, XU X Q, et al. Semiconductor nanocrystal quantum dots as solar cell components and photosensitizers: Material, charge transfer, and separation aspects of some device topologies [J]. J. Phys. Chem. Lett., 2011, 2: 1879-1887.

[35] BAREA E M, SHALOM M, et al. Design of injection and recombination in quantum dot sensitized solar cells [J]. J. Am. Chem. Soc., 2010, 132: 6834-6839.

[36] GUIJARRO N, CAMPIN J M, et al. Uncovering the role of the ZnS treatment in the performance of quantum dot sensitized solar cells [J]. Phys. Chem. Chem. Phys., 2011, 13: 12024-12032.

[37] LIU Z F, MIYAUCHI M, et al. Enhancing the performance of quantum dots sensitized solar cell by SiO2surface coating [J]. Appl. Phys. Lett., 2010, 96(23): 233107.

[38] CHOI Y, SEOL M, et al. Chemical bath deposition of stoichiometric CdSe quantum dots for efficient quantum dot sensitized solar cell application [J]. J. Phys. Chem. C, 2014, 118: 5664-5670.

[39] SAMADPOUR M, BOIX P P, et al. Fluorine treatment of TiO2for enhancing quantum dot sensitized solar cell performance [J]. J. Phys. Chem. C, 2011, 115: 14400-14407.

[40] KIM J, CHOI H, et al. The effect of a blocking layer on the photovoltaic performance in CdS quantum dot sensitized solar cells [J]. J. Power Sources, 2011, 196: 10526-10531.

[41] ZHAO K, PAN Z X, et al. Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control [J]. J. Am. Chem. Soc., 2015, 137: 5602-5609.

[42] YE M D, WEN X R, et al. Recent advances in dye-sensitized solar cells: From photoanodes, sensitizers and electrolytes to counter electrodes [J]. Mater. Today, 2015, 18: 155-162.

[43] LIAO Y L, ZHANG J, et al. Enhancing the efficiency of CdS quantum dot-sensitized solar cells via electrolyte engineering [J]. Nano Energy, 2015, 11: 88-95.

[44] SHEN Q, KOBAYASH J, et al. Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells [J]. J. Appl. Phys., 2008, 103: 084304.

[45] LEE Y L, CHANG C H. Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells [J]. J. Power Sources, 2008, 185: 584-588.

[46] MORA-SERO I, BISQUERT J. Breakthroughs in the development of semiconductor sensitized solar cells [J]. Phys. Chem. Lett., 2010, 1: 3046-3052.

[47] LI L, YANG X C, et al. Highly efficient CdS quantum dotsensitized solar cells based on a modified polysulfide electrolyte [J]. J. Am. Chem. Soc., 2011, 133: 8458-8460.

[48] ARDALAN P, BRENNAN T P, et al. Effects of self-assembled monolayers on solid-state cds quantum dot sensitized solar cells [J]. ACS Nano, 2011, 5: 1495-1504.

[49] CHEN H Y, LIN L, et al. Dextran based highly conductive hydrogel polysulfide electrolyte for efficient quasi-solid-state quantum dot-sensitized solar cells [J]. Electrochim. Acta, 2013, 92: 117-123.

[50] KARAGEORGOPOULOS D, ELIAS S, et al. Thin ZnO nanocrystalline films for efficient quasi-solid state electrolyte quantum dot sensitized solar cells [J]. J. Power Sources, 2012, 219: 9-15.

[51] NIU G D, WANG L D, et al. Inorganic iodide ligands in ex situ PbS quantum dot sensitized solar cells with I-/I3- electrolytes [J]. J. Mater. Chem., 2012, 22: 16914-16919.

[52] YU Z X, ZHANG Q X, et al. Highly efficient quasi-solidstate quantum-dot-sensitized solar cell based on hydrogel electrolytes [J]. Electrochem. Commun., 2010, 12: 1776-1779.

[53] WANG S, ZHANG Q X, et al. Single-step in-situ preparation of thin film electrolyte for quasi-solid state quantum dotsensitized solar cells [J]. J. Power Sources, 2013, 224: 152-157.

[54] DUAN J L, TANG Q W, et al. Multifunctional graphene incorporated polyacrylamide conducting gel electrolytes for efficient quasi-solid-state quantum dot-sensitized solar cells [J]. J. Power Sources, 2015, 284: 369-376.

[55] HUO Z P, TAO L, et al. A novel polysulfide hydrogelelectrolyte based on low molecular mass organogelator for quasi-solid-state quantum dot-sensitized solar cells [J]. J. Power Sources, 2015, 284: 582-587.

[56] WANG L D, ZHAO D X, et al. Hybrid polymer/ZnO solar cells sensitized by PbS quantum dots [J]. Nanoscale Res. Lett., 2012, 7: 106.

[57] IM S H, KIM H J, et al. All solid state multiply layered PbS colloidal quantum-dot-sensitized photovoltaic cells [J]. Energy Environ. Sci., 2011, 4: 4181-4186.

[58] KAMAT P V, JEFFREY A C, et al. Quantum dot solar cells: Hole transfer as a limiting factor in boosting the photoconversion efficiency [J]. Langmuir, 2014, 30: 5716-5725.

[59] TSUJIMOTO K, NGUYEN D, et al. TiO2surface treatment effects by Mg2+, Ba2+, and Al3+on Sb2S3extremely thin absorber solar cells [J]. J. Phys. Chem. C, 2012, 116: 13465-13471.

[60] CHUNG I, LEE B, et al. All-solid-state dye-sensitized solar cells with high efficiency [J]. Nature, 2012, 485: 486-489.

[61] PAUL G S, KIM J H, et al. Different hierarchical nanostructured carbons as counter electrodes for CdS quantum dot solar cells [J]. ACS Appl. Mater. Interfaces, 2012, 4: 375-381.

[62] RADICH J G, DWYER R, et al. Cu2S reduced graphene oxide composite for high-efficiency quantum dot solar cells: Overcoming the redox limitations of S2-/Sn2- at the counter electrode [J]. J. Phys. Chem. Lett., 2011, 2: 2453-2460.

[63] DENG M H, ZHANG Q X, et al. Low cost flexible nanosulfide/carbon composite counter electrode for quantum dot sensitized solar cell [J]. Nanoscale Res. Lett., 2010, 5: 986-990.

[64] MENG K, SUROLIA P K, et al. Efficient CdS quantum dot sensitized solar cells made using novel Cu2S counter electrode [J]. J. Power Sources, 2014, 248: 218-223.

[65] DENNYSON S A, VISWANATHAN K K, et al. CuS nano flakes and nano platelets as counter electrode for quantum dots sensitized solar cells [J]. Electrochim. Acta, 2014, 149: 364-369.

[66] TACHAN Z, SHALOM M, et al. PbS as a highly catalytic counter electrode for polysulfide based quantum dot solar cells [J]. J. Phys. Chem. C, 2011, 115: 6162-6166.

[67] CHENW L, WANG M, et al. Rational design and fabrication of skeletal Cu7S4nanocages for efficient counter electrode in quantum dot-sensitized solar cells [J]. Nano Energy, 2015, 12: 186-196.

[68] ZHAO K, YU H J, et al. Electroplating cuprous sulfide counter electrode for high efficiency long term stability quantum dot sensitized solar cells [J]. J. Phys. Chem. C, 2014, 118: 5683-5690.

[69] TREVISAN R, DOBBELIN M, et al. PEDOT nanotube arrays as high performing counter electrodes for dye sensitized solar cells. Study of the interactions among electrolytes and counter electrodes [J]. Adv. Energy Mater., 2011, 1: 781-784.

[70] XIA J B, CHEN L, et al. Application of polypyrrole as a counter electrode for a dye-sensitized solar cell [J]. J. Mater. Chem., 2011, 21: 644-4649.

[71] SUN W W, PENG T, et al. Hierarchically porous hybrids of polyaniline nanoparticles anchored on reduced graphene oxide sheets as counter electrodes for dye-sensitized solar cells [J]. J. Mater. Chem. A, 2013, 1: 2762-2768.

[72] YEH M H, LEE C P, et al. Conducting polymer-based counter electrode for a quantum-dot-sensitized solar cell (QDSSC) with a polysulfide electrolyte [J]. Electrochimi. Acta, 2011, 57: 277-28.

Recent Advances of Quantum Dots-sensitized Solar Cells

CHENG Lei, ZENG Tao, CHEN Yunxia, FENG Shile, SU Xiaoli, SHI Wei
(Jingdezhen Ceramic Institute, Jingdezhen 333403, Jiangxi, China)

Quantum dots-sensitized solar cells have been regarded as one of the most potential photovoltaic candidates owing to the lower cost of fabrication as well as the higher theoretical efficiency. And their outperformance mainly depends on the involving photoanode, quantum dot sensitizers, electrolyte and counter electrode. Therefore, the collaborative optimization of the four parts mentioned above becomes the most direct way to improve the photoelectric conversion efficiency of this kind of photovoltaic device. This paper reviews the recent advances in the four parts of the quantum dots-sensitized solar cells. Finally, the possible development directions in the future for the fabrication of high-efficiency and practical quantum dots-sensitized solar cells are put forward.

solar cells; photoanode; quantum dot sensitizers; electrolyte; counter electrode; photoelectric conversion efficiency

TQ174.75

A

1000-2278(2016)06-0613-08

10.13957/j.cnki.tcxb.2016.06.005

2016-03-19。

2016-05-08。

江西省教育廳落地計劃項目(KJLD13075);江西省教育廳科學技術研究項目(GJJ150886);江西省自然科學基金(20132BAB216017;20142BAB216012);景德鎮市科技局計劃項目(2012-02-20);景德鎮陶瓷學院博士科研啟動項目(00401130129)。

曾濤(1983-),男,博士,講師。

Received date: 2016-03-19. Revised date: 2016-05-08.

Correspondent author:ZENG Tao(1983-),male, Ph.D., Lecturer.

E-mail:zengtao19830823@163.com

主站蜘蛛池模板: 青草国产在线视频| 欧美国产日产一区二区| 99视频精品全国免费品| 91精品久久久久久无码人妻| 国产视频一二三区| 国产一二视频| 亚洲国产欧洲精品路线久久| 亚洲综合香蕉| 欧美国产另类| 狠狠干综合| 国产91小视频在线观看| 久久久久国产精品熟女影院| 欧美三级视频在线播放| 国产精品99r8在线观看| 久热re国产手机在线观看| 色综合天天综合中文网| 亚洲第一极品精品无码| 久久精品无码专区免费| 夜夜爽免费视频| 伊伊人成亚洲综合人网7777 | AV不卡在线永久免费观看| 久久国产精品国产自线拍| 日韩资源站| 园内精品自拍视频在线播放| 久久99国产综合精品1| 日韩区欧美区| 国产精品短篇二区| 3344在线观看无码| 国产成年女人特黄特色大片免费| 日本91在线| 婷婷综合缴情亚洲五月伊| 亚洲一级无毛片无码在线免费视频| 亚洲国产精品成人久久综合影院| 99热这里只有免费国产精品| 色婷婷国产精品视频| 亚洲中文字幕久久无码精品A| 中文字幕在线看视频一区二区三区| 毛片在线播放网址| 88av在线| 无码免费视频| 国产香蕉在线视频| 精品久久蜜桃| 亚洲二三区| 久久这里只有精品23| a网站在线观看| 99在线观看免费视频| 人妻丰满熟妇av五码区| 欧美综合区自拍亚洲综合天堂| 亚洲欧美日韩天堂| 一级成人a毛片免费播放| 欧美午夜在线视频| 中文精品久久久久国产网址| 亚洲日韩AV无码精品| 午夜不卡福利| 67194亚洲无码| 青青久在线视频免费观看| 曰AV在线无码| 国产 日韩 欧美 第二页| 麻豆国产精品一二三在线观看| 亚洲无码精品在线播放| 全部毛片免费看| 婷婷激情五月网| 中文字幕第1页在线播| 乱人伦99久久| 国产亚洲欧美在线视频| 亚洲色大成网站www国产| 91在线激情在线观看| 91麻豆国产在线| 国产剧情伊人| 亚亚洲乱码一二三四区| 日韩在线欧美在线| 她的性爱视频| 制服丝袜在线视频香蕉| 欧美国产在线一区| 国产你懂得| 久久人人爽人人爽人人片aV东京热| 国产精品国产主播在线观看| 欧美精品导航| 日本三区视频| 真人高潮娇喘嗯啊在线观看| 欧美不卡视频在线| 一级毛片基地|