張琴靜,覃蓮菊,崔毓桂,劉嘉茵
(南京醫(yī)科大學(xué)第一附屬醫(yī)院生殖醫(yī)學(xué)科,南京 210029)
干細(xì)胞向生殖細(xì)胞分化的研究進(jìn)展
張琴靜,覃蓮菊,崔毓桂,劉嘉茵*
(南京醫(yī)科大學(xué)第一附屬醫(yī)院生殖醫(yī)學(xué)科,南京210029)
【摘要】干細(xì)胞(SCs)具有在體外分化為生殖細(xì)胞的潛能,為研究生殖細(xì)胞(GCs)早期發(fā)育提供了良好的模型,并將為干細(xì)胞移植修復(fù)生殖功能提供細(xì)胞資源。本文綜述了胚胎干細(xì)胞/誘導(dǎo)多能干細(xì)胞(ESCs/iPSCs)、新生兒附屬物來(lái)源干細(xì)胞(NDSCs)以及成體干細(xì)胞(ASCs)向生殖細(xì)胞分化所取得的研究進(jìn)展,同時(shí)總結(jié)了各類(lèi)干細(xì)胞向生殖細(xì)胞分化時(shí)所遇到的障礙及所面臨的挑戰(zhàn),為干細(xì)胞在生殖醫(yī)學(xué)領(lǐng)域的應(yīng)用提供理論依據(jù)。
【關(guān)鍵詞】生殖細(xì)胞;胚胎干細(xì)胞;成體干細(xì)胞;新生兒來(lái)源干細(xì)胞;分化
(J Reprod Med 2016,25(5):478-481)
干細(xì)胞(SCs)是一類(lèi)具有分化為各種類(lèi)型細(xì)胞潛能的特殊細(xì)胞。干細(xì)胞可在體外誘導(dǎo)條件下分化為早期生殖細(xì)胞、卵母細(xì)胞樣細(xì)胞以及精子樣細(xì)胞[1],因此可作為研究生殖細(xì)胞早期發(fā)育的可靠模型,該模型的研究不但有利于了解生殖細(xì)胞發(fā)育調(diào)控機(jī)制,而且可為臨床生殖醫(yī)學(xué)和組織再生醫(yī)學(xué)帶來(lái)福音。根據(jù)來(lái)源,干細(xì)胞可分為胚胎干細(xì)胞(ESCs)、新生兒附屬物干細(xì)胞(NDSCs)、成體間充質(zhì)干細(xì)胞(ASCs)、組織干細(xì)胞(TSCs)、誘導(dǎo)多能干細(xì)胞(iPSCs)等。本文總結(jié)了不同來(lái)源干細(xì)胞向生殖細(xì)胞分化的研究現(xiàn)狀,同時(shí)也探討了不同類(lèi)型干細(xì)胞分化為成熟生殖細(xì)胞所面臨的挑戰(zhàn),最后展望了各類(lèi)干細(xì)胞在生殖醫(yī)學(xué)臨床治療上的前景。
一、ESCs/iPSCs的生殖細(xì)胞分化潛能
ESCs來(lái)源于囊胚內(nèi)細(xì)胞團(tuán),是一種全能干細(xì)胞,具有分化為三胚層來(lái)源所有細(xì)胞類(lèi)型的潛能。iPSCs通過(guò)將轉(zhuǎn)錄因子OCT3/4、SOX2、KLF4以及C-MYC轉(zhuǎn)染成體細(xì)胞重編程而獲得,其形態(tài)特征、分化潛能均與ESCs類(lèi)似。目前,ESCs/iPSCs已成為再生醫(yī)學(xué)研究領(lǐng)域不可或缺的細(xì)胞資源,同時(shí)也在生殖醫(yī)學(xué)研究中發(fā)揮了重要作用。
2003年,報(bào)道首次證實(shí)小鼠ESCs(mESCs)能在體外誘導(dǎo)分化為卵母細(xì)胞樣細(xì)胞(OLCs)[2],這些配子樣細(xì)胞甚至可以產(chǎn)生后代[3-4]。然而,體外分化只能獲得早期配子樣細(xì)胞且效率非常低,原因很可能是無(wú)法完成正常的減數(shù)分裂[1]。后來(lái),Yu等[5]的研究發(fā)現(xiàn)DAZL基因是調(diào)控生殖細(xì)胞成熟的一個(gè)關(guān)鍵基因,Wang等[6]發(fā)現(xiàn)GASZ基因能夠顯著促進(jìn)原始生殖細(xì)胞的生成,且GASZ與DAZL相互作用。最近,Hayashi等[7]利用階梯式培養(yǎng)方法從mESCs及iPSCs獲得了卵母細(xì)胞,且經(jīng)體外受精獲得了健康后代。該方法分化率高,且避免了過(guò)多體外誘導(dǎo)步驟可能導(dǎo)致的遺傳突變。
因倫理限制,人類(lèi)ESCs/iPSCs向生殖細(xì)胞分化的研究進(jìn)展相對(duì)緩慢,且多集中于對(duì)誘導(dǎo)分化條件的探索[8]。最近,Wongtrakoongate等[9]證實(shí)Stella可促進(jìn)hESCs分化為生殖細(xì)胞及內(nèi)胚層細(xì)胞系;而Duggal等[10]報(bào)道Actin A可提高h(yuǎn)ESCs在體外分化為生殖細(xì)胞的效率,且這種促進(jìn)作用與TGFb/Activin信號(hào)通路的激活有關(guān)。Gkountela等[11]的研究則顯示,hESCs分化為原始生殖細(xì)胞的過(guò)程涉及了基因表達(dá)和表觀遺傳學(xué)的改變。最新的分化體系可使得ESCs/iPSCs向原始生殖細(xì)胞樣細(xì)胞(PGCLCs)分化的效率大于20%,同時(shí)也揭示了SOX17/BLIMP1可能是PGCLCs分化中的關(guān)鍵因子[12]。
二、NDSCs的生殖細(xì)胞分化潛能
新生兒附屬物指正常分娩新生兒所帶的臍帶、胎盤(pán)、胎膜和羊水等。目前研究表明,臍帶間充質(zhì)干細(xì)胞(UC-MSCs)、羊膜上皮細(xì)胞(AECs)、羊水干細(xì)胞(AFSCs)都具有分化為生殖細(xì)胞的潛能。
1. UC-MSCs的生殖細(xì)胞分化潛能:UC-MSCs分離自臍帶,具有間充質(zhì)干細(xì)胞(MSCs)的形態(tài)學(xué)特征及特性,在體外誘導(dǎo)培養(yǎng)條件下可向三胚層分化,包括向生殖細(xì)胞分化。Huang等[13]在體外用維甲酸(RA)、雄激素和睪丸細(xì)胞生長(zhǎng)培養(yǎng)基誘導(dǎo)hUC-MSCs分化,在mRNA和蛋白水平分別檢測(cè)到生殖細(xì)胞特異標(biāo)志物;隨后的研究證實(shí)骨形態(tài)形成蛋白(BMP4)可誘導(dǎo)hUC-MSCs向男性生殖細(xì)胞樣細(xì)胞分化[14]。2012年,Qiu等[15]證明了高濃度的羊水(FF)可以誘導(dǎo)UC-MSCs分化為原始卵泡階段的卵母細(xì)胞樣細(xì)胞。Qiu等[16]把Filga轉(zhuǎn)入hUC-MSCs中,最終獲得了突破原始卵泡階段的卵母細(xì)胞樣細(xì)胞。
2. AECs的生殖細(xì)胞分化潛能:AECs分離自羊膜,與生殖細(xì)胞具有相同的胚層起源,因此天然具有向生殖細(xì)胞分化的潛能[17]。Evron等[18]證明在血清培養(yǎng)基中生長(zhǎng)的hAECs可表達(dá)生殖細(xì)胞的特異標(biāo)志物并可分化為卵母細(xì)胞樣細(xì)胞。Wang等[19]發(fā)現(xiàn)hAECs能分化為卵巢顆粒細(xì)胞并且能恢復(fù)化療小鼠受損的卵巢功能。
3. AFSCs的生殖細(xì)胞分化潛能:2008年,Stefanidis等[20]發(fā)現(xiàn)一部分AFSCs表達(dá)生殖細(xì)胞標(biāo)志物DAZL,同時(shí)也表達(dá)c-Kit、SSEA-4和OCT4。Lai等[21]研究發(fā)現(xiàn),AFSCs可被誘導(dǎo)分化為高表達(dá)生殖細(xì)胞標(biāo)志物的細(xì)胞,同時(shí)AFSCs移植后可分化為顆粒細(xì)胞,改善化療引起的不孕小鼠的卵巢功能。2014年,Yu等[22]從羊水中分離獲得CD117+/CD44+細(xì)胞,這些細(xì)胞經(jīng)誘導(dǎo)培養(yǎng),可表達(dá)卵母細(xì)胞特異基因并進(jìn)一步分化為具有孤雌生殖能力的卵母細(xì)胞樣細(xì)胞。最新文獻(xiàn)報(bào)道顯示,AFSCs不但可以防止卵泡閉鎖,也可恢復(fù)化療引起的卵巢早衰小鼠的卵巢功能[23]。
三、ASCs的生殖細(xì)胞分化潛能
成體干細(xì)胞(ASCs)廣泛存在于哺乳動(dòng)物的組織、臟器,分化能力相對(duì)有限,但仍具有向生殖細(xì)胞分化的潛能[1]。
1. 骨髓干細(xì)胞(BMSCs)的生殖細(xì)胞分化潛能:BMSCs起源于中胚層和內(nèi)胚層的早期發(fā)育階段,是干細(xì)胞家族的重要成員。RA可體外誘導(dǎo)BMSCs分化為不同分化時(shí)期生殖細(xì)胞樣細(xì)胞[24],而B(niǎo)MP4可誘導(dǎo)SSEA-1+BMSCs分化為原始生殖細(xì)胞樣細(xì)胞[25]。BMSCs來(lái)源的生殖細(xì)胞被阻滯在發(fā)育的早期階段,要獲得更為成熟的生殖細(xì)胞需要添加額外的未知細(xì)胞因子[24]。有學(xué)者提出,骨髓干細(xì)胞可能是卵母細(xì)胞的起源[26],此后BMSCs被廣泛應(yīng)用于受損卵巢的修復(fù)治療實(shí)驗(yàn)。2012年,Santiqute等[27]將BMSCs注入卵巢損傷模型小鼠體內(nèi),發(fā)現(xiàn)BMSCs不能分化為卵母細(xì)胞,但可通過(guò)影響卵巢生理環(huán)境而改善小鼠的生殖能力。最新的研究表明,BMSCs可減少化療小鼠的細(xì)胞凋亡和DNA損傷[28]。
2. 脂肪間充質(zhì)干細(xì)胞(ADSCs)的生殖細(xì)胞分化潛能:ADSCs來(lái)自脂肪組織,體外可被誘導(dǎo)分化為多種細(xì)胞。Cakici等[29]建立輸精管損傷小鼠模型,然后將GFP+ADSCs注入一側(cè)輸精管,發(fā)現(xiàn)注射ADSCs的輸精管形態(tài)正常,輸精管內(nèi)發(fā)現(xiàn)GFP+/VASA+以及GFP+/SCP1+精子,并且這些精子授精后能產(chǎn)生后代;而對(duì)側(cè)未注射ADSCs的輸精管則萎縮。這一研究證明,ADSCs在合適的體內(nèi)環(huán)境下可以分化為生殖細(xì)胞。最近,Hosseinzadeh等[30]用RA體外誘導(dǎo)ADSCs分化,獲得了表達(dá)生殖細(xì)胞標(biāo)志基因DAZL、MVH、Stra8及SCP3的生殖細(xì)胞樣細(xì)胞,但表達(dá)量較BMSCs來(lái)源的生殖細(xì)胞樣細(xì)胞低。
其它來(lái)源的成體干細(xì)胞,如皮膚干細(xì)胞(SDSCs)、胰腺干細(xì)胞(PSCs)均已被證明可在體外條件下分化為生殖細(xì)胞樣細(xì)胞[1]。
四、存在的問(wèn)題
迄今為止,已在體外自hESCs/iPSCs誘導(dǎo)形成人類(lèi)PGCLCs[3-4,12],相信不久即可體外獲得成熟的生殖細(xì)胞,這將對(duì)臨床生殖醫(yī)學(xué)產(chǎn)生重大影響——人類(lèi)有可能徹底解決因配子質(zhì)量導(dǎo)致的生殖障礙疾病。然而,hESCs在生殖臨床上的應(yīng)用尚存在倫理限制,同時(shí)其來(lái)源有限也是臨床應(yīng)用的一大阻礙,因此,目前hESCs僅局限于生殖醫(yī)學(xué)研究領(lǐng)域。與hESCs相比,hiPSCs涉及的倫理問(wèn)題少、來(lái)源廣泛、免疫排斥弱,而且結(jié)合基因修飾技術(shù)可更正遺傳缺陷,最有可能用于徹底解決人類(lèi)的生殖問(wèn)題,因此臨床應(yīng)用前景非常廣闊。不過(guò),現(xiàn)有培養(yǎng)技術(shù)尚不能把iPSCs分化為成熟生殖細(xì)胞,因此須努力探索更有效的分化體系;此外,重編程獲得hiPSCs的過(guò)程中導(dǎo)入了外源基因或暴露于小分子化學(xué)物,有可能導(dǎo)致細(xì)胞的遺傳和表觀遺傳發(fā)生了很難檢測(cè)到的微小變異,而這種變異有可能對(duì)hiPSCs來(lái)源生殖細(xì)胞產(chǎn)生的個(gè)體造成嚴(yán)重后果:如胎兒畸形及發(fā)育不良,成人高發(fā)慢性病、腫瘤等,故hiPSCs在用于臨床研究前須進(jìn)行謹(jǐn)慎評(píng)估。
胎兒附屬物來(lái)源的多能干細(xì)胞可能在人類(lèi)生殖障礙的臨床治療上有所作為。然而迄今為止,從該類(lèi)干細(xì)胞僅能誘導(dǎo)獲得早期生殖細(xì)胞樣細(xì)胞,無(wú)法獲得成熟生殖細(xì)胞。可能的原因有:(1)目前的誘導(dǎo)分化方案尚不夠成熟;(2)該類(lèi)細(xì)胞無(wú)法分化為成熟生殖細(xì)胞。如果原因?yàn)榍罢撸瑒t須克服一系列的技術(shù)障礙,然而即使最終獲得了成熟生殖細(xì)胞,依然存在醫(yī)學(xué)倫理問(wèn)題即分化的生殖細(xì)胞源自異體,因此需謹(jǐn)慎對(duì)待。如果原因?yàn)楹笳撸瑒t該類(lèi)細(xì)胞無(wú)法作為配子來(lái)源細(xì)胞。幸運(yùn)的是,動(dòng)物實(shí)驗(yàn)顯示,AFSCs、AECs移植后均可分化為卵母細(xì)胞的支持細(xì)胞——顆粒細(xì)胞,從而幫助修復(fù)化療引起的卵巢功能損傷。基于此,胎兒附屬物干細(xì)胞雖然不能直接分化為成熟生殖細(xì)胞徹底解決配子缺乏問(wèn)題,但移植后可改善生殖功能,因此在生殖障礙輔助治療以及抗衰老領(lǐng)域具有光明前景。值得注意的是,雖然羊水來(lái)源的AFSCs較易獲得,但羊水中所含細(xì)胞種類(lèi)繁多,且大部分為已分化的成體細(xì)胞,而用于研究的具體細(xì)胞類(lèi)型也很難明確,因此AFSCs在臨床治療前景上不如 AECs。另外,機(jī)制研究顯示,間充質(zhì)干細(xì)胞可通過(guò)分泌相關(guān)細(xì)胞因子修復(fù)受損器官功能[31-32];我們最近的研究也表明,新生兒附屬物干細(xì)胞可能通過(guò)分泌的細(xì)胞因子改善卵巢微環(huán)境進(jìn)而改善生殖(未發(fā)表數(shù)據(jù)),提示將來(lái)也許只需注射干細(xì)胞培養(yǎng)液即可修復(fù)生殖功能。
成體干細(xì)胞在生殖臨床上面臨的挑戰(zhàn)、機(jī)遇與新生兒附屬物干細(xì)胞相似,但價(jià)值較新生兒附屬物干細(xì)胞低,原因如下:(1)成體干細(xì)胞更“老”,其多能性不如新生兒附屬物干細(xì)胞,推測(cè)其輔助治療效果也不如新生兒附屬物干細(xì)胞;(2)成體干細(xì)胞發(fā)育、生長(zhǎng)的時(shí)間更長(zhǎng),存在遺傳及表觀遺傳變異的幾率更高,因此安全性也不如新生兒附屬物干細(xì)胞。成體干細(xì)胞的優(yōu)勢(shì)是可自體移植,然而,個(gè)體的年齡及體質(zhì)會(huì)嚴(yán)重影響成體干細(xì)胞的質(zhì)量[33],而質(zhì)量差的干細(xì)胞治療潛力非常有限。也就是說(shuō),并非任何個(gè)體都適于進(jìn)行自體干細(xì)胞治療。
綜上所述,hESCs在生殖細(xì)胞分化機(jī)制研究方面具有無(wú)可比擬的優(yōu)勢(shì);而iPSCs則可能在攻克生殖細(xì)胞成熟的技術(shù)難題后徹底解決人類(lèi)因配子質(zhì)量低下所導(dǎo)致的生殖問(wèn)題;新生兒附屬物干細(xì)胞目前雖不能分化為成熟的生殖細(xì)胞,但可立即作為輔助治療手段進(jìn)入生殖功能改善臨床試驗(yàn);成體干細(xì)胞臨床應(yīng)用前景與新生兒附屬物干細(xì)胞類(lèi)似,但效果不如后者。
【參考文獻(xiàn)】
[1]Sun YC,Cheng SF,Sun R,et al. Reconstitution of gametogenesis in vitro:meiosis is the biggest obstacle[J]. J Genet Genomics,2014,41:87-95.
[2]Hübner K,F(xiàn)uhrmann G,Christenson LK,et al. Derivation of oocytes from mouse embryonic stem cells[J]. Science,2003,300:1251-1256.
[3]Hayashi K,Ohta H,Kurimoto K,et al. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells[J]. Cell,2011,146:519-532.
[4]Hayashi K,Ogushi S,Kurimoto K,et al. Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice[J]. Science,2012,338:971-975.
[5]Yu Z,Ji P,Cao J,et al. Dazl promotes germ cell differentiation from embryonic stem cells[J]. J Mol Cell Biol,2009,1:93-103.
[6]Wang Q,Liu X,Tang N,et al. GASZ promotes germ cell derivation from embryonic stem cells[J]. Stem Cell Res,2013,11:845-860.
[7]Hayashi K,Saitou M. Generation of eggs from mouse embryonic stem cells and induced pluripotent stem cells[J]. Nat Protoc,2013,8:1513-1524.
[8]Imamura M,Hikabe O,Lin ZY,et al. Generation of germ cells in vitro in the era of induced pluripotent stem cells[J]. Mol Reprod Dev,2014,81:2-19.
[9]Wongtrakoongate P,Jones M,Gokhalep J,et al. STELLA facilitates differentiation of germ cell and endodermal lineages of human embryonic stem cells[J/OL]. PLoS One,2013,8:e56893.
[10]Duggal G,Heindryckx B,Warrier S,et al. Influence of activin A supplementation during human embryonic stem cell derivation on germ cell differentiation potential[J]. Stem Cells Dev,2013,22:3141-3155.
[11]Gkountela S,Li Z,Vincent JJ,et al. The ontogeny of cKIT+human primordial germ cells proves to be a resource for human germ line reprogramming,imprint erasure and in vitro differentiation[J]. Nat Cell Biol,2013,15:113-122.
[12]Fong CY,Chak LL,Biswas A,et al. Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells[J]. Stem Cell Rev,2011,7:1-16.
[13]Huang P,Lin LM,Wu XY,et al. Differentiation of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells into germ-Like cells in vitro[J]. J Cell Biochem,2010,109:747-754.
[14]Li N,Pan S,Zhu H,et al. BMP4 promotes SSEA-1(+) hUC-MSC differentiation into male germ-like cells in vitro[J]. Cell Prolif,2014,47:299-309.
[15]Qiu P,Bai Y,Liu C,et al. A dose-dependent function of follicular fluid on the proliferation and differentiation of umbilical cord mesenchymal stem cells (MSCs) of goat[J]. Histochem Cell Biol,2012,138:593-603.
[16]Qiu P,Bai Y,Pan S,et al. Gender depended potentiality of differentiation of human umbilical cord mesenchymal stem cells into oocyte-Like cells in vitro[J]. Cell Biochem Funct,2013,31:365-373.
[17]Miki T. Amnion-derived stem cells:in quest of clinical applications[J]. Stem Cell Res Ther,2011,2:25.
[18]Evron A,Goldman S,Shalev E. Human amniotic epithelial cells differentiate into cells expressing germ cell specific markers when cultured in medium containing serum substitute supplement[J]. Reprod Biol Endocrinol,2012,10:108.
[19]Wang F,Wang L,Yao X,et al. Human amniotic epithelial cells can differentiate into granulosa cells and restore folliculogenesis in a mouse model of chemotherapy-induced premature ovarian failure[J]. Stem Cell Res Ther,2013,4:124.
[20]Stefanidis K,Loutradis D,Koumbi L,et al. Deleted in Azoospermia-Like (DAZL) gene-expressing cells in human amniotic fluid:a new source for germ cells research?[J]. Fertil Steril,2008,90:798-804.
[21]Lai D,Wang F,Chen Y,et al. Human amniotic fluid stem cells have a potential to recover ovarian function in mice with chemotherapy-induced sterility[J]. BMC Dev Biol,2013,13:34.
[22]Yu X,Wang N,Qiang R,et al. Human amniotic fluid stem cells possess the potential to differentiate into primordial follicle oocytes in vitro[J]. Biol Reprod,2014,90:73.
[23]Xiao GY,Liu IH,Cheng CC,et al. Amniotic fluid stem cells prevent follicle atresia and rescue fertility of mice with premature ovarian failure induced by chemotherapy[J/OL]. PLoS One,2014,9:e106538.
[24]Nayemia K,Lee JH,Drusenheimer N,et al. Derivation of male cells from bone marrow stem cells[J]. Lab Invest,2006,86:654-663.
[25]Shirazi R,Zarnani AH,Soleimani M,et al. BMP4 can generate primordial germ cells from bone-marrow-derived pluripotent stem cells[J]. Cell Biol Int,2012,36:1185-1193.
[26]Johnson J,Bagley J,Skaznik-Wikiel M,et al. Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood[J]. Cell,2005,122:303-315.
[27]Santiquet N,Vallières L,Pothier F,et al. Transplanted bone marrow cells do not provide new oocytes but rescue fertility in female mice following treatment with chemotherapeutic agents[J]. Cell Reprogram,2012,14:123-129.
[28]Kilic S,Pinarli F,Ozogul C,et al. Protection from cyclophosphamide-induced ovarian damage with bone marrow-derived mesenchymal stem cells during puberty[J]. Gynecol Endocrinol,2014,30:135-140.
[29]Cakici C,Buyrukcu B,Duruksu G,et al. Recovery of fertility in azoospermia rates after injection of adipose-tissue-derived mesenchymal stem cells:the sperm generation[J]. Biomed Res Int,2013,2013:529589.
[30]Hosseinzadeh Shirzeily M,Pasbakhsh P,Amidi F,et al. Comparison of differentiation potential of male mouse adipose tissue and bone marrow derived-mesenchymal stem cells into germ cells[J]. Iran J Reprod Med,2013,11:965-976.
[31]Peng Y,Xuan M,Zou J,et al. Freeze-dried rat bone marrow mesenchymal stem cells paracrine factors:a simplified novel material for shin wound therapy[J]. Tissue Eng Part A,2015,21:1036-1046.
[32]Ma J,Liu N,Yi B,et al. Transplanted hUCB-MSCs migrated to the damaged area by SDF-1/CXCR4 signaling to promote functional recovery after traumatic brain injury in rats[J]. Neurol Res,2015,37:50-56.
[33]Baker N,Boyette LB,Tuan RS,et al. Characterization of bone marrow-derived mesenchymal stem cells in aging[J]. Bone,2015,70:37-47.
[編輯:侯麗]
Research of stem cells differentiation to germ cells
ZHANG Qin-jing,QIN Lian-ju,CUI Yu-gui,LIU Jia-yin*
State Key Laboratory of Reproductive Medicine,Center of Clinical Reproductive Medicine,The First Affiliated Hospital,Nanjing Medical University,Nanjing210029
【Abstract】Stem cells (SCs) are promised to differentiate to germ cells,providing a valuable in vitro model for investigating early development of germ cells,and it will become the cell resource for stem cell transplantation therapy. The paper reviews the advances in the study on embryonic stem cells/induced pluripotent stem cells (ESCs/iPSCs),neonatal-derived stem cells (NDSCs) and adult stem cells (ASCs) differentiating to germ cells,meanwhile summarizes the obstacles encountered in the differentiation of stem cells to germ cells. It will provide a theoretical basis for the application of stem cells in the field of reproductive medicine.
【Key words】Germ cells (GCs);Embryonic stem cells (ESCs);Adult stem cells (ASCs);Neonatal-derived stem cells (NDSCs);Differentiation
DOI:10.3969/j.issn.1004-3845.2016.05.019
【收稿日期】2015-06-26;【修回日期】2015-08-21
【基金項(xiàng)目】公益性衛(wèi)生行業(yè)專(zhuān)項(xiàng)(201402004,201302013);江蘇省科技廳項(xiàng)目(BL2012009,BM2013058)
【作者簡(jiǎn)介】張琴靜,女,江蘇昆山人,碩士,婦產(chǎn)科專(zhuān)業(yè).(*通訊作者)