郭延秀,殷艷晶,田莉*
(1. 北京大學人民醫院婦產科,北京 100044;2. 北京昌平區醫院婦產科,北京 102200)
?
新鮮胚胎移植與凍融胚胎移植對母嬰結局影響的研究進展
郭延秀1,殷艷晶2,田莉1*
(1. 北京大學人民醫院婦產科,北京100044;2. 北京昌平區醫院婦產科,北京102200)
不孕癥的發病率近年呈上升趨勢,體外受精-胚胎移植(IVF-ET)是治療不孕癥的主要方法之一。自上世紀80年代凍融胚胎移植(FET)首次獲得臨床妊娠后,作為新鮮胚胎移植失敗后的補充治療,已成為IVF-ET治療不孕癥的重要組成部分。FET對母體和子代的健康影響如何,也成為生殖醫學、圍產醫學和遺傳學研究的熱點。本文就近年來鮮胚移植或FET治療后母嬰結局的研究進展進行綜述。
體外受精;新鮮胚胎移植;凍融胚胎移植;母嬰結局
(JReprodMed2016,25(8):753-756)
輔助生殖技術(ART)是20世紀70年代興起的一種以體外受精-胚胎移植(IVF-ET)及其衍生技術為主體的治療不孕癥的方法,其中,根據所移植胚胎的不同,又分為新鮮胚胎移植和凍融胚胎移植(FET)兩種方式。隨著ART不斷發展和改進,ET成功率逐漸提高,鮮胚移植和FET均有較高的臨床妊娠率,然而關于兩者的療效和安全性比較,臨床上一直存在爭議。研究者們越來越關注兩者在臨床妊娠率、流產率、活產率以及妊娠并發癥等方面的差異。本文通過近年來的相關文獻分析,旨在了解鮮胚移植和FET對母嬰結局的影響。
一、鮮胚移植和FET的臨床應用
隨著IVF-ET技術的發展,鮮胚移植后臨床妊娠率提高,多胎妊娠率也相應增加,多胎妊娠的妊娠并發癥隨之增多。因此,臨床醫生開始合理限制新鮮胚胎的移植數,將剩余的優質胚胎進行冷凍保存,以備再次移植所需。冷凍胚胎復蘇技術的應用,提高了IVF的累計妊娠率,減輕了反復促排卵給患者帶來的經濟壓力及精神負擔,且能有效預防卵巢過度刺激綜合征(OHSS)的發生。
自1990年首例玻璃化冷凍卵裂期胚胎移植成功、獲得臨床妊娠并分娩后,人類胚胎冷凍技術有了長足發展。有研究報道,玻璃化冷凍的胚胎復蘇率達到95%,其中,玻璃化冷凍組的臨床妊娠率比程序化冷凍組高50%,而持續妊娠率相似[1-2]。目前,胚胎玻璃化冷凍技術已是相對成熟且常規的冷凍方法,其最大限度地減少了冷凍技術本身對胚胎質量的影響。有文獻報道顯示,FET的妊娠率和活產率已經接近甚至超過鮮胚移植周期[3]。
二、鮮胚移植和FET對母嬰結局的影響
目前ART的研究逐漸轉向關注母體和子代健康[4]。Wennerholm等[5]的研究中,納入了北歐337 431例行ART助孕治療的孕產婦,結果顯示,與自然妊娠相比FET增加了早產、早早產、低體重兒、小于胎齡兒、巨大兒及新生兒死亡的發生率,但妊娠期并發癥的發生率比鮮胚移植者降低;這些結局對子代的長遠健康也有一定影響,如增加成年后代謝性疾病發生的風險等[6]。鮮胚移植及FET對母嬰結局的影響因素可能存在差異,鮮胚移植主要與促排卵及子宮內膜的容受性等有關,而FET可能與解凍后的胚胎質量有關。
(一)鮮胚移植時控制性卵巢刺激(COS)對妊娠結局的影響
COS是鮮胚移植中的關鍵步驟,指在可控制的范圍內,刺激多個卵泡發育和成熟。這就會導致卵泡發育和胚胎移植過程中出現超生理劑量的激素分泌,包括雌激素、孕激素及血管內皮生長因子(VEGF)等,繼而產生多種效應,包括卵母細胞、子宮內膜、種植的胚胎發生改變等[7]。
1. COS時激素水平的變化:眾多研究表明超生理劑量的雌激素會降低IVF成功率,增加不良母嬰結局,包括小于胎齡兒和產前子癇等[8-11],FET則可以避免這種影響[12]。超生理劑量的雌激素會導致由胎盤及蛻膜產生的大分子糖蛋白——妊娠相關蛋白A(PAPP-A)顯著減少,子宮血管重建,胎盤發育異常[13],繼而影響滋養細胞的分化和侵蝕、胚胎的發育和粘附,導致多種異常圍產期結局[14]。此外,COS后,患者體內孕酮水平的升高會導致子宮內膜成熟度提前,與胚胎發育成熟度不同步,進而影響胚胎著床[15]。
2. COS對子宮內膜的影響:(1)COS影響子宮內膜的容受性:子宮內膜隨月經周期發生周期性的變化,在為胚胎種植做準備的過程中,其內膜容受性也發生變化。內膜通過孕激素重塑,黃體生成素(LH)峰后適于胚胎種植的時間只有6~10 d[16]。人類及動物實驗均表明,COS會引起種植時子宮內膜組織形態提前發育、孕激素受體提前降調節,繼而影響胚胎種植過程[17-18]。COS可以使特定整合素表達降低,影響內膜種植窗時的容受性[19],而小鼠模型研究表明,非種植窗內胚胎種植成功后可能出現胎盤形成缺陷及胎兒發育缺陷[20]。(2)COS影響子宮內膜的基因表達:COS過程中大量促性腺激素的應用會影響子宮內膜基因的轉錄調控,進而破壞子宮內膜正常的容受性。有研究報道,COS周期胚胎著床過程中患者子宮內膜轉化生長因子-β(TGF-β)信號通路表達異常,同時子宮內膜出現大量白細胞聚集[21]。(3)COS影響內膜的免疫環境:有研究報道子宮內膜的免疫環境在胚胎種植過程中起重要作用,尤其是自然殺傷(NK)細胞與內膜容受性相關;胚胎種植過程中蛻膜化的NK細胞可以分泌多種細胞因子參與種植過程,如VEGF等[15]。COS過程中NK細胞的數量及亞型均比自然周期顯著減少,可能對胚胎種植產生不利影響[22]。
3. COS對胚胎的影響:(1)COS影響胚胎發育和生長:流行病學研究顯示,超促排卵時激素微環境異常會對胎盤形成及胎兒發育產生不利影響[10,23]。Mainigi等[24]將自然妊娠的小鼠囊胚植入自然和超排卵假孕的小鼠體內,19 d后去卵巢發現:植入超排卵假孕小鼠體內的鼠胚體重減少25%,胎盤也小,且存在胎盤與胎兒發育相關基因表達異常。(2)COS時胚胎表觀遺傳學變化:胚胎種植時的微環境變化會誘導胚胎的表觀遺傳學發生變化,基因表達的表觀遺傳學調節有很多機制,包括印記基因選擇性甲基化等;甲基化在配子發育時就已開始,卵母細胞及父源性印記基因的甲基化,導致胎盤形成、胚胎發育受到影響,最終影響胎兒發育和子代長遠健康[25]。
(二)FET對母嬰結局的影響
目前,FET技術已廣泛應用于輔助生殖助孕治療,但胚胎冷凍保存及復蘇對于母嬰結局的影響如何,仍然存在爭議。既往研究表明:FET后巨大兒及大于胎齡兒的比例要高于自然妊娠及鮮胚移植時的比例[16,26-27]。荷蘭的一項研究表明FET組比鮮胚移植組新生兒體重增加[28]。另有研究表明體外培養的時間越長,大于胎齡兒(LGA)的幾率越大,體外培養5~6 d后移植比培養2 d后移植LGA的幾率明顯增加[29]。Bu等[30]研究發現移植冷凍后復蘇胚胎比移植新鮮胚胎男嬰的出生比例升高,而部分研究則認為FET與出生女性新生兒比例升高相關[31]。另外,冷凍對于胚胎的損害從形態上無法分辨,這就對優化選擇胚胎造成困難[32]。
關于冷凍保存對人類胚胎發育潛能的影響,目前只有少數研究報道了冷凍胚胎與新鮮胚胎培養發育的分子調控機制。凍融胚胎及新鮮胚胎間基因的表達不同,主要涉及細胞凋亡及多種應急通路,如Bcl-2相關X蛋白(Bax)、胚胎干細胞關鍵蛋白(NANOG及SOX2)及尾型同源框2(CDX2)途徑,與鮮胚移植相比,FET時母親效應基因,如真核翻譯起始因子1A(EIF1AX)及結節性硬化基因2(TSC2)會發生更大的變化[33];與新鮮囊胚相比,玻璃化凍融的第5天囊胚紡錘體發生異常的幾率增加,但玻璃化凍融囊胚仍能保持較高的復蘇率[34]。Chacón等[35]的動物實驗表明,冷凍技術并不改變牛囊胚表觀遺傳學的表達情況。
玻璃化FET周期避免了大量促性腺激素的刺激,采取接近自然周期的移植策略,可以有效減少對子宮內膜容受性的影響。因此,盡管玻璃化FET周期的臨床妊娠率、流產率及活產率報道不一,但均在可接受的范圍。有研究報道,FET周期的妊娠率和種植率均高于鮮胚移植周期,且FET更適用于胚胎發育相對遲緩及孕酮水平提前升高的患者[36-37]。侯曉妮等[38]研究指出:對于有OHSS發生高風險的患者應該果斷選擇全胚冷凍后擇期行FET,可以減少甚至杜絕OHSS的發生,從而提高IVF的安全性以獲得更為滿意的妊娠結局,并且降低患者的治療費用。李玉梅等[39]研究指出:高齡患者全胚冷凍后行FET能獲得與鮮胚移植相似的臨床妊娠率和活產率,且妊娠期并發癥發生率低。
三、問題與展望
綜上所述,盡管IVF-ET的妊娠并發癥及圍產兒不良結局高于自然妊娠,但FET周期的母嬰結局有優于鮮胚移植周期的趨勢。隨著FET技術的發展,現在提出了“非選擇性全胚胎冷凍移植(freeze-all ET)”的概念,即IVF后將胚胎全部冷凍保存,不做鮮胚移植,而是擇期進行FET。關于freeze-all ET,目前各個生殖中心尚無統一標準。一方面,冷凍技術對胚胎質量的影響仍然存在爭議;另一方面,患者對于FET的接受度、治療時間延長、治療費用增加以及來自家庭與社會壓力等問題仍然需要解決。因此,臨床上進行ART助孕治療時,應根據各中心現有的技術條件及患者的實際情況綜合評價后,進行個體化治療。
[1]Edgar DH,Gook DA. A critical appraisal of cryopreservation (slow cooling versus vitrification) of human oocytes and embryos[J]. Hum Reprod Update,2012,18:536-554.
[2]AbdelHafez FF,Desai N,Abou-Setta AM,et al. Slow freezing,vitrification and ultra-rapid freezing of human embryos: a systematic review and meta-analysis[J/OL]. Reprod Biomed Online,2010,20:209-222.
[3]Roque M,Lattes K,Serra S,et al. Fresh embryo transfer versus frozen embryo transfer in in vitro fertilization cycles: a systematic review and meta-analysis[J]. Fertil Steril,2013,99:156-162.
[4]Kalra SK,Barnhart KT. In vitro fertilization and adverse childhood outcomes: what we know,where we are going,and how we will get there. A glimpse into what lies behind and beckons ahead[J]. Fertil Steril,2011,95:1887-1889.
[5]Wennerholm UB,Henningsen AK,Romundstad LB,et al. Perinatal outcomes of children born after frozen-thawed embryo transfer: a Nordic cohort study from the CoNARTaS group[J]. Hum Reprod,2013,28:2545-2553.
[6]Kajantie E,Hovi P. Is very preterm birth a risk factor for adult cardiometabolic disease?[J]. Semin Fetal Neonatal Med,2014,19:112-117.
[7]Santos MA,Kuijk EW,Macklon NS. The impact of ovarian stimulation for IVF on the developing embryo[J]. Reproduction,2010,139:23-34.
[8]Farhi J,Ben-Haroush A,Andrawus N,et al. High serum oestradiol concentrations in IVF cycles increase the risk of pregnancy complications related to abnormal placentation[J/OL]. Reprod Biomed Online,2010,21:331-337.
[9]Joo BS,Park SH,An BM,et al. Serum estradiol levels during controlled ovarian hyperstimulation influence the pregnancy outcome of in vitro fertilization in a concentration-dependent manner[J]. Fertil Steril,2010,93:442-446.
[10]Imudia AN,Awonuga AO,Doyle JO,et al. Peak serum estradiol level during controlled ovarian hyperstimulation is associated with increased risk of small for gestational age and preeclampsia in singleton pregnancies after in vitro fertilization[J]. Fertil Steril,2012,97:1374-1379.
[11]Imudia AN,Goldman RH,Awonuga AO,et al. The impact of supraphysiologic serum estradiol levels on peri-implantation embryo development and early pregnancy outcome following in vitro fertilization cycles[J]. J Assist Reprod Genet,2014,31:65-71.
[12]Imudia AN,Awonuga AO,Kaimal AJ,et al. Elective cryopreservation of all embryos with subsequent cryothaw embryo transfer in patients at risk for ovarian hyperstimulation syndrome reduces the risk of adverse obstetric outcomes: a preliminary study[J]. Fertil Steril,2013,99:168-173.
[13]Aberdeen GW,Bonagura TW,Harman CR,et al. Suppression of trophoblast uterine spiral artery remodeling by estrogen during baboon pregnancy: impact on uterine and fetal blood flow dynamics[J]. Am J Physiol Heart Circ Physiol,2012,302:H1936-1944.
[14]Giorgetti C,VandenMeerschaut F,De Roo C,et al. Multivariate analysis identifies the estradiol level at ovulation triggering as an independent predictor of the first trimester pregnancy-associated plasma protein-A level in IVF/ICSI pregnancies[J]. Hum Reprod,2013,28:2636-2642.
[15]Lee JY,Lee M,Lee SK. Role of endometrial immune cells in implantation[J]. Clin Exp Reprod Med,2011,38:119-125.
[16]Paulson RJ. Hormonal induction of endometrial receptivity[J]. Fertil Steril,2011,96:530-535.
[17]Develioglu OH,Hsiu JG,Nikas G,et al. Endometrial estrogen and progesterone receptor and pinopode expression in stimulated cycles of oocyte donors[J]. Fertil Steril,1999,71:1040-1047.
[18]Pelkonen S,Koivunen R,Gissler M,et al. Perinatal outcome of children born after frozen and fresh embryo transfer: the Finnish cohort study 1995-2006[J]. Hum Reprod,2010,25:914-923.
[19]Sendag F,Akdogan A,Ozbilgin K,et al. Effect of ovarian stimulation with human menopausal gonadotropin and recombinant follicle stimulating hormone on the expression of integrins alpha3,beta1 in the rat endometrium during the implantation period[J]. Eur J Obstet Gynecol Reprod Biol,2010,150:57-60.
[20]Cha J,Sun X,Dey SK. Mechanisms of implantation: strategies for successful pregnancy[J]. Nat Med,2012,18:1754-1767.
[21]Haouzi D,Assou S,Mahmoud K,et al. Gene expression profile of human endometrial receptivity: comparison between natural and stimulated cycles for the same patients[J]. Hum Reprod,2009,24:1436-1445.
[22]Chaouat G. Inflammation,NK cells and implantation: friend and foe (the good,the bad and the ugly?): replacing placental viviparity in an evolutionary perspective[J]. J Reprod Immunol,2013,97:2-13.
[23]Kalra SK. Adverse perinatal outcome and in vitro fertilization singleton pregnancies: what lies beneath? Further evidence to support an underlying role of the modifiable hormonal milieu in in vitro fertilization stimulation[J]. Fertil Steril,2012,97:1295-1296.
[24]Mainigi MA,Olalere D,Burd I,et al. Peri-implantation hormonal milieu: elucidating mechanisms of abnormal placentation and fetal growth[J]. Biol Reprod,2014,90:26.
[25]Lucifero D,Mann MR,Bartolomei MS,et al. Gene-specific timing and epigenetic memory in oocyte imprinting[J]. Hum Mol Genet,2004,13:839-849.
[26]Pelkonen S,Koivunen R,Gissler M,et al. Perinatal outcome of children born after frozen and fresh embryo transfer: the Finnish cohort study 1995-2006[J]. Hum Reprod,2010,25:914-923.
[27]Sazonova A,Kallen K,Thurin-Kjellberg A,et al. Obstetric outcome after in vitro fertilization with single or double embryo transfer[J]. Hum Reprod,2011,26:442-450.
[28]Vergouw CG,Kostelijk EH,Doejaaren E,et al. The influence of the type of embryo culture medium on neonatal birthweight after single embryo transfer in IVF[J]. Hum Reprod,2012,27:2619-2626.
[29]Makinen S,Soderstrom-Anttila V,Vainio J,et al. Does long in vitro culture promote large for gestational age babies?[J]. Hum Reprod,2013,28:828-834.
[30]Bu Z,Chen ZJ,Huang G,et al. Live birth sex ratio after in vitrofertilization and embryo transfer in China-an analysis of 121,247 babies from 18 centers[J/OL]. PLoS One,2014,9: e113522.
[31]Wikland M,Hardarson T,Hillensj? T,et al. Obstetric outcomes after transfer of vitrified blastocysts[J]. Hum Reprod,2010,25:1699-1707.
[32]Van Landuyt L,Van de Velde H,De Vos A,et al. Influence of cell loss after vitrification or slow-freezing on further in vitro development and implantation of human Day 3 embryos[J]. Hum Reprod,2013,28:2943-2949.
[33]Shaw L,Sneddon SF,Brison DR,et al. Comparison of gene expression in fresh and frozen-thawed human preimplantation embryos[J]. Reproduction,2012,144:569-582..
[34]Chatzimeletiou K,Morrison EE,Panagiotidis Y,et al. Cytoskeletal analysis of human blastocysts by confocal laser scanning microscopy following vitrification[J]. Hum Reprod,2012,27:106-113.
[35]Chacón L,Gómez MC,Jenkins JA,et al. Effect of cryopreservation and in vitro culture of bovine fibroblasts on histone acetylation levels and in vitro development of hand-made cloned embryos[J]. Zygote,2011,19:255-264.
[36]Aflatoonian A,Oskouian H,Ahmadi S,et al. Can fresh embryo transfers be replaced by cryopreserved-thawed embryo transfers in assisted reproductive cycles? A randomized controlled trial[J]. J Assist Reprod Genet,2010,27:357-363.
[37]Shapiro BS,Daneshmand ST,Garner FC,et al. Embryo cryopreservation rescues cycles with premature luteinization[J]. Fertil Steril,2010,93:636-641.
[38]侯曉妮,王俊霞,王玢,等. 卵巢過度刺激高風險患者全胚冷凍后擇期移植妊娠結局分析[J]. 生殖醫學雜志,2014,23: 376-379.
[39]李玉梅,桂寶恒,劉冬娥. 高齡患者全胚冷凍后行解凍胚胎移植妊娠結局分析[J]. 生殖醫學雜志,2015,24: 601-605.
[編輯:侯麗]
Research progress in impact of fresh versus frozen-thawed embryo transfer upon maternal and neonatal outcomes
GUO Yan-xiu1,YIN Yan-jing2,TIAN Li1*
1.DepartmentofObstetricsandGynecology,PekingUniversityPeople’sHospital,Beijing100044 2.DepartmentofObstetricsandGynecology,ChangpingDistrictHospital,Beijing102200
In recent years,the incidence of infertility is on the rise,and IVF-ET is one of the main treatment methods for infertility. With the first frozen embryo transfer was performed in 1980s,frozen embryo transfer technology (FET) is having much rapid development,and has become an important part of IVF-ET. The reproductive medicine,perinatal medicine and genetics are focus on what the health effects of the FET on mother and the offspring. This paper reviewed the impact of fresh embryo transfer and FET treatment on maternal and neonatal outcomes.
IVF;Fresh embryo transfer;Frozen embryo transfer;Maternal and neonatal outcomes
2015-09-17;
2015-12-29
衛生部公益性行業科研專項(2115000011)
郭延秀,女,山東濟寧人,博士,婦產科專業.(*
)
DOI:10.3969/j.issn.1004-3845.2016.08.019