蘇 暢,呂寧寧,沈乾坤,楊金星,吳六順
(安徽工業大學冶金工程學院,安徽馬鞍山243002)
?
低氧分壓條件下CaO-SiO2-P2O5( 10%)-FeO體系熱力學性質的研究
蘇暢,呂寧寧,沈乾坤,楊金星,吳六順
(安徽工業大學冶金工程學院,安徽馬鞍山243002)
摘要:以促進2CaO·SiO2-3CaO·P2O5固溶體生成的非均相脫磷工藝被視為未來實現轉爐少渣冶煉的重要手段,但目前相關渣系熱力學性質的研究較少,不能為合理解釋非均相渣脫磷的機理提供理論依據.為此,本文利用FactSage熱力學軟件繪制了低氧分壓( 1 mPa)條件下CaO-SiO2-P2O5( 10%)-FeO體系及其子體系的熱力學相圖,分析了不同溫度下相平衡關系及液相線的變化規律.研究結果表明:升高溫度可使體系中液相區及Ca3( PO4)2初晶區的范圍擴大,但會導致α'-Ca2SiO4的初晶區縮小以及Ca2Fe2O5等物相的消失;降低氧分壓可使體系的液相區縮小,并向高FeO的方向收縮; CaO-SiO2-P2O5( 10%)-FeO體系中存在較大的α'-Ca2SiO4與Ca3( PO4)2共存區,尤其是α'-Ca2SiO4,Ca3( PO4)2與Ca2Fe2O5的三相共存區可極大地促進2CaO·SiO2-3CaO·P2O5固溶體的生成.
關鍵詞:低氧分壓; CaO-SiO2-P2O5( 10%)-FeO體系;相圖計算; 2CaO·SiO2-3CaO·P2O5固溶體
脫磷是轉爐煉鋼面臨的核心問題之一,貫穿于煉鋼工藝發展的始終;隨著鋼鐵工業的不斷發展,高效化、低成本化已成為脫磷工藝未來發展的主要方向[1-2].為了降低石灰的使用量和獲得較好的脫磷效果,部分學者對熔渣中固相及液相的脫磷機理進行了研究[3],結果表明,在鐵水預處理溫度下,2CaO·SiO2與3CaO·P2O5可在很寬的成分范圍內形成2CaO·SiO2-3CaO·P2O5固溶體或化合物[4],該固溶體在實現高效脫磷過程中可發揮較為重要的作用,不僅能為磷的富集提供場所,還可使液相渣具有較高的磷酸鹽容量,從而達到持續脫磷的目的.
鑒于磷在液相和固相中存在的遷移行為,國外一些學者提出了充分發揮2CaO·SiO2等固相作用的非均相爐渣脫磷工藝[5-6],并針對固相與液相之間的微觀反應機理[7-8],磷在液相與固相間的分配比等進行了大量研究[9-12].然而,一些熱力學研究,尤其是固相和熔渣之間相平衡關系的報道較少,使得非均相脫磷反應的相關機理未能得到全面合理的解釋.
轉爐脫磷渣主要包括CaO,SiO2,FeO,MgO和P2O5等化合物,其中CaO,SiO2和FeO的質量分數占80%以上[13],因此,CaO-SiO2-FeO-P2O5四元體系的熱力學性質對脫磷工藝的影響較大,是不可或缺的基礎熱力學數據.然而廣義的CaO -SiO2-FeO-P2O5相圖已很難滿足新型脫磷工藝理論指導的需要,尤其是不同氧分壓下涉及2CaO·SiO2,3CaO·P2O5及2CaO·Fe2O3等物相平衡關系的熱力學相圖還需進行深入的研究.查閱相關文獻可知[13-14],目前對CaO-SiO2-FeO -P2O5體系的研究大多集中在中高氧分壓條件下,而與實際轉爐爐渣平衡的氧分壓并不高,大約在10-5~10-3Pa范圍內[15-16],而低氧分壓條件下有關CaO-SiO2-FeO-P2O5體系熱力學性質的研究報道較少.為此,本文利用熱力學計算軟件FactSage繪制了低氧分壓條件下CaO-SiO2-P2O5-FeO四元及其三元子渣系的熱力學相圖,并分析了不同溫度下各體系相平衡關系和液相線的變化規律,可為全面分析低氧分壓下轉爐脫磷渣中各物相的析出規律提供依據.
基于FactSage 6.1軟件平臺,相圖計算的基本原理是能量最小原理,即在熱力學平衡條件下,給定體系的組成、溫度和壓力,計算出各種物相組成的吉布斯自由能,通過尋優法、迭代法、分步迭代法等數學方法求得體系達到最低自由能的平衡狀態[17].
對于體系液相自由能的描述選擇擴展的似化學模型,對于固溶體相自由能的描述采用化合物能模型,簡單氧化物則采用科勒展開多項式模型描述,在進行利用三元氧化物體系熱力學性質外推計算四元氧化物體系熱力學性質時則采用多項式模型.
2.1 CaO-SiO2-FeO體系熱力學性質的計算
低氧分壓( 1 mPa)條件下,CaO-SiO2-FeO體系在不同溫度下的相平衡關系如圖1所示.由圖1可知,1 573 K下CaO-SiO2-FeO體系中含鱗石英( SiO2),偽硅灰石( CaSiO3),硅鈣石( Ca3Si2O7),Ca2Fe2O5,固溶體相α'-Ca2SiO4和簡單氧化物( AMonoxide)六個初晶區.其中,固溶體相α'-Ca2SiO4的穩定區域較大,其液相線上SiO2最高含量(質量分數,下同)可達40%,FeO含量最高達85%,CaO含量高于50%的結晶區內幾乎都會有α'-Ca2SiO4生成.此外,在FeO含量小于60%,SiO2含量小于40%,CaO含量高于50%的結晶區內存在Ca2Fe2O5相.當溫度升高至1 673 K時,液相區及SiO2的初晶區迅速擴大,偽硅灰石( CaSiO3),硅鈣石( Ca3Si2O7)及α'-Ca2SiO4的初晶區縮小,Ca2Fe2O5的初晶區消失.當溫度為1 773 K時,液相區繼續擴大,SiO2的初晶區縮小,Ca3Si2O7的初晶區消失.
圖2示出了溫度對CaO-SiO2-FeO體系液相線的影響.由圖可知,隨著溫度的升高,CaOSiO2-FeO體系的液相線向CaO-SiO2邊界擴展的趨勢較明顯,而且有向高CaO及高SiO2含量方向擴展的趨勢.圖3示出了中低氧分壓下CaOSiO2-FeO體系液相線的變化規律.由圖3可知,當氧分壓由1Pa降至1mPa時,CaO-SiO2-FeO體系的液相線向高鐵區收縮,但向高SiO2含量等方向移動的趨勢不明顯.
2.2 CaO-SiO2-P2O5體系熱力學性質的計算
圖4示出了低氧分壓條件下CaO-SiO2-P2O5體系在不同溫度下的熱力學相圖(等溫截面圖),由圖4可知,該體系主要含CaO,SiO2,CaSiO3,Ca3( PO4)2,Ca3Si2O7及α'-Ca2SiO4等初晶相.1 573 K下,當SiO2含量小于40%,CaO含量在60%~75%范圍內時,會出現α'-Ca2SiO4和Ca3( PO4)2的共存區,因而在此區域內成渣可促進2CaO·SiO2-3CaO·P2O5固溶體的生成.當溫度升至1 673 K時,各初晶相的位置變化不大.但當溫度為1 773 K時,出現了液相與固相的共存區,Ca3( PO4)2初晶區的范圍變大,而且存在液相與α'-Ca2SiO4,Ca3( PO4)2的共存區域,相比于兩固相存在的情況,液相的出現無疑會加快2CaO·SiO2-3CaO·P2O5固溶體的生成速率.

圖1 氧分壓1 mPa下CaO-SiO2-FeO體系的等溫截面圖Fig.1 Isothermal sections for CaO-SiO2-FeO system with p( O2) =1 mPa( a)—1 573 K; ( b)—1 673 K; ( c)—1 773 K1—L + SiO2+ CaSiO3; 2—L + SiO2; 3—L + CaSiO3; 4—L + Ca3Si2O7; 5—L + CaSiO3+ Ca3Si2O7; 6—L +α'-Ca2SiO4+ Ca3Si2O7; 7—α'-Ca2SiO4+ Ca3Si2O7; 8—L +α'-Ca2SiO4; 9—L +α'-Ca2SiO4+ Ca2Fe2O5; 10—AMonoxide +α'-Ca2SiO4+ Ca2Fe2O5; 11—AMonoxide +α'-Ca2SiO4; 12—L + AMonoxide

圖2 溫度對CaO-SiO2-FeO體系液相線的影響(氧分壓=1 mPa)Fig.2 Effect of temperature on the liquidus of CaO-SiO2-FeO system with P( O2) =1 mPa

圖3 氧分壓對CaO-SiO2-FeO體系液相線的影響(溫度=1 673 K)Fig.3 Effect of oxygen partial pressure on the liquidus of CaO-SiO2-FeO system at 1 673 K
2.3 CaO-SiO2-P2O5( 10%)-FeO體系熱力學性質的計算

圖4 氧分壓為1 mPa時CaO-SiO2-P2O5體系的等溫截面圖Fig.4 Isothermal sections for CaO-SiO2-P2O5system with p( O2) =1 mPa( a)—1 573 K; ( b)—1 673 K; ( c)—1 773 K1—SiO2+ Ca3( PO4)2; 2—SiO2+ CaSiO3+ Ca3( PO4)2; 3—CaSiO3+ Ca3Si2O7+ Ca3( PO4)2; 4—α'-Ca2SiO4+ Ca3Si2O7+ Ca3( PO4)2; 5—α'-Ca2SiO4+ Ca3SiO5+ Ca3( PO4)2; 6—CaO + Ca3SiO5+ Ca3( PO4)2; 7—L + Ca3( PO4)2; 8—L + CaSiO3+ Ca3( PO4)2; 9—L +α'-Ca2SiO4+ Ca3( PO4)2; 10—Ca3( PO4)2

圖5 氧分壓為1mPa時CaO-SiO2-P2O5( 10%)-FeO體系的等溫截面圖Fig.5 Isothermal sections for CaO-SiO2-P2O5( 10%) -FeO system with p( O2) =1 mPa( a)—1 573 K; ( b)—1 673 K; ( c)—1 773 K1—L + SiO2+ CaSiO3+ Ca3( PO4)2; 2—L + SiO2+ Ca3( PO4)2; 3—L + CaSiO3+ Ca3( PO4)2; 4—L + Ca3Si2O7+ Ca3( PO4)2; 5—L + CaSiO3+ Ca3Si2O7+ Ca3( PO4)2; 6—L +α'-Ca2SiO4+ Ca3Si2O7+ Ca3( PO4)2; 7—α'-Ca2SiO4+ Ca3Si2O7+ Ca3( PO4)2; 8—L +α'-Ca2SiO4+ Ca3( PO4)2; 9—L +α'-Ca2SiO4+ Ca3( PO4)2+ Ca2Fe2O5; 10—α'-Ca2SiO4+ CaO + Ca3( PO4)2+ Ca2Fe2O5; 11—L + Ca3( PO4)2; 12—L + SiO2+ Ca3( PO4)2; 13—L + SiO2; 14—L; 15—L +α'-Ca2SiO4+ Ca3SiO5+ Ca3( PO4)2; 16—L + CaO + Ca3SiO5+ Ca3( PO4)2
圖5示出了低氧分壓條件下,CaO-SiO2-P2O5( 10%)-FeO體系在不同溫度下的熱力學相圖(考慮到轉爐渣中P2O5的含量較少,本文只討論了P2O5質量分數為10%的情況).由圖5可知,1 573 K下該熱力學體系的相平衡關系比較復雜,存在液相區、液相與固相的共存區、固相與固相的共存區等,可生成CaO,SiO2,CaSiO3,α'-Ca2SiO4,Ca3SiO5,Ca3Si2O7,Ca3( PO4)2,Ca2Fe2O5等物相.含有α'-Ca2SiO4及Ca3( PO4)2的析晶區包括: L +α'-Ca2SiO4+ Ca3Si2O7+Ca3( PO4)2,α'-Ca2SiO4+ Ca3Si2O7+ Ca3( PO4)2,L +α'-Ca2SiO4+ Ca3( PO4)2,L +α'-Ca2SiO4+ Ca3( PO4)2+ Ca2Fe2O5,α'-Ca2SiO4+ CaO + Ca3( PO4)2+ Ca2Fe2O5,除含α'-Ca2SiO4及Ca3( PO4)2外,每個共存區內還含有液相,CaO,Ca3Si2O7及Ca2Fe2O5等.研究表明[16],鐵氧化物在2CaO·SiO2-3CaO·P2O5固溶體的生成過程發揮了較為重要的作用,其存在可加快各元素在液相及含磷富集相間的傳質,促進2CaO·SiO2與3CaO·P2O5的反應,因此,在非均相脫磷工藝中,熔渣的成分組成應盡量控制在L + a'Ca2SiO4+ Ca3( PO4)2+ Ca2Fe2O5的共存區內.當溫度升至1 673 K時,L + SiO2+ CaSiO3+ Ca3( PO4)2,L + CaSiO3+ Ca3( PO4)2,L + Ca3Si2O7+ Ca3( PO4)2,L + CaSiO3+ Ca3Si2O7+ Ca3( PO4)2,L + a'-Ca2SiO4+ Ca3Si2O7+ Ca3( PO4)2,α'-Ca2SiO4+ Ca3Si2O7+ Ca3( PO4)2,L +α'-Ca2SiO4+ Ca3( PO4)2等共存區的范圍縮小,Ca2Fe2O5的初晶區消失,取而代之的是Ca3SiO5.當繼續升高溫度至1 773 K時,Ca3Si2O7的初晶區消失,a'-Ca2SiO4及CaSiO3的初晶區明顯縮小,而SiO2及Ca3( PO4)2的初晶區則呈擴大的趨勢.綜上,低氧分壓條件下,隨著溫度的升高,α'-Ca2SiO4及Ca2Fe2O5的初晶區逐漸縮小,α'-Ca2SiO4與Ca3( PO4)2的共存區也呈縮小的趨勢,可見,升高溫度不利于2CaO·SiO2-3CaO·P2O5固溶體的生成.

圖6 溫度對CaO-SiO2-P2O5( 10%)-FeO體系液相線的影響(氧分壓=1 mPa)Fig.6 Effect of temperature on liquidus of CaO-SiO2-P2O5( 10%)-FeO system with p( O2) =1 mPa
圖6示出了溫度對CaO-SiO2-P2O5( 10%) -FeO體系液相線的影響,由圖6可知,隨著溫度的升高,液相區迅速向低FeO及高SiO2含量的方向擴展,這一變化導致了Ca2Fe2O5初晶相的消失,盡管在CaO方向上的擴展不明顯,但也使α'-Ca2SiO4的初晶區不斷縮小.圖7示出了中低氧分壓下CaO-SiO2-P2O5( 10%)-FeO體系液相線的變化規律,由圖可知,當氧分壓由1 Pa降至1.0×10-3Pa時,CaO-SiO2-P2O5( 10%)-FeO體系的液相線向高FeO方向收縮,在CaO含量較低的區域,液相線向高SiO2含量等方向收縮.
為了更好地解釋轉爐渣脫磷的相關機理,本文利用FactSage6.1熱力學軟件對CaO-SiO2-P2O5-FeO體系及其子體系在低氧分壓條件下的熱力學性質進行了研究,并分析了溫度對相平衡關系及液相線的影響規律,獲得以下結論:
( 1) CaO-SiO2-FeO體系含鱗石英( SiO2),偽硅灰石( CaSiO3),硅鈣石( Ca3Si2O7),Ca2Fe2O5,固溶體相α'-Ca2SiO4和簡單氧化物( AMonoxide)六個初晶區.升高溫度可使液相區擴大,偽硅灰石( CaSiO3),硅鈣石( Ca3Si2O7)及α'-Ca2SiO4的初晶區縮小,Ca2Fe2O5及Ca3Si2O7的初晶區消失.
( 2) CaO-SiO2-P2O5體系主要含CaO,SiO2,CaSiO3,Ca3( PO4)2,Ca3Si2O7及α'-Ca2SiO4等初晶區.1 573 K下,當SiO2含量小于40%,CaO含量在60%~75%范圍內時,會出現α'-Ca2SiO4和Ca3( PO4)2的共存相.當溫度升至1 773 K時,Ca3( PO4)2初晶區的范圍變大,而且存在液相與α'-Ca2SiO4,Ca3( PO4)2的共存區域.
( 3) CaO-SiO2-P2O5( 10%)-FeO體系中含液相區、液相與固相的共存區、固相與固相的共存區等,可生成CaO,SiO2,CaSiO3,α'-Ca2SiO4,Ca3SiO5,Ca3Si2O7,Ca3( PO4)2,Ca2Fe2O5等物相.升高溫度可使液相區,SiO2及Ca3( PO4)2的初晶區擴大,α'-Ca2SiO4及CaSiO3的初晶區縮小,Ca2Fe2O5及Ca3Si2O7的析晶區消失.
參考文獻:
[1]李峻,劉瀏.復吹轉爐冶煉低磷鋼工藝[J].煉鋼,2009,25 ( 6) : 15-19.( LI Jun,LIU Liu.Process of smelting low phosphorus steel in combined blowing converter[J].Steelmaking,2009,25 ( 6) : 15-19.)
[2]趙巖,陳登福,張竹明,等.高磷鐵水脫磷的實驗室研究[J].中國稀土學報,2008,26: 682-684.( Zhao Yan,Chen Deng-fu,Zhang Zhu-ming,et al.Research of dephosphorization of high phosphorus hot metal in laboratory[J].Journal of the Chinese Rare Earth Society,2008,26: 682-684.)
[3]畢學工,黃治成,周進東,等.非均相鐵水脫磷劑研究現狀[J].鋼鐵研究,2008,36( 4) : 59-62.( Bi Xuegong,Huang Zhicheng,Zhou Jindong.Current situation of investigation concerning hot metal heterogeneous dephosphorization agents[J].Research on Iron&Steel,2008,36( 4) : 59-62.)
[4]Fix W,Heymann H,Heinke R.Subsolidus relations in the system 2CaO·SiO2-3CaO·P2O5[J].Journal of the American Ceramic Society,1969,52: 346-347.
[5]Fukagai S,Hamano T,Tsukihashi F.Formation reaction of phosphate compound in multi phase flux at 1573K[J].ISIJ International,2007,47( 1) : 187-189.
[6]Yang X,Nakase K,Matsuura H,et al.Formation of phosphate compound in multi-phase flux[J].CAMP-ISIJ,2008,21: 994.
[7]Yang X,Matsuura H,Tsukihashi F.Condensation of P2O5at the interface between 2CaO·SiO2and CaO-SiO2-FeOx-P2O5slag[J].ISIJ International,2009,49 ( 9 ) : 1298 -1307.
[8]Yang X,Matsuura H,Tsukihashi F.Reaction behavior of P2O5at the interface between solid 2CaO·SiO2and liquid CaO-SiO2-FeOx-P2O5slags saturated with solid 5CaO· SiO2·P2O5at 1573K[J].ISIJ International,2010,50( 5) : 702-711.
[9]Inoue R,Suito H.Phosphorous partition between 2CaO· SiO2particles and 2CaO-SiO2-FetO slags[J].ISIJ International,2006,46( 2) : 174-179.
[10]Kitamura S,Saito S,Utagawa K,et al.Mass transfer of P2O5between liquid slag and solid solution of 2CaO·SiO2and 3CaO·P2O5[J].ISIJ International,2009,49( 12) : 1838 -1844.
[11]刁江.Al2O3和Na2O對高磷鐵水脫磷的影響[J].鋼鐵研究學報,2013,25( 2) : 9-13.( Diao Jiang.Effect of Al2O3and Na2O on dephosphorization of high phosphorus hot metal[J].Journal of Iron and Steel Research,2013,25( 2) : 9-13.)
[12]蘇暢,于景坤,王洪章.2CaO·SiO2-3CaO·P2O5固溶體形成機理[J].東北大學學報(自然科學版),2013,34 ( 10) : 1434-1437.( Su Chang,Yu Jing-kun,Wang Hong-zhang.Formation mechanism of 2CaO·SiO2-3CaO·P2O5solid solution[J].Journal of Northeastern University ( Natural Science),2013,34( 10) : 1434-1437.)
[13]蘇暢,于景坤,呂寧寧.CaO-SiO2-FeOx及CaO-SiO2-P2O5-FeOx渣系熱力學性質的研究[J].山東冶金,2012,34( 5) : 43-45.( Su Chang,Yu Jingkun,Lv Ningning.Research on the thermodynamic properties of CaO-SiO2-FeOx and CaOSiO2-P2O5-FeOx slag[J].Shandong Metallurgy,2012,34( 5) : 43-45.)
[14]Gao X,Matsuura H,Miyata M,et al.Phase equilibrium for the CaO-SiO2-FeO-5mass% P2O5-5mass% Al2O3system for dephosphorization of hot metal pretreatment[J].ISIJ International,2013,53( 8) : 1381-1385.
[15]劉越生,楊學民,陶宇,等.復吹轉爐一次倒爐時爐渣氧分壓的測定[J].鋼鐵研究學報,1991,3( 2) : 71-76.( Lui Yuesheng,Yang Xueming,Tao Yu,et al.Measurement of oxygen partial pressure in slag of combined top-bottom blowing converter[J].Journal of Iron and Steel Research,1991,3( 2) : 71-76.)
[16]劉錕,劉瀏,何平,等.轉爐生產低磷鋼的脫磷反應熱力學[J].鋼鐵,2012,47( 1) : 34-39.( Liu Kun,Liu Liu,He Ping,et al.Thermodynamics of dephosphorization reaction for producing low phosphorus steel in converter[J].Iron and Steel,2012,47( 1) : 34-39.)
[17]楊治明,陳敏,王楠.CaO-SiO2-FeOx-MgO氧化物體系液相區及相關系計算[J].材料與冶金學報,2012,11 ( 2) : 93-97.( Yang Zhi-ming1,Chen Min,Wang Nan.Calculation on the liquid zone and phase relations of CaO-SiO2-FeOx-MgO oxide system[J].Journal of Materials and Metallurgy,2012,11( 2) : 93-97.)
Research on the thermodynamic properties of CaO-SiO2-P2O5( 10%)-FeO oxide system under low oxygen partial pressure
Su Chang,Lv Ningning,Shen Qiankun,Yang Jinxing,Wu Liushun
( School of Metallurgical Engineering,Anhui University of Technology,Maanshan 243002,China )
Abstract:The multi phase flux dephosphorization technology is an important method for the converter smelting.However the thermodynamic properties of related slag system are less seen in the publications.Therefore,CaO-SiO2-P2O5( 10%)-FeO slag systems phase diagrams at a low oxygen partial pressure( 1 mPa) were plotted through the thermodynamic software package FactSage.Effects of temperature on equilibrium phase relations and the liquides were analyzed.The results showed that temperature increase can enlarge the liquid region and the primary phase field of Ca3( PO4)2,so cause reduction of the α'-Ca2SiO4field and disappearance of Ca2Fe2O5.The liquid region is reduced and shifted toward the high-Fe area the oxygen partial pressure decrease.CaO-SiO2-P2O5( 10%)-FeO slag systems contain a large coexistence zone of α'-Ca2SiO4and Ca3( PO4)2,especially the three phase regions of α'-Ca2SiO2,Ca3( PO4)2and Ca2Fe2O5can greatly promote formation of 2CaO·SiO2-3CaO·P2O5solid solution.
Key words:low oxygen partial pressure; CaO-SiO2-P2O5( 10%)-FeO system; phase diagram caclulation; 2CaO·SiO2-3CaO·P2O5solid solution
通訊作者:呂寧寧( 1985—),男,講師,E-mail: lvning198565@163.com.
作者簡介:蘇暢( 1981—),女,講師,E-mail: suchang9@ sina.cn.
基金項目:國家自然科學基金資助( 51374006) ;安徽工業大學青年教師科研基金( RD14100503) ;大學生2014省級創新創業項目( SA15100028) ;安徽省教育廳高校自然科學研究項目( KJ2016A089).
收稿日期:2015-10-26.
doi:10.14186/j.cnki.1671-6620.2016.01.006
中圖分類號:TF 711
文獻標識碼:A
文章編號:1671-6620( 2016) 01-0033-06