路 陽,楊曉偉,楊效田,肖榮振,王鵬春
(蘭州理工大學 省部共建有色金屬先進加工與再利用國家重點實驗室, 蘭州 730050)
?
多元高鋁青銅優(yōu)化Ni60合金涂層減摩性能的研究*
(蘭州理工大學 省部共建有色金屬先進加工與再利用國家重點實驗室, 蘭州 730050)
摘要:采用超音速等離子噴涂技術在45#鋼基體上制備高鋁青銅含量分別為0、5%、10%的鎳基合金/高鋁青銅復合涂層。采用XRD對3組涂層的相結構進行分析,測定基體-涂層的顯微硬度,并研究涂層與對磨件304不銹鋼的干摩擦行為,探討高鋁青銅的加入對鎳基合金涂層力學性能及摩擦學性能的影響。結果表明, 隨著高鋁青銅的加入,涂層的顯微硬度和摩擦系數明顯降低。其中含10%高鋁青銅的復合涂層硬度波動性趨于穩(wěn)定;而高鋁青銅含量為5%時,在低載荷下涂層的摩擦系數較未加高鋁青銅低,隨著載荷增加,摩擦系數緩慢增加,到200 N高載荷時,3種涂層的摩擦系數基本相同(約0.25),其減摩作用不再明顯。較低載荷下含高鋁青銅的涂層具有較低的摩損量,而高載荷下,含5%高鋁青銅的涂層較其它兩組涂層具有更低的磨損量,總體摩擦磨損性能優(yōu)良。
關鍵詞:超音速等離子噴涂;Ni60;高鋁青銅;力學性能;摩擦學性能
1引言
Ni60合金粉末不僅具有良好噴涂工藝性能,而且其噴涂層具有優(yōu)異的耐磨性、耐蝕性以及抗高溫氧化等性能,已被廣泛用于冶金、機械、礦山、石油、化工、汽車等領域易磨損部件的修復和預保護[1-2]。如被用于軸承、汽輪機葉片、活塞等機器零部件表面的鎳基涂層,顯著提高了其耐磨、耐蝕性,延長服役壽命并降低成本[3-4]。為了提高Ni60合金涂層的綜合性能,一些研究者通過在鎳基合金中加入一種或者兩種以上的單質或化合物的硬質相或潤滑相(如石墨、WC、MoS2等), 采用火焰噴涂、等離子噴焊等技術制備鎳基合金涂層,研究了鎳基自溶性合金涂層的摩擦學性能;然而,這些研究均以添加第二相的形式來改善組織并增加涂層的耐磨性或減摩性[5-9],鮮有將一種多元減摩合金加入到另外一種多元耐磨合金粉體當中制備涂層,從而增強耐磨材料減摩性能的研究。本文研制了一種高鋁青銅合金粉體,其具有優(yōu)異的減摩性和一定的耐磨性、耐腐蝕性,是一種很好的工件保護涂層材料[10-12],可廣泛應用于金屬模具、各種軸類、管件等工件的表面防護,以及船舶等耐海水腐蝕件的表面保護。本文研究擬將這種減摩性能較強的高鋁青銅合金粉末少量添加到廣泛使用的耐磨Ni60合金粉末中,制備出具有優(yōu)異減摩耐磨綜合性能的新型涂層,研究這種涂層的摩擦學性能。
超音速等離子噴涂(SAPS) 是利用非轉移型等離子弧與高速氣流混合時出現(xiàn) “擴展弧”得到穩(wěn)定的超音速等離子射流而進行噴涂的一種工藝,其焰流溫度高,噴涂顆粒熔融充分,可以獲得良好的涂層性能,不僅適合噴涂低熔點金屬及其合金材料,也適合噴涂高熔點陶瓷材料。因此,本文采用超音速等離子噴涂制備這種鎳基合金/高鋁青銅復合涂層。
2實驗
試樣基體為45#鋼,其尺寸為?15 mm×150 mm。噴涂粉末為Ni60和高鋁青銅合金粉末,粉末成分如表1,2所示。

表1 Ni60合金粉體主要化學成分
表2高鋁青銅合金粉體主要化學成分
Table 2 Compositions of the high aluminum bronze powder

合金元素CuAlFeMnNiCo含量/wt%70~8012~162.0~4.00.5~2.00.2~0.50.2~0.5
利用機械混料的方法將不同質量配比的Ni60粉末和高鋁青銅粉末混料4 h。噴涂前先對基體表面進行除銹、除油、粗化處理;然后依次用丙酮、10%的鹽酸溶液、酒精清洗工件表面;最后將待噴試樣夾持在三爪卡盤上,驅動試樣勻速轉動,并采用上海大豪納米噴涂材料有限公司生產的DH-2080超音速等離子噴涂系統(tǒng)制備涂層。噴涂工藝參數為噴涂距離125 mm,噴涂電壓130 V,噴涂電流350 A,送粉電壓10 V,主氣為Ar氣,次氣為H2,噴涂涂層厚度為0.7~1.0 mm。
采用日本理學公司生產的D/MAX2500PC型X射線衍射儀對復合涂層進行物相分析,銅靶Kα光源輻射,管電壓8 262 kV,管電流25 924 mA,掃描范圍10~100°,掃描速度0.02(°)/s。借助HV-1000型數字顯微硬度計測定基體到涂層的顯微硬度,測試前先將待測試樣用金相砂紙磨平、拋光,加載載荷300 g,保荷時間5 s。采用菱形錐體金剛石壓頭進行測試。每隔壓痕對角線長度3倍的距離測量一個硬度值,每個試樣測試20個點,并取所測涂層數據的平均值表征涂層平均硬度值。采用MMW-1A立式萬能摩擦磨損實驗機測定涂層與304不銹鋼的摩擦學特性,摩擦條件為干摩擦,摩擦溫度為室溫。摩擦上試樣尺寸?4.8 mm×12.7 mm,對磨件尺寸?80 mm×4 mm的304不銹鋼圓盤,銷盤式摩擦副。實驗參數為摩擦時間10 min,轉速100 r/min,載荷分別為50,100,150和200 N。摩擦前先用600#砂紙打磨試樣和對磨件,然后將其置于超聲波清洗儀中用丙酮清洗10 min后取出烘干,并用TP-114電子天平(精度0.0001 g)稱量磨損前后試樣的質量。
3實驗結果及分析
3.1高鋁青銅對涂層硬度的影響
圖1為添加不同質量高鋁青銅的Ni60涂層從基體到涂層的顯微硬度值曲線圖。分析發(fā)現(xiàn),涂層側硬度值波動相對較平緩,且涂層整體硬度明顯高于基體硬度,實現(xiàn)了表面工程技術改善工件性能的目的。Ni60涂層和不同質量配比Cu基合金復合涂層的平均顯微硬度值分別為637.8,549.6和546.8 HV,可見高鋁青銅的加入使0%高鋁青銅的復合涂層的硬度降低。這可能的原因之一是Cu基合金特殊的相結構導致涂層整體性能降低,結合XRD分析結果認為(如圖3所示),Ni60合金中Cr的碳化物及硼化物等硬質相數量隨高鋁青銅合金的增加而減少且分布不均,同時高鋁青銅中新引入的α-Cu為軟質相,這兩個因素的綜合作用導致了涂層硬度降低。另一個原因是Ni基合金和Cu基合金物理性能的不同,導致涂層結構各異,結合涂層界面SEM照片(如圖2所示)分析知,由于涂層形成過程中粉末顆粒熔化不充分導致其大部分非真實接觸部位形成層間微裂紋或層狀氣孔[13]或者噴槍口處負壓卷入的空氣,導致涂層中孔洞(或孔隙)等缺陷隨高鋁青銅的加入而增加,組織松散。對比分析圖3中不同質量配比涂層表面物相可以發(fā)現(xiàn),Ni60涂層的主要相為γ-Ni、[Ni,Fe]、FeNi3、Ni2.9Cr0.7Fe0.36、Cr23C6、Cr2B,而加入高鋁青銅后復合涂層主要相除Ni60涂層中原有物相外,還出現(xiàn)了α-Cu、Cu0.81Ni0.19相。鎳基合金中的B,Si等元素對涂層有著固溶強化作用,而Cr元素易與B、C形成CrB2、Cr26C6等化合物,起彌散強化作用[14-15],而高鋁青銅加入后涂層中引進了新相α-Cu、Cu0.81Ni0.19,使某些相含量相應降低,衍射峰雜化,但對涂層整體相組成影響不大。當加入10%高鋁青銅時,衍射峰相對強度降低,尤其衍射角超過50°后的一些峰值降幅較為明顯,可能由于該峰上某種相有序度降低[16]。

圖1 不同質量配比基體-涂層顯微硬度值
Fig 1 The different mass fraction of the matrix-coatings microhardness

圖2 不同質量配比復合涂層的SEM照片
此外,圖3中含0%高鋁青銅的復合涂層在38°附近出現(xiàn)的Cr23C6、Cr2B的衍射峰在加入高鋁青銅后向大角度偏移,小角度反而不明顯。分析認為,這可能是因為高鋁青銅加入后導致鎳基合金涂層發(fā)生非晶轉變[17],并且涂層的晶粒畸變程度提高,結晶度降低。此外,44°左右也出現(xiàn)了輕微的衍射峰寬化現(xiàn)象。

圖3不同質量配比復合涂層的物相分析
Fig 3 The phase analysis of different mass fraction of the composite coatings
3.2涂層摩擦學行為
圖4(a)、(b)分別為3組不同質量配比涂層摩擦系數-載荷和磨損率-載荷的摩擦學曲線。圖5和6為3種涂層分別在低載荷50 N和高載荷200 N下的摩擦磨損形貌。

圖4 不同質量配比涂層摩擦學曲線
Fig 4 The tribological curves of different mass fraction of the coatings
從圖4(a)可以看出,高鋁青銅加入的鎳合金/高鋁青銅復合涂層的干摩擦系數均小于Ni60涂層的摩擦系數,且含5%Cu基合金的復合涂層相對于其它兩種涂層具有更低的摩擦系數。從摩擦系數的變化趨勢來看,隨著高鋁青銅的加入,兩種復合涂層的摩擦系數隨著載荷的增加均呈先增加后減小最后逐漸穩(wěn)定的變化趨勢,在高載荷200 N時,加入高鋁青銅合金的兩種復合涂層的摩擦系數和原Ni60涂層具有相近的摩擦系數,約為0.25。這可能的原因,少量高鋁青銅的加入,對耐磨的Ni60合金在摩擦過程中起到涂抹潤滑作用,從而對復合涂層起到了明顯的減摩作用,故涂層在低載荷下表現(xiàn)出較低的摩擦系數,但在高載荷下由于變形強烈,使加入的少量Cu基合金受壓硬化并在涂層表面涂抹填充,從而使承擔對磨作用的主要材料為以Ni60為主的基質材料,Cu的減摩作用不再完全體現(xiàn),故在高載荷下復合涂層和純Ni60涂層具有相近的摩擦系數。
從圖4(b)涂層的磨損量分析結果可以看出,在低載荷下,加入高鋁青銅的復合涂層明顯具有較純Ni60涂層低的磨損量,而在150 N后,磨損曲線出現(xiàn)拐點,涂層磨損現(xiàn)象表現(xiàn)復雜。分析認為,這可能是因為在150 N作用壓力下,涂層中起減摩作用的高鋁青銅合金在摩擦過程中發(fā)生粘著脫落,磨損量較大,而含0%高鋁青銅的Ni60涂層表面發(fā)生加工硬化,耐磨性增強,磨損量降低。當載荷增加到200 N時,由于5%高鋁青銅的復合涂層中高鋁青銅含量較少,其在高壓摩擦過程中不斷有新的高鋁青銅外露出表面,但由于含量較少而不至于達到剝落的程度,故能起到潤滑并減小磨損失重的作用。而含10%高鋁青銅的復合涂層,由于高鋁青銅含量比前者較高,在摩擦過程中將不斷外露表面的較軟高鋁青銅成分粘著剝落,圖6(c)中含10%高鋁青銅的復合涂層的摩擦磨損形貌上的粘著磨損痕跡亦證實了這一點。
另外,3組涂層中均存在Cr的碳化物和硼化物等硬質相,復合涂層在被磨損時, 基體軟質相主要起支承與粘結硬質相的作用,而硬質相則作為抗磨主體抵卸外來磨粒的刺入對基體的損傷,并能夠有效地將部分磨粒在涂層表面上的滑動摩擦與鑿削變?yōu)闈L動,減輕了磨粒對涂層的磨損[18-21]。
從涂層的摩擦磨損形貌來看,在低載荷下,3種涂層的基本摩擦磨損形式為刮擦磨損,并沒有出現(xiàn)大量的粘著磨損或犁溝磨損痕跡。但加入高鋁青銅的復合涂層磨損表面明顯比純Ni60涂層光滑,純Ni60涂層表面微劃痕特征相對其它兩種涂層明顯,可見加入高鋁青銅的復合涂層減摩效果明顯。而高載荷(200 N)下,純Ni60涂層具有明顯的擠壓塑性流動痕跡,而其它兩種涂層表面光滑,這也反映出高鋁青銅對復合涂層減摩效果顯著。通過對比不同高鋁青銅含量的復合涂層摩擦磨損形貌可以發(fā)現(xiàn),含5%高鋁青銅的涂層表面更光滑,而含10%高鋁青銅的涂層磨損表面具有較明顯的粘著剝落痕跡,這可能就是導致其磨損量急劇增加的主要原因。
綜合分析認為,含5%高鋁青銅的復合涂層綜合摩擦學性能較好,其摩擦系數最小,磨損率低,減摩耐磨效果明顯。

圖550 N載荷下涂層摩擦磨損形貌
Fig 5 The wear morphology of the coatings under 50 N

圖6 200 N載荷下涂層摩擦磨損形貌
4結論
(1)Ni60涂層的主要相包括γ-Ni、[Ni,Fe]、FeNi3、Ni2.9Cr0.7Fe0.36、Cr23C6、Cr2B,而加入高鋁青銅后復合涂層的物相除鎳基合金涂層原有相外,出現(xiàn)了新相α-Cu、Cu0.81Ni0.19。高鋁青銅的加入對鎳基復合涂層相結構變化影響不大。
(2)高鋁青銅對鎳基復合涂層的力學性能影響比較明顯,隨高鋁青銅含量的增加,復合涂層的顯微硬度降低。
(3)隨載荷的增加,高鋁青銅的加入使鎳基復合涂層的干摩擦系數、磨損率較0%高鋁青銅的復合涂層均有所降低。同等條件下,5%高鋁青銅的復合涂層摩擦系數、磨損量較小,表現(xiàn)出良好的減摩耐磨性。
參考文獻:
[1]Zhu Runsheng. Study on self-melting alloy powder[J].Powder Metallurgy Industry,2002,12(6):7-16.
[2]Jie Xiaohua,Mao Zhiyuan. The strcture and properties of the Ni-Cr-B-Si plasma spraying coating layer remelted in furnace[J]. Heat Treatment of Metals,1996,(8):15-17.
[3]Sharma S P, Dwivedi D K, Jain P K. Effect of La2O3addition on the microstructure hardness and abrasive wear behavior of flame sprayed Ni based coatings[J]. Wear,2009,267: 853-859.
[4]Flores J F, Neville A,Kapur N,et al. An experimental study of the erosion-corrosion behavior of plasma transferred arc MMCs[J]. Wear,2009,267: 213-222.
[5]Xiang Xinghua, Mu Xiaodong, Liu Zhengyi,et al. Study on the morphology and action of the interface between Ni base self-fluxing alloy coating and steel substrate[J].Transactions of the China Welding Institution,2002,23(3):45-48.
[6]Zhao Yuncai,Xing Hongjie,Zhang Zhengwang. The influence of iubricating phase MoS2on Ni60A composite coating’s frictional charactristics[J]. China Ceramics,2008,44(12):29-30.
[7]Feng Xundong. Microstructure and properties of Ni-based alloy coating by laser clading and thermal spraying[J]. Heat Treatment Technology and Equipment,2010,31(1):28-31.
[8]Zhang Le,Chen Meiying,Gao Feng,et al. Study on Ni60 clading layer made by pre-coating and induction remelting[J]. Spray Technology,2011,3(1):52-54.
[9]Lu Yang, Ma Junzhu,Yang Xiaotian, et al. Investigation of organization structure optimized by Ni60 on high-aluminum copper alloy coating prepared by supersonic plasma spraying-induction remelting[J]. Journal of Functional Materials,2014,45(7):7108-7111.
[10]Li Wenshen, Wang Zhiping, Lu Yang, et al. Preparation, mechanical properties and wear behaviors of novel aluminum bronze for dies [J]. Transactions of Nonferrous Metals Society of China, 2006, 16(3):607-612.
[11]Li Wenshen, Wang Zhiping, Lu Yang,et al. Friction and wearing behaviors of a novel aluminum bronze material for stainless steel utensils [J]. Wear, 2006, 259(2):155-163.
[12]Farzad Hamdi, Sirous Asgari. Influence of stacking fault energy and short-range ordering on dynamic recovery and work hardening behavior of copper alloys [J]. Scripta Materialia, 2010, 62(9):693-696.
[13]Xiao Hongbin, Zhang Yongbin, Chen Yue, et al.Dry sliding wear and friction behavior of plasma-sprayed Ni/Mo2coating[J]. Hot Working Technology,2004,(10):11-13.
[14]Zhang Zengzhi, Niu Junjie,Fu Yuewen. Process and performance of nickel-base alloy coating by induction cladding[J]. Transactions of Materials and Heat Treatment,2004,25(2):31-34.
[15]Li Wensheng,Wang Zhiping,Lu Yang. Research on heat-treatment process of high-strength wear-resistance aluminum alloy[J]. Journal of Gansu University of Technology,2002,28(2):26-29.
[16]Zhu Zixin,Xu Binshi, Zhang Wei, et al. Microstructure and properties of iron aluminum coatings prepared by high velocity arc spraying[J]. Journal of Materials Engineering,2002,(5):18-21.
[17]Han Yaowu,Sun Daqian,Gu Xiaoyan, et al.Effect of plasma spray parameters on microstructures and erosion resistance of Ni based coatings[J]. Journal of Jilin University(Engineering and Tecnology Edition),2010,40(2):461-465.
[18]Yang Xiaotian,Wang Zhiping,Lu Yang, et al. Boundary lubrication tribological property of high-aluminum copper alloy coarse powders coating made by supersonic plasma spraying[J]. The Chinese Journal of Nonferrous Metals,2012,22(11):3100-3106.
[19]Wang Hui,Xia Weiming, Jin Yuanshen. A study on abrasive resistance of Ni-based coating with a WC hard phase[J]. Wear,1996,195:47-52.
[20]Bahadur S, Yang Chiennan. Friction and wear behavior of tungsten and titanium carbide coatnigs[J]. Wear,1996,196:156-163.
[21]Tan Yefa,Wang Yaohua. Study on wear resistance of Ni-base alloy spray-welding coating reinforced by WC particles[J]. Tribology,1996,16(3):202-2073.
Research of anti-friction performance of Ni60 alloy coating optimized by multiple high aluminum bronze
LU Yang,YANG Xiaowei,YANG Xiaotian, XIAO Rongzhen, WANG Pengchun
(State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals,Lanzhou University of Technology, Lanzhou 730050,China)
Abstract:The composite coatings of nickel-based alloy/high aluminum bronze were prepared with different mass fraction(0%,5%,10%) of high aluminum bronze by supersonic plasma spraying technology on 45# steel substrate. The phase structures of the coatings were analyzed by XRD, and the microhardness of the coatings was measured. The dry friction behavior between the coatings and 304 stainless steel was researched, and the effect of the addition of high aluminum bronze on the mechanical properties and tribological properties of the composite coatings was investigated. The results showed that the microhardness and the friction coefficient of the coatings descended with the addition of high aluminum bronze.When the mass fraction of the high aluminum bronze reached 10%, the fluctuation of the microhardness tended to stable; Then the friction coefficient of the coatings with 5% high aluminum bronze performed a lower value than 0% high aluminum bronze under low load. With increment of the load, the friction coefficient increased slowly; when the load increased to 200 N, the friction coefficients of the three kinds of coatings were approximately same, and remained about 0.25, and the anti-friction of the high aluminum bronze was no longer apparent. The wear loss of the coatings under low load confirmed that the coating with high aluminum bronze had lower wear loss under low load.But when the load increased to 200 N,the wear loss of the coatings with 5% high aluminum bronze had lower than the other two coatings,and the overall friction and wear performance of the coating was perfect.
Key words:supersonic plasma spray; Ni60; high aluminum bronze; the mechanical properties; tribological properties
DOI:10.3969/j.issn.1001-9731.2016.01.020
文獻標識碼:A
中圖分類號:TG146
作者簡介:路陽(1957-),女,遼寧遼陽人,教授,博士生導師,主要從事耐磨耐蝕材料開發(fā)及應用研究。
基金項目:國家自然科學基金資助項目(51365024,51361020,51165021);甘肅省有色金屬新材料省部共建國家重點實驗室開放基金資助項目(SKL1301).
文章編號:1001-9731(2016)01-01097-05
收到初稿日期:2015-01-13 收到修改稿日期:2015-05-28 通訊作者:楊曉偉,E-mail: yangxw518@163.com