傅山 王黎靜 黃丹
摘要:本研究圍繞“人在環復雜系統的控制問題”這一核心科學問題,從人機不同形式智能體融合及其相互影響機理入手,構建復雜智能系統的數學模型并通過科學的實驗及觀測方法對模型進行驗證,最終確定用于民機駕駛艙人機工效評價的指標體系和綜合評價方法。本年度的主要研究進展從以下四個方面展開: 1.基于人在環復雜系統的人機耦合策略模型。從通過信息感知、信息分析和決策以及操控策略執行三個模塊的具體設計與實現來完成人-機-環境復雜系統模型對于飛行員系統模型的設計要求,構成了飛行員系統模型的設計與實現,最終形成了基于規則的人機耦合策略模型。在此基礎上,融入人為因素影響因子體系,深化飛行員與飛機系統及飛行環境系統的交互從而將人為因素的研究具體化到-機-環境系統仿真中的每一個環節中去。 2.多維駕駛艙人機工效綜合評價體系。通過構建具有模塊化分布式構架的機組工作量測量與評估仿真實驗平臺,進行了機組工作量測量的行為與生理參數集成采集,以復雜系統理論為依據,構建分層次多維度人機工效綜合評價指標體系,可以清晰的體現出飛行員在飛行任務中各個時刻在各方面的表現,可以對飛行績效的降低提供具有診斷性的結果,為駕駛艙設計提供參考。 3.認知行為信號處理與模式識別。以駕駛艙設計為背景和出發點,通過對駕駛艙設計理念和布局規則的深入理解,針對認知過程產生的生理信號與狀態量,結合人因學理論以及特定的飛行操控,將飛行員的肌電信號特征作為研究對象,通過信號的分解、相關性分析、選擇、組合四個過程,提出基于EEMD 和Hilbert 變換的動態疲勞評價方法。結果顯示基于平均瞬時頻率的疲勞指標能有效的表征動態肌電信號的疲勞趨勢。方法可以推廣形成一系列行之有效的信號處理體系,最終為駕駛艙的設計提供指導或參考,以及為駕駛艙適航符合性驗證提供幫助。 4.機組工作負荷綜合評價體系與預測模型。通過對機組工作負荷影響因素研究,建立時間壓力對工作負荷的影響模型。確定了時間壓力0.8為工作負荷“redline”,為機組工作負荷預測模型中的時間線分析的臨界負荷值確定提供了理論基礎。在此基礎上,通過感知任務、認知認務、單任務、雙任務、多任務操作實驗,確定它們之間的關系模型,為機組工作負荷預測模型中的負荷計算部分奠定實驗數據理論基礎。
關鍵詞:人機工效;復雜系統;人機耦合策略模型;多維評價模型;經驗模態分解;希爾伯特黃變換
Abstract:The project aims at building a mathematical model for complex intelligent systems to integrate pilot and automatic flying system. It will also lead to the establishment of a comprehensive evaluation techniques and systematic methods for the ergonomics in the civil aircraft flight deck. The main progress during this year is described in the following four aspects: 1.Human-machine coupling strategy model based on man-in-loop complex systems. The specific design and implementation, through information awareness, information analysis and decision-making, and implementation of control strategies, accomplished the requirements of the complex man-machine-environment model on the pilot system model, which constituted a model for design and implementation of the pilot system, and ultimately formed a human-machine coupled rule-based strategy model. In addition, the integration of human factors is also incorporated for a more completed man-machine-environment system simulation. 2.Multidimensional cockpit ergonomics evaluation system. By building a simulation platform for crew workload measurement and evaluation with modular distributed architecture, integrated collection for behavior and physiological parameters of crew workload measurement were implemented. Based on the complex system theory, a hierarchical multidimensional comprehensive evaluation index system for ergonomics was built to provide diagnostic results to the reduction of flight performance. It also set a reference for the cockpit design. 3.Signal processing and pattern recognition for cognitive behavior. The pilot EMG signal characteristics were taken as the research object aiming at the physiological signal and states during the cognitive processes. A dynamic fatigue evaluation method based on the EEMD and Hilbert transformation was proposed. The results showed that the fatigue index based on the average instantaneous frequency can effectively characterize the fatigue trend of the dynamic EMG signal. 4.Comprehensive evaluation system and forecasting model for the crew workload. Through the study of the influencing factors on the crew workload, an impact model of the time pressure on the workload was established. Furthermore, operation experiments of perception task, cognitive task, single task, dual-task, and multi-task, the relationship model between them was determined, and theoretical basis of experimental data for the load calculation part in the forecasting model of crew workload was laid.
Keywords:Ergonomics; Complex Systems;Human-machine coupled modeling; Multi-dimension Evaluation Model; Empirical