李慶華 陳莘莘 徐青



摘要:為了更有效地求解三維軸對稱功能梯度材料瞬態熱傳導問題,對無網格自然單元法應用于此類問題進行了研究,并發展了相應的計算方法。基于幾何形狀和邊界條件的軸對稱性,三維的軸對稱問題可降為二維平面問題。為了簡化本質邊界條件的施加,軸對稱面上的溫度場采用自然鄰近插值進行離散。功能梯度材料特性的變化由高斯點的材料參數進行模擬。時間域上,采用傳統的兩點差分法進行離散求解,進而得到瞬態溫度場的響應。數值算例結果表明,提出的方法是行之有效的,理論及方法不僅拓展了自然單元法的應用范圍,而且對三維軸對稱瞬態熱傳導分析具有普遍意義。
關鍵詞:自然單元法;軸對稱;功能梯度材料;瞬態熱傳導
中圖分類號:TP301.6
文獻標志碼:A 文章編號:1674-4764(2016)02-0069-06
Abstract:In order to solve the transient heat conduction problems in three-dimensional (3D) axisymmetric continuously nonhomogeneous functionally graded materials (FGMs) more effectively, a novel numerical method based on the meshless natural element method is proposed. Axial symmetry of geometry and boundary conditions helps to transform the 3D axisymmetric problem into a two-dimensional (2D) prolem. In order to simplify the imposition of the essential boundary conditions, the natural neighbour interpolation is adopted to discretize the temperature field within the cross section. The variations of functionally graded material properties are simulated by employing proper material parameters at Gauss points. The spatially discretized heat conduction equation is solved numerically with the traditional two-point difference technique in the time domain. The present method not only broadens the application scope of the natural element method, but also will be generally available to transient heat conduction analyses of 3D axisymmetric solids.
Keywords:natural element method; axisymmetric; functionally graded materials; transient heat conduction
功能梯度材料是通過特定的材料制備工藝將不同性能的兩種或兩種以上材料按一定的設計規律組合起來的新型非均勻復合材料[1]。功能梯度材料的最大特點是材料參數的連續性,完全避免了層合復合材料的材料參數在層層之間的間斷面處不連續的問題,提高了材料強度和耐熱性。因此,功能梯度材料在航空、航天及核反應堆等高溫環境中具有廣泛的應用潛力,對功能梯度材料的熱力學行為進行研究十分必要[2-5]。然而,相對于二維平面問題,目前對于三維軸對稱功能梯度材料瞬態熱傳導問題的數值方法研究相對較少[6-8]。
自然單元法[9-10]是一種新興的數值分析方法,因其獨特的優勢,得到了國內外許多學者的極大關注[11-15]。這種方法基于離散節點的Voronoi圖和Delaunay三角化幾何結構,采用自然鄰近插值構造全域近似函數和試函數。自然鄰近插值方案構造簡單,不涉及到復雜的矩陣求逆運算,而且不需要任何人為參數,從而避免了無單元伽遼金法中由于不確定的影響半徑造成的影響域計算的不確定性。此外,自然單元法的形函數滿足插值性質,可以準確地施加本質邊界條件,無需其他無網格法類似的特殊處理過程。自然單元法已經被成功地應用于很多領域,但目前尚未見到三維軸對稱熱傳導分析的無網格自然單元法的研究成果。
為了進一步拓展自然單元法的應用范圍,本文基于加權殘值法詳細推導了三維軸對稱功能梯度材料瞬態熱傳導分析的自然單元法理論公式,并給出了其詳細的數值實現過程。在此基礎上,采用FORTRAN自編了相關的計算程序。最后,通過典型算例的計算和對比分析,不僅驗證了自然單元法應用于三維軸對稱功能梯度材料瞬態熱傳導分析的有效性和合理性,并且討論了梯度參數的變化對計算結果的影響。
1 自然鄰近插值
5 結 論
作為介于有限元法與無網格法之間的一種數值方法,自然單元法的節點影響域是由節點的Voronoi結構所規定的自然相鄰關系給出,不受人為參數的影響,具有其他無網格法不可比擬的優越性。根據三維軸對稱功能梯度材料瞬態熱傳導方程及其邊界條件,利用加權殘值法,選取自然鄰近插值對軸對稱面上的溫度場進行離散,首次詳細推導了三維軸對稱功能梯度材料瞬態熱傳導問題的自然單元法計算公式,并編制了相應的FORTRAN計算程序。本文分析和算例求解結果表明,采用自然單元法求解三維軸對稱功能梯度材料瞬態熱傳導問題是可行的,具有精度高和穩定性好的優點。本文方法還可以容易地推廣到三維軸對稱功能梯度材料熱彈性問題的求解計算。
參考文獻:
[1] 張靜華,魏軍楊. DQ法求解FGM Levinson梁的靜態彎曲問題[J]. 華東交通大學學報, 2014, 31(3): 80-87.
ZHANG J H, WEI J Y. Static bending solution of functionally graded material Levinson beams based on differential quadrature method [J]. Journal of East China Jiaotong University, 2014, 31(3): 80-87. (in Chinese)
[2] WANG H, QIN Q H, KANG Y L. A meshless model for transient heat conduction in functionally graded materials [J]. Computational Mechanics, 2006, 38: 51-60.
[3] 藍林華,富明慧,程正陽. 功能梯度材料瞬態熱傳導問題的降維精細積分法[J]. 固體力學學報, 2010, 31(4): 406-410.
LAN L H, FU M H, CHENG Z Y. Decrement-dimensional precise time integration of 2D transient heat conduction equation for functionally graded materials [J]. Chinese Journal of Solid Mechanics, 2010, 31(4): 406-410. (in Chinese)
[4] 陳建橋,丁亮. 功能梯度材料瞬態熱傳導問題的MLPG方法[J]. 華中科技大學學報(自然科學版), 2007, 35(4): 119-121.
CHEN J Q, DING L. A MLPG method of transient heat transfer in FGMs [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2007, 35(4): 119-121. (in Chinese)
[5] 李慶華,陳莘莘,薛志清,等. 基于自然元法和精細積分法的功能梯度材料瞬態熱傳導問題求解[J]. 計算機輔助工程, 2011, 20(3): 25-28.
LI Q H, CHEN S S, XUE Z Q, et al. Transient heat conduction solution to functionally graded materials based on natural element method and precise integration method [J]. Computer Aided Engineering, 2011, 20(3): 25-28. (in Chinese)
[6] LI Q H, CHEN S S, ZENG J H. A meshless model for transient heat conduction analyses of 3D axisymmetric functionally graded solids [J]. Chinese Physics B, 2013, 22: 120204.
[7] SLADEK J, SLADEK V, HELLMICH C h, et al. Heat conduction analysis of 3D axisymmetric and anisotropic FGM bodies by meshless local Petrov-Galerkin method [J]. Computational Mechanics, 2007, 39: 323-333.
[8] SLADEK J, SLADEK V, KRIVACEK J, et al. Local BIEM for transient heat conduction analysis in 3D axisymmetric functionally graded solids [J]. Computational Mechanics, 2003, 32: 169-176.
[9] SUKUMAR N, MORAN T, BELYTSCHKO T. The natural element method in solid mechanics [J]. International Journal for Numerical Methods in Engineering, 1998, 43(5): 839-887.
[10] SUKUMAR N, MORAN B. C1 natural neighbour interpolation for partial differential equations [J]. Numerical Methods for Partial Differential Equations, 1999, 15(4): 417-447.
[11] 江濤,章青. 直接增強自然單元法計算應力強度因子[J]. 計算力學學報, 2010, 27(2): 264-269.
JIANG T, ZHANG Q. Computing stress intensity factors by enriched natural element method [J]. Chinese Journal of Computational Mechanics, 2010, 27(2): 264-269. (in Chinese)
[12] 張勇,易紅亮,談和平. 求解輻射導熱耦合換熱的自然單元法[J]. 工程熱物理學報, 2013, 34(5): 918-922.
ZHANG Y, YI H L, TAN H P. Natural element method for coupled radiative and conductive heat transfer [J]. Journal of Engineering Thermophysics, 2013, 34(5): 918-922. (in Chinese)
[13] 董軼,馬永其,馮偉. 彈性力學的雜交自然單元法[J]. 力學學報, 2012, 44(3): 568-575.
DONG Y, MA Y Q, FENG W. The hybrid natural element method for elasticity [J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(3): 568-575. (in Chinese)
[14] 曾祥勇,朱愛軍,鄧安福. Winkler地基上厚板分析的自然單元法[J]. 固體力學學報, 2008, 29(2): 163-169.
ZENG X Y, ZHU A J, DENG A F. Natural element method for analysis of thick plates lying over Winkler foundation [J]. Chinese Journal of Solid Mechanics, 2008, 29(2): 163-169. (in Chinese)
[15] 周書濤,劉應華,陳莘莘. 基于自然單元法的極限上限分析[J]. 固體力學學報, 2012, 33(1): 39-47.
ZHOU S T, LIU Y H, CHEN S S. Upper-bound limit analysis based on natural element method [J]. Chinese Journal of Solid Mechanics, 2012, 33(1): 39-47. (in Chinese)
[16] CHEN L, LIEW K M. A local Petrov-Galerkin approach with moving Kriging interpolation for solving transient heat conduction problems [J]. Computational Mechanics, 2011, 47: 455-467.
[17] CARSLAW H S, JAEGER J C. Conduction of heat in solids [M]. Oxford: Clarendon Press, 1959.
(編輯 胡 玲)