999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Efficient tracker based on sparse coding with Euclidean local structure-based constraint

2016-07-01 00:51:37WANGHongyuanZHANGJiCHENFuhua
智能系統學報 2016年1期

WANG Hongyuan, ZHANG Ji, CHEN Fuhua

(1. School of Information Science and Engineering, Changzhou University, Changzhou, Jiangsu, China 213164; 2. Department of Natural Science and Mathematics, West Liberty University, West Virginia, United States 26074)

Efficient tracker based on sparse coding with Euclidean local structure-based constraint

WANG Hongyuan1, ZHANG Ji1, CHEN Fuhua2

(1. School of Information Science and Engineering, Changzhou University, Changzhou, Jiangsu, China 213164; 2. Department of Natural Science and Mathematics, West Liberty University, West Virginia, United States 26074)

Abstract:Sparse coding (SC) based visual tracking (l1-tracker) is gaining increasing attention, and many related algorithms are developed. In these algorithms, each candidate region is sparsely represented as a set of target templates. However, the structure connecting these candidate regions is usually ignored. Lu proposed an NLSSC-tracker with non-local self-similarity sparse coding to address this issue, which has a high computational cost. In this study, we propose an Euclidean local-structure constraint based sparse coding tracker with a smoothed Euclidean local structure. With this tracker, the optimization procedure is transformed to a small-scale l1-optimization problem, significantly reducing the computational cost. Extensive experimental results on visual tracking demonstrate the e?ectiveness and efficiency of the proposed algorithm.

Keywords:euclidean local-structure constraint; l1-tracker; sparse coding; target tracking

Citation:WANG Hongyuan, ZHANG Ji, CHEN Fuhua. Efficient tracker based on sparse coding with Euclidean local structure-based constraint[J]. CAAI Transactions on Intelligent Systems, 2016, 11(1): 136-147.

Recently, visual target tracking was widely used in security surveillance, navigation, human-computer interaction, and other applications[1-2]. In a video sequence, targets for tracking often change dynamically and uncertainly because of disturbance phenomena such as occlusion, noisy and varying illumination, and object appearance. Many tracking algorithms were proposed in the last twenty years that can be divided into two categories: generative tracking and discriminant tracking algorithms[1-2]. Generative algorithms (e.g., eigen tracker, mean-shift tracker, incremental tracker, covariance tracker[2]) adopt appearance models to express the target observations, whereas discriminant algorithms (e.g., TLD[3], ensemble tracking[4], and MILTrack[5]) view tracking as a classification problem, thus attempting to distinguish the target from the backgrounds. Here, we present a new generative algorithm.

Based on sparse coding (SC; also referred to as sparse sensing or compressive sensing)[6-7], Mei proposed an l1-tracker for generative tracking[8-9], addressing occlusion, corruption, and some other challenging issues. However, this tracker incurs a very high computational cost to achieve efficient tracking (see section 2.1 and Fig.1 for details), and the local structures of similar regions are ignored, which may cause the instability and even failure of the l1-tracker. Indeed, the sparse coefficients, for representing six similar regions (CR1-CR6) under ten template regions (T1-T10) with original l1-tracker, are diversified (Fig. 3). ConsideringCR1andCR4, for example, we can see that although the latter is almost the partial occlusion version of the former, their sparse representations are very different. TrackingCR4(the woman’s face) may fail, because the tracker is likely to incorrectly consider the regionT8(the book) as its target.

Contrary to expectations, Xu proved that a sparse algorithm cannot be stable and that similar signals may not exhibit similar sparse coefficients[10]. Thus, a trade-off occurs between sparsity and stability when designing a learning algorithm. In addition, instability in the l1-optimization problem affects the performance of the l1-tracker.

Lu developed a NLSSS-tracker (NLSSST) based on SC applying a non-local self-similarity constraint by introducing the geometrical information of the set of candidates as a smoothing term to alleviate the instability of the l1-tracker[11]. However, its low efficiency (even slower than the original l1-tracker, Table 4) restricts its applicability in real-time tracking. In this study, motivated by the robustness of the l1-tracker and stability of NLSSST, we propose a novel tracker, called ELSS-tracker (ELSST), that is both robust and efficient. The main contributions of this study are as follows:

1)An efficient tracker, i.e., ELSST, is developed by considering the local structure of the set of target candidates. In contrast to the Lu5s[11]and Mei5s-tracker[8-9], our tracker is more stable and sparse.

2)The proposed tracker shows excellent performance in tracking different video sequences with regard to scale, occlusion, pose variations, background clutter, and illumination changes.

The rest of this study is organized as follows: l1- and NLSSS-tracker are introduced in section 2; in section 3, we analyze the disadvantages of these two trackers and propose our tracker; experimental results with our tracker and four comparison algorithms are reported in section 4; the conclusion and future work are summarized in section 5.

1Related works

1.1Sparse coding and the l1-tracker

Sparse coding is an attractive signal reconstruction method proposed by Candes[6-7]that reconstructs a signal y∈Rm×1with an over-complete dictionary D∈Rm×(n+2m)withasparsecoefficientvectorc∈Rn×1.TheSCformulationcanbewrittenasthel0-norm-constrainedoptimizationproblemasfollows:

(1)

whichisNP-hard,where‖·‖Fdenotesthevector’sFrobeniusnorm(i.e.,l2-norm),and‖·‖0countsthenumberofnon-zeroelementsofthevector.Candesprovedthatthel1-norm‖·‖1isthetightestupperboundofthel0-norm‖·‖0,andthus,Eq.(1)canberewrittenasthefollowingl1-optimizationproblem[6-7]:

(2)

BasedonSC,Meipresentedanicel1-trackerforrobusttracking[8-9](Fig. 1).Consideringthatthetargetislocatedinthelatestframe,thel1-trackerisinitializedinthenewarrivalframeandNcandidateregionsaregeneratedwithBayesianinference(Fig. 1a,b).Withntemplateslearnedfromprevioustrackingand2mtrivialtemplates(mpositiveonesandmnegativeones,wheremisthedimensionof1Dstretchedimage,Fig. 1c),Eq.(2)canbesolved(Fig. 1d,e,f).Withpositiveandnegativetrivialtemplates,Meiaddedanon-negativeconstraintc≥0inEq.(2),withwhichthereconstructionerrorsofallcandidateregionswithSCcoefficientscanbeusedtodeterminetheweightsforeachcandidate,andtheobjectinthenewarrivalframecanbelocatedwiththesumoftheweightedcandidates.Thedictionariesupdatingstrategiescanbeseenin[8-9].

Fig.1 Original l1-tracker algorithm

1.2Non-local self-similarity based sparse coding for tracking (NLSSST)

Recently, Xu indicated the trade-off between sparsity and stability in sparse regularized algorithms[10]. Moreover, Yang pointed out the same A-optimization issue in pattern classification[12]. Based on the fact that lots of similar regions exist in allNcandidates generated by Bayesian inference, Lu proposed his tracker with the non-local self-similarity constraint as

(3)

(4)

Taking the solution of the l1-tracker from Eq.(2) as the initial coefficientsc0, Eq.(4) can be solved through iterative computations[11]. However, the high computational cost of the original l1-tracker and iterative procedure for maintaining the neighborhood constraints of sparse coefficients make NLSSST inefficient in achieving real-timing tracking. In contrast to Fig. 1, the schematic diagram of NLSSST presented in Fig. 2, includes an additional neighborhood constraint betweenyiandNK(yi).

Fig. 2 Lu’s NLSSST Algorithm

2Euclidean local structure-based sparse coding for tracking (ELSST)

To circumvent the heavy computation burden of the l1-tracker and NLSSST (Table 4), we propose an efficient tracker, called ELSST, that considers the local Euclidean structures of the candidates.

2.1Original euclidean local structure constraint sparse coding (Original ELSSC)

It is evident from Eq. (4) that NLSSST attempts to solve a double l1-norm problem. However, it is well known that the l2-norm is much more commonly used for measuring the distance between two vectors and is much easier to optimize than the l1-norm. Thus, we take the former to measure the relationships between the sparse coefficient vectors, which are close to each other, i.e., the Euclidean local-structure constraint, and the latter l1-norm ofCto maintain the sparsity of the optimization as follows:

(5)

Table 1 Optimization for ELS constraint based SC(ELSSC)

Equation (5) is the objective function of our Euclidean local structure constraint-based SC and can be solved through iterative computation. In particular, at thet-th iteration, for a single candidateyiinY, Eq. (5) can be written as follows:

(6)

(7)

whereλis convex. According to Daubechies[13], when λI-DTDisastrictlypositivedenitematrix,ψ(ci,c0)isstrictlyconvexforanyc0withrespecttoci.Hence,inourexperiments,theconstantλissetaccordingly(λ=γ- 2β;Table1).Oncetheover-completedictionaryDisfixed,wecanderivethefollowingconvexobjectivefunctionfromEq. (7):

(8)

where

and

(9)

To solve Eq. (9) using SVD, we decompose the over-complete dictionaryD∈Rm×(n+2m)asD=UΣVT,whereU∈Rm×m,Σ∈Rm×(n+2m)andV∈R(n+2m)×(n+2m). SinceVisanorthogonalmatrix,Eq. (9)canberewrittenas

(10)

2.2Improved euclidean local structure constraint sparse coding (Improved ELSSC)

IfminEq. (10)islarge,itistime-consumingtoobtaintheoptimizationresultci,asthatinl1-optimizationandNLSSSC.Fortunately,intermsofSVDandthestructureofD(Figs. 1and2),wehave

(11)

whereIdenotesthem-orderedidentitymatrix.Σ′isthefirstnrowsofΣ,V′consistsofthefirstnrowsandthefirstncolumnsofV,andm?n.Asaresult,whenconstructingthedictionaryVinEq. (10),onlythefirstnrowsandfirstncolumnsofVmustbeprepared,whereastheremainingpartsofVarenotconsideredtomakeanycontributiontothetargettemplatesT.Thus,thelargescaleoptimizationinEq. (10)canbereducedtoamuchsmalleroneasfollows:

(12)

2.3Original and improved ELSSC-tracker

Basedontheabovealgorithm,ourtrackercanbeobtainedwiththeframeworkoftheoriginall1-tracker[8-9](Table2).Weneedtoiterativelysolvethelarge-scalel1-optimizationprobleminEq. (10)twice,uptothreetimesforeachcandidateinthealgorithm,andmorethanvetimesinNLSSST.Theinitialsparsecoecientsc0areconsideredasall-zerovectorsanditerativelysolvetheproblemwithoutanyl1-optimizationissues,asinTable1in[11].Nevertheless,wendthat,inNLSSST,itismoreeectiveandaccuratetoinitializec0asthesolutionofthel1-optimizationproblem.Therefore,thecomputationcomplexityofourtrackerisofthesameorderofmagnitudeasthatofthel1-trackerandNLSSST.Whenweresizealln = 10targetsandN = 200candidateregionsto40 × 40,i.e., m = 1 600 (Figs. 1and2),thentheover-completedictionaryDis1 600 × 3 210andtheorthogonalmatrixVis3 210 × 3 210inEq. (10).Itisverydifficulttosolvethecorrespondingl1-optimizationproblemwithsuchaD(inl1-trackerandNLSSST)orV(inourELSST).

WiththeimprovedELSSC,Σ′isthefirsttenrowsofΣ,andV′consistsofthefirsttenrowsandfirsttencolumnsofV.Thus,eachiterationofeachcandidateregioninELSSTcanbereducedfromthelarge-scalel1-optimizationproblemtoamuchsmalleronebecauseofthemuchsmallerscaleV′∈R10×10.Toovercometheproblemofocclusionsintracking,theanalogoustrivialtemplatesareusedtoconstructthenewdictionaryV″∈R10×30,i.e.,aten-orderedidentitymatrixandten-orderednegativeidentitymatrix.

3Experiments

3.1Experimental setting

Inordertoevaluatetheproposedtracker,experimentson12videosequenceswereconducted,includingSurfer,Dudek,Faceocc2,Animal,Girl,Stone,Car,Cup,Face,Juice,Singer,Sunshade,Bike,CarDark,andJumping[17-19].Thesesequencescoveredalmostallchallengesintracking,includingocclusion(evenheavyocclusion),motionblur,rotation,scalevariation,illuminationvariation,andcomplexbackground.Forcomparison,weusedfourstate-of-the-artalgorithmswiththesameinitialpositionsandthesamerepresentationsofthetargets.Theyweretheincrementallearning-basedtracker(IVT,acommondiscriminanttracker)[14],thecovariance-basedtracker(CovTrack,agenerativetrackeronLie-group)[15],thel1-tracker(agenerativetrackingmethod)[8-9],andtheNLSSST[11].Alltheexperimentswererunonacomputerwitha2.67GHzCPUanda2GBmemory.

Themainparametersusedinourexperimentsaresetasfollows:thenumberofcandidateregionsN=200,thenumberoftemplateregionsisn = 10,andthecandidatesandtargetsareresizedto40×40.

3.2Experimental results for sparsity and stability

ThesparsecoecientsofCR1,…, CR6generatedwiththel1-,theNLSSSC-,theoriginalELSSC-,andtheimprovedELSSC-optimizationareplottedinFig. 3.Inparticular,sixsimilarregionshaveverydierentrepresentationcoecients,whenusingtheoriginall1-optimizationproblem,whichignoresthestructureinformationbetweenregions.Theresultsoftheotherthreealgorithmsaremuchmorestable,becauseofpreservationofthestructuralinformation.Iftworegionsaresimilartoeachother,theyalsohavesimilarsparsecoecients.Thisimprovestherobustnessoftracking;otherwise,thetrackermaydegenerateorevenfailtotrack. CR4forexample,withl1-optimization,canberepresentedbyT2, T8, T6, T7,andT1,andthetrackermayfailtotrackthetopofthebook.Meanwhile,experimentalresultsshowthat,NLSSSCandourtwoELSSCaresparserthantheoriginall1-optimizationproblem.

Fig. 3 Comparisions of sparsity and stability with the original l1-, NLSSSC-, and our ELSSC-optimization. The sparse coefficients only are accurated to the second decimal place.

3.3Experimental results for visual target tracking

Weevaluatetheinvestigatedalgorithmscomparatively,usingthecenterlocationerrors,theaveragesuccessrates,andtheaverageframespersecond.TheresultsareshowninFigs. 4&5andinTables3&4.ThetemplatesofNLSSST,theoriginalELSST,andtheimprovedELSSTareshowninFig. 4(g-o).Overall,ouroriginalandimprovedtrackersoutperformtheotherstate-of-the-artalgorithms.

Forocclusion,vealgorithms,exceptIVT,functionsatisfactorily,especiallyat#206, #366oftheDudeksequenceinFig. 4 (b) (theheadintrackingiscoveredbythehandandglasses), #143, #265, #496oftheFaceocc2sequenceinFig. 4 (c) (theheadintrackingiscoveredbythebook), #85, #108, #433oftheGirlsequenceinFig.4 (e) (theheadintrackingturnsright,turnsback,andblockssomeoneelse),and#56, #104, #301oftheFacesequenceinFig. 4(i) (theheadintrackingisalsocoveredbythebook).Afterthetargetrecoversfromocclusion,thesevetrackerscanseekitquickly.IVTworkspoorly,evenlosesthetargetin#10oftheGirlsequence(Fig. 5(e)),becausethenumberofpositiveandnegativesamplesislimited(consideringthelearningeciency),andtheincrementalupdatingoftheclassierinIVTislesseective.CovTrackinghasalargesizeofcandidates(basedonthedenitionofintegralimage,thefeatureextractionofthesecandidatesissofast,thatitscostcanbeignored),whichmakesitrobustforocclusion,scalevariation,andblur.NLSSSTandouroriginalandimprovedtrackersallworkwell,whenthetargetsareoccluded;ourtwotrackersworkevenbetter.

Formotionblur,ourtwotrackersworkbetterthanIVTandtheoriginall1-tracker.Moreover,CovTrackingalsorevealsitsabilitytohandleblur(e.g., #4, #9,and#38inFig. 4(d,o).Intheformersequence,theanimalrunsandjumpsfast(motionblur)withalotofwatersplashing(occlusion),whileinthelatter,themanropesskippingandthecameracannottaketheclearfaceoftheman.IVTandl1-trackerfailbothfrom#4inFig. 4(d),andneverrecoverafterthat.OuroriginalandimprovedELSSlostthetargetin#31and#41,thenrecoveredin#33and#44 (Fig. 4(d)).In#12to#21and#44to#71,theimprovedELSSTworksbetterthanoriginalELSST,CovTracking,l1-tracker,andNLSSST.

Forrotationandscalevariation,ourtrackersalsoperformrobustly(Figs. 4(a,c,e,g,j)and5(a,c,e,g,j).Whenthesurferfallsforwardandbackward,thegirlturnsleftandright,movestowardsandawayfromthecamera,themanturnsleftandright,thecarturnsover,andthejuicebottlebecomesbiggerandsmallerinSurfer,Girl,Faceocc2,Car,andJuicesequence,respectively,vetrackersexceptIVTperformwell,especiallytheNLSSS-trackerandourtwoELSSC-trackers.

Inacomplexbackgroundandwithhighilluminationvariance(Fig. 4(f)),therearemanysimilarstonestotrack.Thel1-trackerandourtwotrackersworkbetterthanotherthreetrackers.Cov-trackerfails,becauseitextractsedgeinformationoftargetsasonedimensionoffeatures,andinthissequences,edgeoftargetsareambiguousandhardtobedistinct.SimilarresultsareobtainedfromFig. 4(h,l,m).

Table3summarizestheaveragesuccessrates.GiventhetrackingresultsRTandtheground-truthRG,weusethedetectioncriterioninthePASCALVOCchallenge[16],i.e.,

toevaluatethesuccessrate.Ingeneral,fromtheaboveanalysis,wendthatouroriginalandimprovedELSSC-trackersperformalmostthesame,andtheformerisslightlybetter,especiallyintheDudek,Faceocc2,Surfer,Stone,CarDark,andJumpingsequences(Fig. 5(a,b,c,f,n,o).However,wealsondfromTable4,whichsummarizestheaverageframespersecond,thattheimprovedELSSTworksmuchfasterthantheoriginalELSSTandalmostalltheothertrackers;IVTisfasterthantheimprovedELSSTwhendealingwithSurferandDudeksequences,butitssuccessrateismuchworsethanthatoftheimprovedELSST.Itissensitiveunderthephenomenaofocclusion,rotation,andtargetmotionblur.Theoriginall1-trackerperformswellinmostframes,butitisalsotime-consumingandfailstotracksometimes;Cov-Trackingissuitableforocclusionandrotation,butfailswhenfacingacomplexbackground.

Fig. 4 Some tracking results

Fig. 5 Quantitative evaluation in terms of center location error (in pixel)

VideoIVTCovTrackl1-trackerNLSSSTELSST1ELSST2Sufer0.05150.47700.03880.46460.46670.4052Dudek0.20110.42160.62150.65280.67260.6604Faceocc20.45530.39180.60840.45790.57470.4641Animal0.02180.27010.03360.36920.40780.4117Girl0.02280.21710.48690.48530.40060.4693Stone0.09740.11140.58340.41090.66110.6572Car0.06070.18580.09560.34180.32780.3825Cup0.63000.37690.55980.57380.52380.5637Face0.33410.28060.04790.52480.54960.5827Juice0.07430.42180.51110.52990.51860.5835Singer0.33260.13610.11840.57900.47810.5651Sunshade0.04810.18030.52570.53480.47430.4948Bike0.05760.37210.04510.44380.36080.3917CarDark0.08310.30870.07900.01100.42080.3737Jumping0.05770.27550.07110.08470.45300.4505

Thebesttworesultsareshowninbold.Ouroriginalandimprovedalgorithmsareshowninthelasttwocolumns,respectively.

Table 4 Average Frames per Second

Thebesttworesultsareshowninbold.Ouroriginalandimprovedalgorithmsareshowninthelasttwocolumns,respectively.

4Conclusions

Inthisstudy,todealwithsparsityandinstabilityinthel1-optimizationproblem[10-12]andthehightimecomplexityoftheNLSSSC-tracker[11],weproposeanovelefficienttracker,i.e.,theEuclideanlocal-structureconstraintbasedsparsecoding(ELSSC).Ournewalgorithmisal1-trackerwithareconstructedover-completedictionary,whichisdierentfromthatintheoriginall1-trackerandNLSSSC-tracker.Moreover,wesimplifythelarge-scalel1-optimizationprobleminourtrackertoamuchsmalleroneinourimprovedELSSC-tracker.

Comparedwiththeoriginall1-tracker,ourELSSC-trackerintroducesthestructureinformationamongthecandidateregionsgeneratedbytheBayesianinferencetothel1-tracker,similartothatintheNLSSSC-tracker.Withourderivation,theoptimizationprocedureofourtracker(Eq.(10))canbesolvedasthatinthel1-optimizationbutverydierentlyfromthatintheNLSSSC.Furthermore,ourimprovedtrackerismuchmoreecientthanthel1-trackerandNLSSSC-tracker.Ourexperimentsdemonstratethesparsity,stability,andeciencyofourtracker.

References

[1]ZHANGShengping,YAOHongxun,SUNXin,etal.Sparsecodingbasedvisualtracking:reviewandexperimentalcomparison[J].Patternrecognition, 2013, 46(7): 1772-1788.

[2]YILMAZA,JAVEDO,SHAHM.Objecttracking:asurvey[J].ACMcomputingsurveys(CSUR), 2006, 38(4): 1-45.

[3]KALALZ,MIKOLAJCZYKK,MATASJ.Tracking-learning-detection[J].IEEEtransactionsonpatternanalysisandmachineintelligence, 2012, 34(7): 1409-1422.

[4]AVIDANS.Ensembletracking[J].IEEEtransactionsonpatternanalysisandmachineintelligence, 2007, 29(2): 261-271.

[5]BABENKOB,YANGMH,BELONGIES.Visualtrackingwithonlinemultipleinstancelearning[C]//ProceedingsofIEEEConferenceonComputerVisionandPatternRecognition(CVPR).Miami,USA, 2009: 983-990.

[6]CANDSEJ,WAKINMB.Anintroductiontocompressivesampling[J].IEEE,signalprocessingmagazine, 2008, 25(2): 21-30.

[7]CANDSEJ,ROMBERGJ,TAOJ.Robustuncertaintyprinciples:exactsignalreconstructionfromhighlyincompletefrequencyinformation[J].IEEEtransactionsoninformationtheory, 2006, 52(2): 489-509.

[8]MEIXue,LINGHaibin,WUYi,etal.Minimumerrorboundedefcientl1trackerwithocclusiondetection[C]//ProceedingsofIEEEConferenceonComputerVisionandPatternRecognition(CVPR).Colorado,USA, 2011:1257-1264.

[9]MEIXue,LINGHaibin.Robustvisualtrackingandvehicleclassificationviasparserepresentation[J].IEEEtransactionsonpatternanalysisandmachineintelligence, 2011, 33(11): 2259-2272.

[10]XUHuan,CARAMANISC,MANNORS.Sparsealgorithmsarenotstable:ano-free-lunchtheorem[J].IEEEtransactionsonpatternanalysisandmachineintelligence, 2011, 34(1): 187-193.

[11]LUXiaoqiang,YUANYuan,LUPingkun,etal.Robustvisualtrackingwithdiscriminativesparselearning[J].Patternrecognition, 2013, 46(7): 1762-1771.

[12]YANGJian,ZHANGLei,XUYong,etal.Beyondsparsity:theroleofL1-optimizerinpatternclassification[J].Patternrecognition, 2012, 45(3): 1104-1118.

[13]DAUBECHIESI,DEFRISEM,DEMOLC.Aniterativethresholdingalgorithmforlinearinverseproblemswithasparsityconstraint[J].Communicationsonpureandappliedmathematics, 2004, 57(11): 1413-1457.

[14]ROSSDA,LIMJ,LINRS,etal.Incrementallearningforrobustvisualtracking[J].Internationaljournalofcomputervision, 2008, 77(1-3): 125-141.

[15]PORIKLIF,TUZELO,MEERP.Covariancetrackingusingmodelupdatebasedonliealgebra[C]//ProceedingsofIEEEComputerSocietyConferenceonComputerVisionandPatternRecognition.NewYork,USA, 2006: 728-735.

[16]EVERINGHAMM,VANGOOLL,WILLIAMSCKI,etal.Thepascalvisualobjectclasses(VOC)challenge[J].Internationaljournalofcomputervision, 2010, 88(2): 303-338.

[17]WUYi,LIMJ,YANGMH.Onlineobjecttracking:Abenchmark[C]//ProceedingsofIEEEConferenceonComputerVisionandPatternRecognition(CVPR).Portland,USA, 2013: 2411-2418.

[18]KRISTANM,PUGFELDERR,LEONARDISA,etal.ThevisualobjecttrackingVOT2013challengeresults[C]//ProceedingsofIEEEInternationalConferenceonComputerVisionWorkshops(ICCVW).Sydney,Australia,2013:98-111.

[19]SONGShuran,XIAOJianxiong.TrackingrevisitedusingRGBDcamera:unifiedbenchmarkandbaselines[C]//ProceedingsofIEEEInternationalConferenceonComputerVision(ICCV).Sydney,Australia, 2013: 233-240.

Authorintroduction

HongyuanWANG,male,wasbornin1960,ProfessorofChangzhouUniversity.Hisresearchinterestisimageprocessingandrecognition,artificialintelligence.Hehaspublishedover20papersininternationaljournalsandconferences.

JiZHANG,male,wasbornin1981,LecturerofChangzhouUniversity.Hisresearchinterestisimageprocessingandrecognition.Hehaspublishedfivepapersininternationaljournalsandconferences.

FuhuaCHEN,male,wasbornin1966,AssistantProfessorofWestLibertyUniversity.Hisresearchinterestisvariationimagesegmentationandinverseproblems.Hiscurrentresearchalsoinvolvesobjecttrackingandpersonre-identification.HehaspublishedovertenpapersininternationaljournalscitedbySCIorEI.

DOI:10.11992/tis.201507073

Received Date:2015-07-31. Online Pulication:2015-09-30.

Foundation Item:National Natural Foundation of China under Grant (61572085,61502058).

Corresponding Author:Hongyuan Wang. E-mail: hywang@cczu.edu.cn.

CLC Number:TP18; TP301.6

Document Code:AArticle ID:1673-4785(2016)01-0136-12

網絡出版地址:http://www.cnki.net/kcms/detail/23.1538.tp.201509030.1456.002.html

主站蜘蛛池模板: 99ri国产在线| 亚洲精品午夜无码电影网| 这里只有精品在线播放| 国产不卡网| 91亚瑟视频| 一区二区三区毛片无码| 久久久噜噜噜久久中文字幕色伊伊| 国产一级无码不卡视频| 亚洲精品无码久久毛片波多野吉| 成人欧美日韩| 在线毛片免费| 亚洲精品777| 久久黄色一级片| 久久99国产乱子伦精品免| 亚洲视频一区在线| 亚洲无限乱码一二三四区| 中文字幕波多野不卡一区| 视频二区亚洲精品| 日韩在线中文| 丁香婷婷激情网| 亚洲第一色视频| 99久久精品视香蕉蕉| 国产一二三区在线| 美女一区二区在线观看| 99热这里只有精品国产99| 国产精品视频导航| 亚洲综合狠狠| 亚洲欧美在线精品一区二区| 日a本亚洲中文在线观看| 亚洲嫩模喷白浆| 国产欧美日韩精品第二区| 国产一区二区精品高清在线观看| 成人免费网站在线观看| 国产在线精彩视频二区| 日韩成人在线一区二区| 国产制服丝袜91在线| 亚洲视频四区| 无码电影在线观看| 狠狠色综合网| 日本高清免费不卡视频| 免费高清毛片| 中文毛片无遮挡播放免费| AV无码无在线观看免费| 久久人妻xunleige无码| 97视频在线精品国自产拍| 精品无码国产自产野外拍在线| 亚洲欧美日韩高清综合678| 97亚洲色综久久精品| 国产在线拍偷自揄观看视频网站| 国产H片无码不卡在线视频| 精品视频一区在线观看| 日韩精品无码不卡无码| 久久香蕉国产线看观看亚洲片| 欧美无专区| 制服无码网站| 2020国产在线视精品在| 亚洲成a∧人片在线观看无码| 亚洲床戏一区| 狼友视频国产精品首页| 欧美午夜视频| 亚洲日本韩在线观看| 91久久精品日日躁夜夜躁欧美| 欧美中日韩在线| 国产精品男人的天堂| 一级毛片免费观看久| 精品国产免费第一区二区三区日韩| 国产亚洲视频中文字幕视频| 中文字幕av一区二区三区欲色| 四虎AV麻豆| 亚洲一区毛片| 无码免费视频| 国产乱子伦精品视频| 91国内在线观看| 久99久热只有精品国产15| 亚洲91精品视频| av一区二区三区高清久久| 99在线视频免费观看| 中文无码精品a∨在线观看| 国产综合无码一区二区色蜜蜜| 谁有在线观看日韩亚洲最新视频| 99视频精品在线观看| 亚洲天堂色色人体|