李大偉, 華相偉, 張 江, 姚菊芳, 戴慧莉, 孔憲明(上海交通大學醫學院附屬仁濟醫院.肝臟外科, .實驗動物中心, 上海 007)
?
小動物斷層掃描系統在小鼠爆發性肝損傷模型中的應用
李大偉1, 華相偉1, 張 江1, 姚菊芳2, 戴慧莉2, 孔憲明2
(上海交通大學醫學院附屬仁濟醫院1.肝臟外科, 2.實驗動物中心, 上海 200127)
[摘要]目的 利用小動物斷層掃描(MicroCT)系統觀察內毒素聯合D-氨基半乳糖(LPS/D-GalN)所致小鼠爆發性肝損傷模型中的影像學表現和CT值變化,并分析影像學表現與小鼠肝損傷之間的關系及機制。方法 取5只雄性C57BL/6小鼠進行爆發性肝損傷造模(LPS 10 mg/kg+D-GalN 700 mg/kg,腹腔注射),分別于造模前,造模后3 h、6 h利用MicroCT行小鼠活體肝組織掃描,根據掃描圖像所獲得資料測量小鼠肝臟的平均CT值,分析比較各組肝損傷征象的顯示率差異。同時,取20只小鼠分為4組,造影劑(ExiTron nano 6000)組,給予造影劑注射,檢測造影劑對肝臟有無毒性; PBS組, 給予同造模組相同劑量的PBS注射; 造模3 h組,肝損傷造模后3 h取血和組織標本; 造模6 h組,造模后6 h取標本。然后比較MicroCT顯像與小鼠血液及病理結果的相關性。結果 以ExiTron nano 6000 做為造影劑, MicroCT可清晰的顯影肝臟和脾臟的二維和三維結構。LPS/D-GalN可以造成嚴重的肝臟損傷。給予LPS/D-GalN處理后3 h,小鼠肝臟的CT值明顯升高,體外實驗證明LPS可增強巨噬細胞吸收造影劑的能力。結論 MicroCT可通過無創方法在小鼠爆發性肝損傷早期反應肝臟損傷的變化,具有較高的應用前景。
[關鍵詞]爆發性肝損傷; 小動物斷層掃描(Micro CT); ExiTron nano 6000;巨噬細胞; 小鼠
爆發性肝損傷是多種因素作用引起的一組臨床綜合征, 具有較高病死率[1]。除肝移植外, 目前尚無有效的治療方法,因此,對爆發性肝損傷的早期干預具有重要的研究價值和臨床意義[2]。以往在進行小鼠肝損傷模型實驗時,為了檢測小鼠的肝損傷程度及變化過程,常采用取血測轉氨酶和取肝臟作病理觀察的方法。但是小鼠的體型較小, 要獲得足夠的血液或組織標本, 必須將小鼠處死。這樣就造成大量動物資源浪費,并且不能在同一個體上得到連續性觀察結果。本研究運用無創傷性的小動物斷層掃描(MicroCT)系統對小鼠肝損傷模型進行活體顯像, 連續檢測爆發性肝損傷的發生發展。MicroCT雖然已在一些動物模型的研究中有所應用[3,4], 但在爆發性肝損傷方面的應用非常有限。
1.1 實驗動物、試劑與儀器
8~10周齡清潔級雄性C57BL/6小鼠25只,體質量20~26 g,購自上海斯萊克實驗動物有限公司[SCXK(滬)2007-0005]。小鼠飼養于SPF設施[SYKX-2012-0013]。動物的使用經過上海交通大學醫學院附屬仁濟醫院動物倫理委員會審批。
Micro-CT系統(eXplore Locus, GE Healthcare)購自美國通用公司。脂多糖(LPS)和 D-半乳糖胺(D-GalN)均購自美國Sigma公司; 體積分數10%中性甲醛; 1 mL注射器。細胞培養基為含體積分數10%血清的DMEM(Gibco,美國Invitrogen公司)。巨噬細胞系RAW264.7(小鼠單核巨噬細胞系),購自中國科學院上海細胞庫。
1.2 爆發性肝損傷模型制備
D-GalN 和LPS同時溶于PBS,濃度為(70 mg D-GalN+1 mg LPS)/mL,完全溶解后每只小鼠腹腔注射(D-GalN 700 mg/kg + LPS10 mg)/kg建立爆發性肝損傷模型。檢測損傷的實驗分為4組,每組5只:造影劑組,給予造影劑注射,6 h后取血。PBS組,給予同造模組相同劑量的PBS注射; 造模3 h組,給予肝損傷造模后3 h取血和組織標本; 造模6 h組,造模后6 h取組織標本。另有5只小鼠用于MicroCT掃描,具體方法見1.4。
1.3 轉氨酶檢測及病理學觀察
各組小鼠分別于造模后相應時間點, 以10 g/L濃度的戊巴比妥鈉按10 mL/kg麻醉, 然后采集各組小鼠腹主動脈血。室溫靜置1 h后, 4 ℃, 1 000 r/min離心分離血清, 測定丙氨酸轉氨酶(ALT)、天冬氨酸轉氨酶(AST)水平; 取小鼠肝組織, 用體積分數為10%甲醛固定,脫水,石蠟包埋,切片(厚5mm),HE染色,于光學顯微鏡下觀察肝組織病理改變。
1.4 MicroCT掃描
5只小鼠在LPS/D-GalN造模前4 h通過鼠尾靜脈注射ExiTron nano6000 100 mL。在造模后0 h、3 h和6 h對小鼠進行MicroCT掃描,相關參數為光管電壓: 80 kV; 光管電流: 0.45 mA; 視圖總量: 400;曝光時間: 400 ms; 平均幀數: 2×2;有效像素: 0.045 mm。掃描時間為20 min,通過 Launch GEHC Micro View系統分析掃描結果。
1.5 體外實驗
實驗組巨噬細胞系細胞進行LPS(1 mg/mL)刺激預處理后12 h更換成添加有ExiTron nano6000的培養基,對照組直接給予含ExiTron nano6000的培養基。培養6 h后,細胞用PBS洗3遍,然后檢測兩組細胞的平均CT值。
1.6 統計學分析
2.1 MicroCT 對正常小鼠肝臟具顯像效果
ExiTron nano6000作為對比劑對小鼠進行MicroCT掃描,可清晰顯示小鼠肝臟和脾臟結構(圖1)。

圖1 小鼠肝臟和脾臟的二維和三維MicroCT成像Figure 1 Two and Three-dimensional image of normal liver and spleen by MicroCT

表1 各組小鼠血清ALT及AST水平Table 1 Serum ALT and AST level after LPS/D-GalN administration in mice
2.2 MicroCT成像與肝損傷進程的關系
如圖2所示,注射LPS/GalN后,造模3 h小鼠肝臟出現輕度病理改變,肝細胞腫脹,核染色加深。而6 h時肝組織病理出現明顯的充血壞死,肝細胞核碎裂,肝小葉結構消失。而血清轉氨酶結果(表1)顯示,LPS/GalN造模后3 h,ALT及AST結果相較PBS組無明顯升高(P>0.05),而6 h后出現明顯升高(P<0.05),表示造模成功。而給同樣處理的小鼠進行增強MicroCT掃描,結果顯示(圖3),造模3 h,小鼠肝臟明顯強化,平均CT值較0 h明顯升高(P<0.05),而在6 h降為初始值。這說明MicroCT可在轉氨酶升高及病理學明顯改變之前檢測小鼠爆發性肝損傷,特別是在肝臟損傷的初始發病階段就有明顯的影像學改變。
2.3 MicroCT對肝損傷顯像的機制
LPS預處理組的巨噬細胞RAW264.7的CT值(180.4±10.16 HU)明顯高于對照組(129.0±18.84 HU) (P<0.05),表明LPS預刺激增強了巨噬細胞吞噬ExiTron nano6000的能力,與大體結果一致。

圖2 LPS/D-GalN造模后的肝臟病理變化Figure 2 Pathological changes of liver after LPS/D-GalN administration in mice

圖3 LPS/D-GalN造模后小鼠肝臟MicroCT掃描A: scan image; B: average CT valueFigure 3 MicroCT images of liver after LPS/D-GalN administration in mice
既往動物實驗,特別是涉及急性損傷的動物實驗都需要消耗大量動物資源。所以開發一種無創檢測手段具有非常大的應用前景[5-8]。小動物的MicroCT顯像與人體的CT顯像有很大區別,前者必須要有造影劑才能進行清晰的軟組織顯像[9-12]。MicroCT最常使用造影劑有Fenestra LC和ExiTron nano等,前者主要由肝細胞通過載脂蛋白E(apoE)受體通路來吸收,而后者在體內主要由網狀內皮系統吸收,在肝內主要表現為庫普弗(kupffer)細胞[13]。這兩種造影劑都已被用在小鼠肝臟腫瘤模型的無創評估中,能清楚顯示肝內腫瘤的位置及大小形狀。本研究采用的LPS/D-GalN模型是一種炎性肝損傷, 巨噬細胞分泌的腫瘤壞死因子a(TNFa)等是介導該損傷初始階段的重要因子。所以本研究采用巨噬細胞特異性吸收的ExiTron nano 6000為MicroCT造影劑,同時ExiTron nano6000在小鼠體內的代謝較為緩慢,注射4 h后就可以達到平衡狀態,并可以維持2周到數月,便于進行連續性無損傷檢測,避免了反復通過鼠尾靜脈注射所帶來的不便。ExiTron nano已被用于多種含有巨噬細胞參與的軟組織病變的MicroCT顯像[14,15]。本文結果表明,用ExiTron nano 6000做造影劑可以清晰顯示肝臟的切面結構及三維立體形態,并且對脾臟也具有較好的顯像效果。
爆發性肝損傷是一種常見病,如得不到及時治療,將會發展為重癥肝炎,病死率非常高。臨床典型特征表現為急性肝功能衰竭,肝組織中大量肝細胞壞死和凋亡。LPS/D-GalN誘發的爆發性肝損傷模型已被廣泛應用于基礎研究[16,17],LPS是內毒素的主要毒性成分,可介導炎癥因子破壞血管內皮的完整性,導致肝細胞的凋亡和壞死,D-GalN可快速結合并消耗大量的尿苷酸,影響肝細胞蛋白質、酶等的生成,增強LPS的作用。LPS/D-GalN肝損傷模型,不僅能模仿內毒素性爆發性肝損傷,同時可用于急性重癥肝炎模型的研究[18]。
既往研究表明[19,20],在小鼠造模早期,血清中細胞炎癥因子白細胞介素6(IL-6)、TNFa、單核細胞趨化蛋白-1(MCP1)表達量就迅速升高,這些炎癥因子活化后,進一步激活體內的固有免疫應答,引起一系列的“炎癥因子風暴”,進而介導肝細胞損傷,而肝細胞壞死產物又會加重炎性反應,最終引發重癥肝炎等不可逆型肝臟疾病。而巨噬細胞是這一過程中最重要的炎性細胞[21]。本實驗表明,在LPS/D-GalN毒性早期,小鼠肝臟的MicroCT顯像就有明顯改變,平均CT值明顯升高,說明肝內巨噬細胞吸收ExiTron nano 6000的能力被明顯激活。細胞實驗也證明,LPS能明顯增強巨噬細胞系RAW264.7吸收ExiTron nano6000的能力。Streetz 等[22]研究表明,在損傷后期炎癥因子水平均發生明顯下調,可能是損傷后期,肝內損傷過重,肝臟功能衰竭,造成機體各種巨噬細胞、淋巴細胞的大量壞死,上述細胞壞死后吞噬功能及釋放炎性因子能力都明顯下降,以致染毒后期血清炎癥因子明顯下降,這也解釋了為什么在損傷后期肝臟在MicroCT顯像中的平均CT值出現明顯下降。
綜上結果, 低劑量ExiTron nano 6000可以快速清晰提供肝臟和脾臟的顯影。這一顯影效果主要通過網狀內皮系統實現的。LPS/D-GalN可造成明顯的爆發性肝損傷, MicroCT可通過平均CT值的升高反應肝臟的病理變化, 且這一影像學的改變早于肝臟損傷的發生。目前常用肝損傷動物模型, 如膽道結扎的淤膽模型、酒精性肝損傷、非酒精性肝病和藥物性肝損傷模型中, 巨噬細胞均發揮重要作用。由此可見, 以ExiTron nano 6000為造影劑的MicroCT顯像技術在小動物肝損傷的無創檢測中具有應用前景。
參考文獻:
[1] Younis BB, Arshad R, Khurhsid S, et al. Fulminant hepatic failure (FHF) due to acute hepatitis C[J]. Pak J Med Sci, 2015, 31(4):1009-1011.
[2] Kirnap M, Akdur A, Ozcay F, et al. Liver transplant for fulminant hepatic failure: a single-center experience[J]. Exp Clin Transplant, 2015, 13(4):339-343.
[3] Stadelmann VA, Potapova I, Camenisch K, et al. In vivo microCT monitoring of osteomyelitis in a rat model[J]. Biomed Res Int, 2015, 2015:587857.
[4] Lalwani K, Giddabasappa A, Li D, et al. Contrast agents for quantitative microCT of lung tumors in mice[J]. Comp Med, 2013, 63(6):482-490.
[5] Thurman JM, Rohrer B. Noninvasive detection of complement activation through radiologic imaging[J]. Adv Exp Med Biol, 2013, 735:271-282.
[6] Saito S, Murase K. Detection and early phase assessment of radiation-induced lung injury in mice using micro-CT[J]. PLoS One, 2012, 7(9):e45960.
[7] Wang X, Hagemeyer CE, Hohmann JD, et al. Novel single-chain antibody-targeted microbubbles for molecular ultrasound imaging of thrombosis: validation of a unique noninvasive method for rapid and sensitive detection of thrombi and monitoring of success or failure of thrombolysis in mice[J]. Circulation, 2012, 125(25):3117-3126.
[8] Kuroda H, Kakisaka K, Kamiyama N, et al. Non-invasive determination of hepatic steatosis by acoustic structure quantification from ultrasound echo amplitude[J]. World J Gastroenterol, 2012, 18(29):3889-3895.
[9] Hyafil F, Cornily JC, Feig JE, et al. Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography[J]. Nat Med, 2007, 13(5):636-641.
[10] Weichert JP, Longino MA, Bakan DA, et al. Polyiodinated triglyceride analogs as potential computed tomography imaging agents for the liver[J]. J Med Chem, 1995, 38(4):636-646.
[11] Bakan DA, Doerr-Stevens JK, Weichert JP, et al. Imaging efficacy of a hepatocyte-selective polyiodinated triglyceride for contrast-enhanced computed tomography[J]. Am J Ther, 2001, 8(5):359-365.
[12] Willekens I, Lahoutte T, Buls N, et al. Time-course of contrast enhancement in spleen and liver with Exia 160, Fenestra LC, and VC[J]. Mol Imaging Biol, 2009, 11(2):128-135.
[13] Boll H, Figueiredo G, Fiebig T, et al. Comaparison of Fenestra LC, ExiTron nano 6000, and ExiTron nano 12000 for micro-CT imaging of liver and spleen in mice[J]. Acad Radiol, 2013, 20(9):1137-1143.
[14] Ding J, Wang Y, Ma M, et al. CT/fluorescence dual-modal nanoemulsion platform for investigating atherosclerotic plaques[J]. Biomaterials, 2013, 34(1):209-216.
[15] Chen W, Vucic E, Leupold E, et al. Incorporation of an apoE-derived lipopeptide in high-density lipoprotein MRI contrast agents for enhanced imaging of macrophages in atherosclerosis[J]. Contrast Media Mol Imaging, 2008, 3(6): 233-242.
[16] Liu LM, Zhang JX, Luo J, et al. A role of cell apoptosis in lipopolysaccharide (LPS)-induced nonlethal liver injury in D-galactosamine (D-GalN)-sensitized rats[J]. Dig Dis Sci, 2008, 53(5):1316-1324.
[17] Zhang S, Yang N, Ni S, et al. Pretreatment of lipopolysaccharide (LPS) ameliorates D-GalN/LPS induced acute liver failure through TLR4 signaling pathway[J]. Int J Clin Exp Pathol, 2014, 7(10):6626-6634.
[18] Chastre A, Belanger M, Beauchesne E, et al. Inflammatory cascades driven by tumor necrosis factor-alpha play a major role in the progression of acute liver failure and its neurological complications[J]. PLoS One, 2012, 7(11):e49670.
[19] Inoue K, Takano H, Satoh M. Protective role of metallothionein in coagulatory disturbance accompanied by acute liver injury induced by LPS/D-GalN[J]. Thromb Haemost, 2008, 99 (5):980-983.
[20] Ahmad A, Raish M, Ganaie MA, et al. Hepatoprotective effect of Commiphora myrrha against d-GalN/LPS-induced hepatic injury in a rat model through attenuation of pro inflammatory cytokines and related genes[J]. Pharm Biol, 2015, 53(12):1759-1767.
[21] Liu H, Zhang W, Dong S, et al. Protective effects of Sea buckthorn polysaccharide extracts against LPS/d-GalN-induced acute liver failure in mice via suppressing TLR4-NF-kappaB signaling[J]. J Ethnopharmacol, 2015, 176:69-78.
[22] Streetz K, Leifeld L, Grundmann D, et al. Tumor necrosis factor alpha in the pathogenesis of human and murine fulminant hepatic failure[J]. Gastroenterology, 2000, 119(2):446-460.
Non-invasive Assessment of Fulminant Liver Injury with Contrast-Enhanced Micro CT in Mice Models
LI Da-wei1, HUA Xiang-wei1, ZHANG Jiang1, YAO Ju-fang2, DAI Hui-li2, Kong Xian-ming2
(1. Department of Transplantation and Hepatic Surgery, 2. Animal Facility, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China)
[Abstract]Objective To explore the potential use and mechanism of MicroCT using ExiTron nano6000 in the assessment of fulminant liver injury in mouse models. Methods Five male C57BL/6 mice were subjected to administration of LPS/D-GalN to develop model of fulminant liver injury. The mice were scanned with MicroCT before the treatment and at 3 h and 6 h after the establishment of liver injury model. The average CT value of liver were analyzed with software for future study. Twenty male mice were divided into 4 groups, 5 mice in each group: Nano 6000 group, the mice were treated with Nano 6000; PBS group, treated with PBS as control; model 3 h group and 6 h group, injected with LPS/D-GalN and sacrificed at 3 h, 6 h after the injection. Pathological damage of the liver were observed by microscope and serum ALT and AST were detected. Results MicroCT with ExiTron nano6000 as contrast agent could provided specific and clear 2 dimensions and 3 dimensions structure of liver and spleen in mice. The average CT value of liver was significantly increased at 3 h after LPS/D-GalN treatment and drop to baseline level at 6 h. In vitro experiments showed that LPS stimulation could enhance the endocytotic ability of macrophages to uptake ExiTron nano6000. Conclusions The Micro CT provided a rapid noninvasive longitudinal monitoring of fulminant liver injury in mice models and may be had good application in future research.
[Key words]Fulminant liver injury; Micro CT; ExiTron nano 6000; Macrophage; Mice
[中圖分類號]Q95-33
[文獻標識碼]B
[文章編號]1674-5817(2016)03-0180-06
doi:10.3969/j.issn.1674-5817.2016.03.004
[收稿日期]2016-01-12
[基金項目]上海市2014年度“科技創新行動計劃”實驗動物研究領域科技支撐項目(14140902000)
[作者簡介]李大偉(1988-), 博士, 住院醫師。研究方向: 急性肝損傷 。E-mail: lidawei3000@126.com
[通訊作者]孔憲明, 主任醫師, 博士生導師。E-mail: kxm666@sohu.com