王加偉,彭 露,鄒明民,楊一帆,汪 蕾,尤民生
(福建農(nóng)林大學(xué)應(yīng)用生態(tài)研究所, 閩臺(tái)特色作物病蟲(chóng)生態(tài)防控協(xié)同創(chuàng)新中心,農(nóng)業(yè)部閩臺(tái)作物有害生物綜合治理重點(diǎn)實(shí)驗(yàn)室,福州350002)
?

昆蟲(chóng)卵黃原蛋白受體(VgRs)及其主要功能綜述
王加偉*,彭露*,鄒明民,楊一帆,汪蕾,尤民生**
(福建農(nóng)林大學(xué)應(yīng)用生態(tài)研究所, 閩臺(tái)特色作物病蟲(chóng)生態(tài)防控協(xié)同創(chuàng)新中心,農(nóng)業(yè)部閩臺(tái)作物有害生物綜合治理重點(diǎn)實(shí)驗(yàn)室,福州350002)
卵黃原蛋白受體(VgRs)屬于低密度脂蛋白受體家族成員,具有該家族典型的保守結(jié)構(gòu)域,包括配體結(jié)合域,表皮生長(zhǎng)因子前體同源域,跨膜域,O-聯(lián)糖功能域,以及胞質(zhì)尾域。昆蟲(chóng)VgRs通常具有卵巢特異性,是卵黃原蛋白Vg的專一性胞吞作用受體,可介導(dǎo)Vg進(jìn)入昆蟲(chóng)卵母細(xì)胞,而后沉淀積累形成昆蟲(chóng)生殖必須的卵黃蛋白YP。VgRs介導(dǎo)的胞吞作用是一個(gè)動(dòng)態(tài)循環(huán)過(guò)程,它是卵黃發(fā)生的基礎(chǔ),對(duì)昆蟲(chóng)卵母細(xì)胞發(fā)育起著至關(guān)重要的作用。近年來(lái)的研究表明,VgRs不僅與卵巢激活、卵黃發(fā)生與卵子形成密切相關(guān),而且在昆蟲(chóng)信息交流、社會(huì)分化、行為構(gòu)建以及免疫調(diào)控等中也起到了至關(guān)重要的作用,已成為潛在的害蟲(chóng)控制新靶標(biāo)。本文首次對(duì)昆蟲(chóng)VgRs基因的序列信息,分子結(jié)構(gòu),系統(tǒng)進(jìn)化,表達(dá)模式以及調(diào)控功能等方面進(jìn)行了綜述,旨在為了解VgRs基因的研究進(jìn)展及前景提供參考,對(duì)進(jìn)一步改進(jìn)害蟲(chóng)生態(tài)控制的策略和措施也具有指導(dǎo)意義。
昆蟲(chóng);卵黃原蛋白受體;表達(dá)模式;生殖調(diào)控;功能
眾所周知,昆蟲(chóng)是動(dòng)物界中種類(lèi)最多、數(shù)量最大、分布范圍最廣的類(lèi)群,除了擁有個(gè)體小、食性廣、生命周期短、適應(yīng)進(jìn)化快等特點(diǎn)外,更為主要的是其強(qiáng)大的生殖能力和特殊的生殖適應(yīng)性(雷朝亮和榮秀蘭,2003)。昆蟲(chóng)作為一種卵生動(dòng)物,其胚胎發(fā)育主要依靠發(fā)育中的卵母細(xì)胞積累充足的卵黃蛋白(yolk protein, YP)等物質(zhì)作為生命必須的營(yíng)養(yǎng)物質(zhì)(氨基酸、蛋白質(zhì)、脂類(lèi)、磷酸鹽、碳水化合物、離子和維生素等),該過(guò)程也被稱為卵黃發(fā)生(vitellogenesis),是昆蟲(chóng)生殖調(diào)控的核心(Amdametal.,2010; 戈林泉和吳進(jìn)才,2010)。迄今為止,卵黃原蛋白(vitellogenin,Vg)是所有昆蟲(chóng)中最為豐富的一類(lèi)YP前體,主要在激素的調(diào)控下由雌性昆蟲(chóng)脂肪體細(xì)胞合成,并釋放到血淋巴,通過(guò)受體作用被卵母細(xì)胞攝取,最終通過(guò)剪切、修飾、加工后以晶體形式沉淀為YP(Matozzoetal., 2008; Tufail and Takeda,2008,2009)。
卵黃蛋白原受體(vitellogenin receptors,VgRs)具有卵巢特異性,是Vg的專一性胞吞作用受體(Tufail and Takeda,2009),與卵生動(dòng)物,尤其是昆蟲(chóng)的生殖過(guò)程密切相關(guān)。在VgR介導(dǎo)的Vg胞吞作用過(guò)程中,VgR與Vg結(jié)合形成的受體—配體復(fù)合物引發(fā)細(xì)胞質(zhì)膜局部?jī)?nèi)化(internalization),隨后在網(wǎng)格蛋白(clathrin)的作用下形成被膜小窩(coated pit)(Brown and Goldstein,1986),包裹著Vg的被膜小窩逐步深陷,直至脫離質(zhì)膜形成被膜小泡(coated vesicle),最后轉(zhuǎn)運(yùn)至卵母細(xì)胞內(nèi),進(jìn)入細(xì)胞內(nèi)的被膜小泡脫離包被,Vg/VgR復(fù)合體在核內(nèi)酸化作用下解離,Vg被胞內(nèi)體包裹后沉淀形成YP,VgR重新回到卵母細(xì)胞表面,再次介導(dǎo)Vg轉(zhuǎn)運(yùn)(Thomas and Alexander,1998; Tufail and Takeda,2008)。可以看出,VgR介導(dǎo)的胞吞作用是一個(gè)動(dòng)態(tài)循環(huán)過(guò)程,且具有專一特異性,既保證了卵母細(xì)胞對(duì)Vg的高效攝取,又可避免吸入過(guò)多的細(xì)胞外溶液。
VgR是卵黃發(fā)生的基礎(chǔ),對(duì)昆蟲(chóng)卵巢的成熟起著至關(guān)重要的作用,也是研究控制害蟲(chóng)的潛在靶標(biāo)(Linetal.,2013)。開(kāi)展VgR的研究對(duì)深入了解昆蟲(chóng)的生殖生理機(jī)制、挖掘有效控制害蟲(chóng)的新方法具有重要意義。近年來(lái),昆蟲(chóng)VgRs的研究逐步成為探討昆蟲(chóng)生殖調(diào)控機(jī)制的熱點(diǎn),從Ferenz(1993)在飛蝗卵母細(xì)胞中純化、鑒定出第一個(gè)VgR蛋白以來(lái),迄今為止,已有包括鱗翅目、蜚蠊目、雙翅目、膜翅目、半翅目、鞘翅目,以及虱目在內(nèi)的30種昆蟲(chóng)的VgRs序列被克隆、測(cè)序或預(yù)測(cè)。為了進(jìn)一步促進(jìn)昆蟲(chóng)VgR基因的研究,拓展該領(lǐng)域研究的廣度與深度,本文首次全面的對(duì)昆蟲(chóng)VgR基因的序列信息、分子結(jié)構(gòu)、系統(tǒng)進(jìn)化、表達(dá)模式以及生殖調(diào)控功能等方面進(jìn)行了綜述,旨在為了解VgR基因的研究進(jìn)展及前景提供參考,對(duì)進(jìn)一步改進(jìn)害蟲(chóng)生態(tài)控制的策略和措施也具有指導(dǎo)意義。
隨著分子生物學(xué)技術(shù)與基因組學(xué)數(shù)據(jù)的不斷豐富與發(fā)展,目前對(duì)于昆蟲(chóng)VgR基因的克隆主要采用3種方式:第一種為genome walking,即分步法獲得基因全長(zhǎng)。首先根據(jù)已有的基因組或轉(zhuǎn)錄組信息,篩選獲得VgR基因的預(yù)測(cè)序列,通過(guò)分段設(shè)計(jì)引物,逐段擴(kuò)增基因全長(zhǎng),最后將獲得的各段序列進(jìn)行整合與拼接。值得注意的是,在進(jìn)行分段引物設(shè)計(jì)時(shí),必須包含至少50 bp的重合序列,這樣進(jìn)行拼接時(shí)才能保證獲得序列的完整性。第二種為常規(guī)的RACE (Rapid-Amplification of cDNA Ends)擴(kuò)增方法,此方法大多應(yīng)用在目標(biāo)物種的基因組或轉(zhuǎn)錄組信息還未發(fā)布,但序列已知的基因克隆,即直接將前人報(bào)道和上傳的基因序列作為自己克隆的依據(jù)。首先設(shè)計(jì)通用引物獲得中間片段,然后根據(jù)中間片段分別設(shè)計(jì)針對(duì)5’RACE的下游引物與3’RACE的上游引物,分別獲得5端與3端序列,最后將三段序列進(jìn)行拼接即可獲得全長(zhǎng)。例如,紅火蟻Solenopsisinvicta(Chenetal., 2004)、美洲大蠊Periplanetaamericana(Tufail and Takeda,2005)、馬德拉蜚蠊Rhyparobiamaderae(Tufail and Takeda,2007)、斜紋夜蛾Spodopteralitura(Shuetal.,2011)、柞蠶Antheraeapernyi(Liuetal., 2011)、柳蠶Actiasselene(Xuetal., 2012)、家蠶Bombyxmori(Linetal., 2013)、煙粉虱Bemisiatabaci(郭建洋等, 2010)、褐飛虱Nilaparvatalugens(Luetal., 2015)和桔小實(shí)蠅Bactroceradorsalis(Congetal.,2015; Linetal.,2015),均采用此法。值得注意的是這種方法對(duì)cDNA的質(zhì)量和引物的特異性要求很高。第三種為根據(jù)已知探針進(jìn)行基因克隆,以物種VgR的cDNA 片段作為分子探針,篩選cDNA 文庫(kù),從而獲得基因的cDNA 序列,此方法仍需要基因組信息的支持。雙翅目的埃及伊蚊AedesaegyptiVgR的基因克隆則采用此方法(Cho and Raikhel,2001)。
自Ferenz首次從飛蝗卵母細(xì)胞中純化、鑒定出第一個(gè)VgR蛋白以來(lái)(Ferenz,1993),VgR基因的研究越來(lái)越成為熱點(diǎn)。目前NCBI中已收錄的昆蟲(chóng)VgR信息共有385條,已報(bào)道的有30種昆蟲(chóng)VgRs基因(表1),其中已克隆驗(yàn)證獲得全長(zhǎng)序列的有15 種昆蟲(chóng),通過(guò)基因組和轉(zhuǎn)錄組信息預(yù)測(cè)的VgR序列有15種昆蟲(chóng)。
續(xù)上表

類(lèi)群Taxon基因編號(hào)GeneID核苷酸序列(bp)蛋白質(zhì)(kDa)參考文獻(xiàn)Reference歐洲大黃蜂*Bombusterrestris8081465725280198Woodardetal.,2011意大利蜜蜂*ApismelliferaGB408235124193Weinstocketal.,2006印度跳蟻*Harpegnathossaltator7497533685274196Bonasioetal.,2010云南小蜜蜂X1*ApisfloreaX18208382905262198Wangetal.,2014云南小蜜蜂X2*ApisfloreaX28208382925166195Wangetal.,2014半翅目Hemiptera褐飛虱Nilaparvatalugens2926069745796219Luetal.,2015煙粉虱Bemisiatabaci3044426905430201郭建洋等,2010豌豆蚜*Acyrthosiphonpisum6416577335472206Brisson&Richards,2010鞘翅目Coleoptera赤擬谷盜*Triboliumcastaneum6429306073921147Richardsetal.,2008虱目Anoplura體虱*Pediculushumanuscorporis2420044995442202Kirknessetal.,2010
注:*代表基因組預(yù)測(cè)獲得的VgR序列;基因編號(hào)中含前綴字母的來(lái)自物種基因組,其他來(lái)自NCBI。Note:The asterisk (*) indicates the predictedVgRsequences collecting from the insect genomes; Gene IDs,containing prefix letters are from species genome databases,others from NCBI.
利用已經(jīng)獲得或預(yù)測(cè)的昆蟲(chóng)VgR序列進(jìn)行保守結(jié)構(gòu)域分析(圖1),結(jié)果顯示昆蟲(chóng)VgRs屬于低密度脂蛋白受體(low density lipoprotein receptor, LDLR)家族(Sappington and Raikhel, 1998)。此外,該家族還包括脂蛋白受體(lipoprotein receptor, LpR),超低密度脂蛋白受體(very LDLR,VLDLR)(Sakaietal., 1994),LDLR相關(guān)蛋白(LDLR-related protein, LRP)(Herzetal., 1988),以及megalin分子(Saitoetal., 1994)。昆蟲(chóng)VgRs具有一些LDLR家族典型的保守結(jié)構(gòu)域,如配體結(jié)合域(ligand-binding domain, LBD),表皮生長(zhǎng)因子前體同源域(epidermal growth factor precursor homology domain, EGFD),跨膜域(transmembrane domain, TMD),O-聯(lián)糖功能域(O-linked sugar domain, OLSD),以及胞質(zhì)尾域(cytoplasmic domain, CPD)。同一物種不同的LDLR家族成員以及不同物種同一家族成員之間,LBD與EGFD的數(shù)量并不相同,可以此作為區(qū)分亞家族的標(biāo)準(zhǔn)之一,例如VLDLRs(Takahashietal., 1992; Sakaietal., 1994),脊椎動(dòng)物VgRs(Bujoetal., 1994; Okabayashietal., 1996)、線蟲(chóng)VgRs(Grant and Hirsh,1999)、以及昆蟲(chóng)LpRs僅含有單個(gè)LBD與EGFD結(jié)構(gòu)域,而人類(lèi)與雞的LRPs以及magalin分子則含有兩個(gè)以上的LBD與EGFD結(jié)構(gòu)域,由于昆蟲(chóng)VgRs特異地含有兩個(gè)LBD和EGFD結(jié)構(gòu)域,因此被劃分為一個(gè)獨(dú)立的LDLR亞家族(Tufail and Takeda,2005, 2007)。
配體結(jié)合域(LBD)是一段由40個(gè)氨基酸左右組成的介導(dǎo)配體和受體相互作用的功能域,含有A型重復(fù)序列,每個(gè)重復(fù)序列包含能夠結(jié)合鈣離子的保守性酸性殘基區(qū)域和6個(gè)以二硫鍵結(jié)合的半胱氨酸殘基(Yamamotoetal.,1984 )。昆蟲(chóng)LBD N-末端的A型重復(fù)區(qū)域用來(lái)結(jié)合Vg蛋白分子。昆蟲(chóng)VgR的兩個(gè)LBD配體結(jié)合域中分別含有4-5個(gè)或7-8個(gè)重復(fù)基序。
表皮生長(zhǎng)因子前體同源域(EGFD)通常位于LBD之后,約40個(gè)氨基酸,其中包含B型重復(fù)序列與β螺旋域,B型重復(fù)序列仍然由6個(gè)以二硫鍵結(jié)合的半胱氨酸殘基組成,但其綁定模式不同于LBD (Tufail and Takeda,2009)。昆蟲(chóng)VgRs具有2個(gè) EGF同源域,由7個(gè)位置相對(duì)固定的B型重復(fù)序列構(gòu)成,其中4個(gè)位于第一個(gè)同源域,3個(gè)位于第二個(gè)同源域(Tufail and Takeda,2005,2007,2009)。而β螺旋域約由260個(gè)氨基酸組成,其中含有6個(gè)YWTD重復(fù)基序,昆蟲(chóng)VgRs具有3個(gè)YWTD基序群集(Jeonetal., 2001)。EGF結(jié)構(gòu)域突變的VgRs雖然可以結(jié)合配體蛋白,但不能在酸性條件下發(fā)生解離,對(duì)家蠶Bombyxmori胚胎具有明顯的致死效應(yīng)(Linetal., 2013)。
O-聯(lián)糖功能域(OLSD)位于質(zhì)膜表面,由30個(gè)左右的氨基酸組成,富含蘇氨酸和絲氨酸殘基。大部分昆蟲(chóng)VgRs均含有OLSD,但也有例外,已有的序列預(yù)測(cè)顯示,果蠅、北美大黃蜂、印度跳蟻、豌豆蚜、紅火蟻,帝王斑蝶和棉鈴蟲(chóng)均不含OLSD(Luetal., 2015)。目前OLSD的功能仍不明確。
跨膜域(TMD)是位于O-聯(lián)糖功能域的羧基末端的一段短序列,由約24個(gè)氨基酸組成,在調(diào)節(jié)受體功能,以及質(zhì)膜與胞吞小泡之間的循環(huán)通路中具有重要作用,功能類(lèi)似膜錨(Herz and Bock,2002)。昆蟲(chóng)VgRs大多只有一個(gè)TMD,位于C末端,但也有例外,序列預(yù)測(cè)顯示,埃及伊蚊、地中海實(shí)蠅、佛羅里達(dá)弓背蟻、豌豆蚜、煙粉虱、體虱VgRs等均具有兩個(gè)TMD,另一個(gè)位于N端。TMD大部分為疏水性氨基酸,比如丙氨酸、甘氨酸、異亮氨酸、亮氨酸、苯丙氨酸和纈氨酸等(Tufail and Takeda,2009)。
胞質(zhì)尾域(CPD)是細(xì)胞內(nèi)的一段區(qū)域, 主要通過(guò)NPXY(冬酰胺-脯氨酸-X-酪氨酸)內(nèi)化信號(hào)(internalization signal)將受體定位到被膜小窩上,所有LDLR家族成員的胞質(zhì)尾區(qū)至少含有一個(gè)NPXY拷貝。NPXY序列呈緊密的發(fā)夾結(jié)構(gòu),主要作為一些連接蛋白與信號(hào)分子的結(jié)合位點(diǎn)。而大多數(shù)昆蟲(chóng)VgRs胞質(zhì)尾區(qū)域的NPXY信號(hào)由特殊的LI(亮氨酸-異亮氨酸)內(nèi)吞信號(hào)代替,但也有例外,紅火蟻VgRs同時(shí)具有NPXY和LI信號(hào)(Chenetal.,2004),蜚蠊目昆蟲(chóng)同時(shí)具有NPTF及LI信號(hào)。除此之外,昆蟲(chóng)VgRs的其他內(nèi)化信號(hào)還包括蟑螂中發(fā)現(xiàn)的NPFD基序,該基序與酵母NPFX(1,2)D基序結(jié)構(gòu)類(lèi)似,能夠直接有效的吸收Kex2p受體(Dunn and Hicke,2001; Howardetal., 2002),蚊子中發(fā)現(xiàn)的Src同源體3(Src-homology 3,SH3)結(jié)合基序PXXP(Hjalmetal., 1996; Sun and Scoutar,1999),以及果蠅VgR胞質(zhì)尾區(qū)存在的AKSAGQF基序,該基序與甘露糖6-磷酸鹽受體(mannose 6-phosphate receptor)基序AKGMEQF類(lèi)似,能夠與LL和YXX? (其中X 表示任何氨基酸,?表示帶有疏水側(cè)鏈的氨基酸)一起發(fā)揮功能(Danzeretal., 1997)。昆蟲(chóng)VgRs中內(nèi)化信號(hào)的多樣性,說(shuō)明在受體介導(dǎo)胞吞作用過(guò)程中不同昆蟲(chóng)可能會(huì)運(yùn)用不同的信號(hào)。由此推斷昆蟲(chóng)VgR的結(jié)構(gòu)與蛋白修飾特征可能與其轉(zhuǎn)運(yùn)過(guò)程和效應(yīng)密切相關(guān)。
除了保守結(jié)構(gòu)域分析外,本文還預(yù)測(cè)了昆蟲(chóng)已有VgR序列的信號(hào)肽區(qū)域(http://www.cbs.dtu.dk/services/SignalP/)(圖1),不同昆蟲(chóng)均含有一條信號(hào)肽,位于肽鏈N端,多從第一個(gè)氨基酸序列開(kāi)始,且長(zhǎng)度在18-30 bp不等,主要用于引導(dǎo)VgR蛋白分子進(jìn)入到卵母細(xì)胞膜表面,從而結(jié)合Vg。
對(duì)NCBI中收錄的和已發(fā)表的15個(gè)昆蟲(chóng)基因組中獲得的29種昆蟲(chóng)VgRs的氨基酸序列,應(yīng)用MEGA軟件進(jìn)行了系統(tǒng)進(jìn)化樹(shù)分析(圖2),結(jié)果顯示,昆蟲(chóng)VgRs主要分為三大分支,其中鱗翅目昆蟲(chóng)VgRs歸屬于第I支(下方區(qū)域),雙翅目昆蟲(chóng)VgRs歸屬于第II支(中間區(qū)域),而大多數(shù)昆蟲(chóng)VgRs則歸屬于第III支(上方區(qū)域),第III支又可分為3個(gè)亞分支,在進(jìn)化樹(shù)上自上而下為膜翅目,鞘翅目、蜚蠊目、虱目、半翅目蚜蟲(chóng)與半翅目??梢钥闯觯瑢俚倪M(jìn)化關(guān)系更為接近,E值均在50以上,說(shuō)明VgR分子進(jìn)化與物種的進(jìn)化較一致。

圖1 不同昆蟲(chóng)VgR典型特征結(jié)構(gòu)域的比較
注:序列前字母為代表物種VgR,S為信號(hào)肽,LBD為A型富含半胱氨酸殘基的重復(fù)序列,EGF為B型富含半胱氨酸殘基的重復(fù)序列,O為O-聯(lián)糖結(jié)構(gòu)域,T為跨膜域,C為胞質(zhì)尾區(qū)。Note:S, signal peptide;LBD, ligand-binding domain;EG, epidermal growth factor precursor homology domain;O, O-linked sugar domain;T, transmembrane domain;C, cytoplasmic domain.Sequences were retrieved from GenBank protein database and genomic database. These include the VgR ofDrosophilamelanogaster(DmVgR),Aedesaegypti(AaVgR),Solenopsisinvicta(SiVgR),Periplanetaamericana(PaVgR),Blattellagermanica(BgVgR),Rhyparobiamaderae(RmVgR),Antheraeapernyi(ApeVgR),Spodopteralitura(SlVgR),Actiasselene(AsVgR),Bemisiatabaci(BtaVgR),Bombyxmori(BmVgR),Nilaparvatalugens(NlVgR),Bactroceradorsalis(BdVgR)Helicoverpaarmigera(HaVgR),Bombusimpatiens(BiVgR),Camponotusfloridanus(CfVgR),Apisdorsata(AdVgR),Nasoniavitripennis(NvVgR),Megachilerotundata(MrVgR),Bombusterrestris(BteVgR),Apismellifera(AmVgR),Harpegnathossaltator(HsVgR),Apisflorea(AfVgR),Ceratitiscapitata(CcVgR),Anophelesgambiae(AgVgR),Acyrthosiphonpisum(ApiVgRs),Danausplexippus(DpVgR),Triboliumcastaneum(TcVgR),Pediculushumanuscorporis(PhcVgR).

圖2 昆蟲(chóng)VgRs系統(tǒng)發(fā)育進(jìn)化樹(shù)Fig.2 Phylogenetic tree of vitellogenin receptors(VgRs)in insects
大多數(shù)昆蟲(chóng)VgRs的表達(dá)發(fā)生在初羽化成蟲(chóng)之后,例如埃及伊蚊(Sappingtonetal., 1996)、美洲大蠊(Sappingtonetal., 1996)、馬德拉蜚蠊(Tufail and Takeda,2005)、斜紋夜蛾(Shuetal.,2011)、褐飛虱(Luetal., 2015)、煙粉虱(郭建洋, 2010; 程璐等,2013)、桔小實(shí)蠅(Linetal.,2015)等。但不同昆蟲(chóng)種類(lèi)其表達(dá)高峰有所差異,埃及伊蚊VgR的轉(zhuǎn)錄產(chǎn)物在成蟲(chóng)羽化1 d內(nèi)急劇增加,吸血24 h后達(dá)到峰值(Sappingtonetal., 1996)。美洲大蠊VgR在羽化后1-2 d表達(dá)量最高,之后3-9 d逐漸下降,在13 d時(shí)已檢測(cè)不到VgR的表達(dá),然而SDS-PAGE研究發(fā)現(xiàn),VgR蛋白在羽化后5-7 d的積累量達(dá)到最高(Tufail and Takeda,2005)。馬德拉蜚蠊VgR的表達(dá)模式與美洲大蠊較為相似,其轉(zhuǎn)錄產(chǎn)物在羽化后第一天達(dá)到最高,之后慢慢降低;用SDS-PAGE分析發(fā)現(xiàn)成蟲(chóng)羽化后1-2 d內(nèi)VgR蛋白的表達(dá)量較低,之后開(kāi)始緩慢增加,直到6-9 d時(shí)達(dá)到峰值(Tufail and Takeda,2007)。這可能由于蛋白開(kāi)始表達(dá)到積累至含量最高存在一定的延時(shí)性。斜紋夜蛾VgR的表達(dá)在羽化后36 h達(dá)到峰值,之后逐漸下降(Shuetal.,2011)。褐飛虱的VgR表達(dá)則較延遲,直至成蟲(chóng)第6天達(dá)到最高值,之后逐漸下降(Luetal., 2015)。而煙粉虱VgR的表達(dá)則在成蟲(chóng)第7天達(dá)到最高值(Chengetal.,2013)。以上差異可能與昆蟲(chóng)生殖腺的發(fā)育速率以及產(chǎn)卵前期長(zhǎng)短密切相關(guān)。除此之外,也有研究發(fā)現(xiàn),VgR在雌性家蠶的整個(gè)發(fā)育周期均有表達(dá),卵期至5齡幼蟲(chóng)的第5天時(shí),VgRs的表達(dá)水平較低,隨后逐漸升高,在成蟲(chóng)期達(dá)到最大值(Linetal., 2013),昆蟲(chóng)VgRs可能識(shí)別多種配體和轉(zhuǎn)運(yùn)其他脂蛋白,由于突變體“缺少Vn”,為了提供足夠的營(yíng)養(yǎng)物質(zhì)使卵巢發(fā)育,VgR可能參與轉(zhuǎn)運(yùn)了Vg和30 kDa的蛋白(Tufail and Takeda,2009);并且紅火蟻的VgR也只在婚飛(mating flights)期交配后表達(dá), 24 h達(dá)到峰值,之后逐漸下降,無(wú)翼紅火蟻VgR不表達(dá),也沒(méi)有受精現(xiàn)象;紅火蟻中存在的婚飛現(xiàn)象是一種繁殖與傳播的策略,獲得足夠的營(yíng)養(yǎng)物質(zhì)與發(fā)育出翅膀是紅火蟻成功婚飛的必備條件(Bryant and Alexander, 2011)。以上研究結(jié)果表明,VgR主要出現(xiàn)在交配與生殖前,旨在為昆蟲(chóng)卵巢發(fā)育與卵子產(chǎn)生奠定基礎(chǔ)(Luetal.,2009)。另外,VgRs可能與一次成功的生殖相偶聯(lián),只有在成功的生殖中,VgRs會(huì)大量表達(dá),反之則不會(huì),昆蟲(chóng)會(huì)維持生殖與生存的平衡,當(dāng)擁有能夠維持生存的能量后,才會(huì)進(jìn)行生殖等一系列基因表達(dá)與活動(dòng)。
大多數(shù)研究證實(shí),昆蟲(chóng)VgRs屬于卵巢特異性表達(dá)蛋白,例如,對(duì)斜紋夜蛾、家蠶、褐飛虱、紅火蟻不同組織的研究發(fā)現(xiàn),僅在卵巢中檢測(cè)到VgRs的表達(dá)(Shuetal.,2011; Linetal., 2013; Luetal., 2009; Luetal., 2015)。然而現(xiàn)有研究證明,昆蟲(chóng)VgRs的表達(dá)并不僅僅局限于卵巢中。桔小實(shí)蠅羽化后第4天,VgR則在脂肪體中開(kāi)始表達(dá),第6天達(dá)到最高值,之后開(kāi)始下降,與卵巢VgR的表達(dá)相比較為延遲,但增加速率更快,其卵巢VgRs從雌蟲(chóng)初羽化開(kāi)始表達(dá),1-3 d內(nèi)表達(dá)水平較低,隨后開(kāi)始緩慢增加,直至10 d后達(dá)到峰值(Linetal.,2015)。Liu等(2011)與Qian等(2015)證實(shí),柞蠶與野蠶的VgRs在成蟲(chóng)期時(shí)僅在卵巢中表達(dá),而在幼蟲(chóng)期時(shí)則在脂肪體與卵巢中均有明顯表達(dá)。除此之外,對(duì)意大利蜜蜂的VgR研究發(fā)現(xiàn),其不僅在卵巢中表達(dá),在頭部、中腸及咽下腺也有微量表達(dá)(Guidugli-Lazzarinietal.,2008)。而對(duì)亞社會(huì)性昆蟲(chóng)紅斑尼葬甲Nicrophorusvespilloides的研究發(fā)現(xiàn),VgR在其頭部大量表達(dá)(Roy-Zokanetal.,2015)。VgRs的組織表達(dá)差異可能表明了昆蟲(chóng)VgRs的功能多效性。
昆蟲(chóng)卵黃原蛋白Vg在卵子內(nèi)沉積是卵子發(fā)生與胚胎發(fā)育的關(guān)鍵,作為Vg的專一性受體,VgR保證了昆蟲(chóng)在卵黃發(fā)生過(guò)程中獲得足夠的營(yíng)養(yǎng)物質(zhì),對(duì)昆蟲(chóng)卵巢的成熟起著至關(guān)重要的作用(Linetal., 2013)。Ciudad等(2006)利用免疫熒光技術(shù)監(jiān)測(cè)了德國(guó)小蠊卵泡細(xì)胞發(fā)育過(guò)程中的VgR變化,研究發(fā)現(xiàn),6齡幼蟲(chóng)的卵泡細(xì)胞中便可檢測(cè)到微弱的VgR熒光信號(hào),成蟲(chóng)第3天時(shí)VgR熒光信號(hào)顯著加強(qiáng),并且卵泡飽滿;然而,當(dāng)沉默德國(guó)小蠊VgR后,脂肪體中的Vg積累增加,且卵母細(xì)胞發(fā)育停滯,這說(shuō)明由于卵母細(xì)胞表面VgR減少,導(dǎo)致配體Vg蛋白無(wú)法轉(zhuǎn)運(yùn)至卵母細(xì)胞內(nèi),從而囤積在脂肪體中。Shu等(2011)研究證實(shí),干擾斜紋夜蛾VgR后,其卵巢發(fā)育受到明顯抑制,分別下調(diào)了82.6%(24 h)、78.8%(48 h)、86.7%(72 h),表現(xiàn)為卵巢干癟,卵黃蛋白含量極低,并且卵巢管數(shù)目明顯減少,產(chǎn)卵量顯著下降。褐飛虱VgRRNAi后其表達(dá)水平顯著下降(Luetal., 2015)。未交配的紅火蟻VgRRNAi 5 d時(shí),其表達(dá)量顯著低于對(duì)照組,10 d后極顯著低于對(duì)照組,觀察其產(chǎn)卵行為發(fā)現(xiàn)干擾后的紅火蟻雖然也能產(chǎn)卵,但產(chǎn)卵量與孵化率極顯著低于對(duì)照組(Luetal.,2009)。綜上所述,VgRs在昆蟲(chóng)的生殖中起著不可替代的作用,可能直接影響昆蟲(chóng)卵母細(xì)胞的生理與形態(tài)發(fā)育、卵子和卵巢管的數(shù)量以及生殖力。
已有研究證實(shí),昆蟲(chóng)VgRs不僅在卵巢中表達(dá),在脂肪體、甚至頭部、中腸、咽下腺都有表達(dá),這說(shuō)明VgRs不僅在昆蟲(chóng)繁殖中起著至關(guān)重要的作用,也可能參與了其他生理與行為活動(dòng),尤其是在社會(huì)性昆蟲(chóng)中。意大利蜜蜂VgR研究發(fā)現(xiàn),工蜂卵巢產(chǎn)后0-6 h,VgR表達(dá)水平較高,由于其配體Vg功能的多樣性,作者推測(cè)VgR可能協(xié)同Vg蛋白參與了后代繁育,蜂王調(diào)控、工蜂免疫響應(yīng)以及激素調(diào)控等,但具體的功能仍有待進(jìn)一步證實(shí)(Guidugli-Lazzarinietal.,2008)。對(duì)亞社會(huì)性昆蟲(chóng)紅斑尼葬甲的研究發(fā)現(xiàn),VgR在其頭部大量表達(dá),并且當(dāng)紅棕尼葬甲的社會(huì)環(huán)境發(fā)生改變時(shí),比如交配前有無(wú)進(jìn)食,有無(wú)進(jìn)行親代撫育(parental care);或者從一種社會(huì)行為改變至另一種社會(huì)行為時(shí),如從交配到親代撫育,VgR的表達(dá)水平會(huì)出現(xiàn)顯著性變化,由此證實(shí)VgR可能在維持紅斑尼葬甲生存以及進(jìn)行正常行為活動(dòng)中具有重要作用(Roy-Zokan,2015)。桔小實(shí)蠅VgR研究發(fā)現(xiàn),其不僅在卵巢中表達(dá),羽化后5-6 d雌蟲(chóng)脂肪體VgR的mRNA表達(dá)水平顯著升高,可能行使一種自分泌的作用,吸收脂肪體分泌至血淋巴的Vg蛋白,從而保證脂肪體中Vg的貯存,這可能由于Vg不僅具有生殖調(diào)控作用(Congetal.,2015),還可能與食物貯存(Guidugli-Lazzarinietal.,2008)、免疫響應(yīng)(Singhetal.,2013)以及耐受性(Zhangetal.,2014)相關(guān)。
隨著新一代測(cè)序技術(shù)與生物信息學(xué)分析方法的快速發(fā)展,推動(dòng)了昆蟲(chóng)基因組的研究(彭露等,2015),這不僅成功解決了許多受到廣泛關(guān)注的種群遺傳學(xué)和進(jìn)化生態(tài)學(xué)的熱點(diǎn)問(wèn)題,與此同時(shí),人們對(duì)于重要農(nóng)業(yè)害蟲(chóng)的適應(yīng)性和致害性變異有了更新更全面的認(rèn)識(shí),為明確關(guān)鍵基因的功能以及尋找控制害蟲(chóng)的新靶標(biāo)提供了新的思路和研究方向(Heetal., 2012; Youetal., 2013; Xiaetal., 2013; Wangetal., 2014;彭露等,2015)。近年來(lái),昆蟲(chóng)卵黃原蛋白及其受體的研究已成為昆蟲(chóng)生殖生理學(xué)領(lǐng)域研究的熱點(diǎn)。因此,VgRs基因的分子結(jié)構(gòu)、系統(tǒng)進(jìn)化、表達(dá)模式以及生殖調(diào)控功能等也越來(lái)越明確。
昆蟲(chóng)VgRs 屬低密度脂蛋白LDLR家族,具有該家族典型的結(jié)構(gòu)特征,如配體結(jié)合域、表皮生長(zhǎng)因子前體同源域、跨膜域、O-聯(lián)糖功能域、胞質(zhì)尾域。但與其他LDLR家族成員相比也存在一定差異,如胞質(zhì)尾域獨(dú)特的內(nèi)化信號(hào)序列LI。除此之外,不同昆蟲(chóng)同一保守結(jié)構(gòu)域的拷貝數(shù)以及內(nèi)部的重復(fù)基序也可能具有差異,例如昆蟲(chóng)VgRs的兩個(gè)配體結(jié)合域中分別含有4-5個(gè)或7-8個(gè)重復(fù)基序(圖1);而已有的序列預(yù)測(cè)顯示,果蠅、熊峰、印度跳蟻、豌豆蚜、紅火蟻、帝王班蝶,以及棉鈴蟲(chóng)均不含O-聯(lián)糖功能域(圖1,Luetal., 2015);并且昆蟲(chóng)VgRs大多只有一個(gè)跨膜域,除了埃及伊蚊、地中海實(shí)蠅、佛羅里達(dá)弓背蟻、豌豆蚜、煙粉虱、體虱VgRs等具有兩個(gè)跨膜域;其次,昆蟲(chóng)VgRs中內(nèi)化信號(hào)的也具有明顯的多樣性,包括NPTF、NPFD PXXP、AKSAGQF等。然而,這些結(jié)構(gòu)差異可能產(chǎn)生的VgRs功能多效性仍不清楚,是否與其轉(zhuǎn)運(yùn)過(guò)程和效應(yīng)密切相關(guān)?是否參與了與其對(duì)配體的識(shí)別等仍需進(jìn)一步深入研究,前人推測(cè),昆蟲(chóng)VgRs還可識(shí)別與Vg結(jié)構(gòu)相似的配體(Chenetal., 2004; Tufail and Takeda,2005; Ciudadetal., 2006; Tufail and Takeda,2007),而果蠅VgR甚至可識(shí)別一些不相關(guān)的配體(Schonbaumetal., 1995)。也有許多研究證實(shí),LDLR家族基因不僅可作為內(nèi)吞受體,還可執(zhí)行細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)的功能(Herzetal., 2000),而昆蟲(chóng)VgRs胞質(zhì)尾域多樣性的內(nèi)化信號(hào)可能正好證實(shí)了其信號(hào)轉(zhuǎn)導(dǎo)的功能。因此,明確不同結(jié)構(gòu)的昆蟲(chóng)VgRs的功能多效性可為尋找害蟲(chóng)防治的新靶標(biāo)提供理論基礎(chǔ)。
大多數(shù)昆蟲(chóng)VgRs的表達(dá)發(fā)生在初羽化成蟲(chóng)之后,但不同昆蟲(chóng)種類(lèi)其表達(dá)高峰有所差異,這個(gè)可能與昆蟲(chóng)生殖腺的發(fā)育速率以及產(chǎn)卵前期長(zhǎng)短密切相關(guān)。除此之外,還有研究發(fā)現(xiàn),昆蟲(chóng)VgRs的齡期表達(dá)模式也有差異,雌性家蠶的整個(gè)發(fā)育周期均有VgR表達(dá),在成蟲(chóng)期達(dá)到最大值(Linetal., 2013);而紅火蟻的VgR只在婚飛(mating flights)期交配后表達(dá),婚飛結(jié)束后表達(dá)消失。同時(shí),不同昆蟲(chóng)VgRs的組織表達(dá)模式也有差異。大多認(rèn)為昆蟲(chóng)VgRs屬于卵巢特異性表達(dá)蛋白,如斜紋夜蛾、家蠶、褐飛虱、紅火蟻(Shuetal.,2011; Linetal., 2013; Luetal., 2009; Luetal., 2015),但也有研究發(fā)現(xiàn),桔小實(shí)蠅、柞蠶與野蠶的脂肪體也有表達(dá),尤其是在幼蟲(chóng)期;而一些社會(huì)性昆蟲(chóng)的頭部、中腸及咽下腺均有VgR的表達(dá)。不同昆蟲(chóng)VgR的不同表達(dá)模式可能在特定的齡期或組織中具有特定功能,但明確的相關(guān)性研究仍有待進(jìn)一步深入,如VgR在幼蟲(chóng)期脂肪體的表達(dá)是否與其能量與營(yíng)養(yǎng)的獲得與積累有關(guān),從而促進(jìn)了幼蟲(chóng)的生長(zhǎng)發(fā)育。而VgR在社會(huì)性昆蟲(chóng)頭部、中腸等的表達(dá)是否說(shuō)明VgR可能參與了其種群的信息交流、社會(huì)分工、行為活動(dòng)等。闡釋以上機(jī)制將有利于我們開(kāi)展害蟲(chóng)的生長(zhǎng)發(fā)育與生殖調(diào)控、遺傳調(diào)控、行為調(diào)控等方面的技術(shù)研發(fā),以尋求和創(chuàng)新害蟲(chóng)生態(tài)治理和可持續(xù)控制的策略和手段。
卵黃原蛋白Vg是昆蟲(chóng)卵黃發(fā)生的關(guān)鍵物質(zhì),也是昆蟲(chóng)生殖調(diào)控的基礎(chǔ)。隨著功能基因組研究的應(yīng)用與發(fā)展,已發(fā)現(xiàn)Vg特別是社會(huì)性昆蟲(chóng)的Vg具有功能多效性,包括卵巢激活、生殖競(jìng)爭(zhēng)、社會(huì)分化、行為構(gòu)建、延長(zhǎng)壽命、食物利用等多種功能,而VgR作為Vg的專一性受體,是否也行使了多種功能仍不明確,目前,昆蟲(chóng)VgRs的研究主要集中在生殖調(diào)控方面,且主要關(guān)注了其對(duì)昆蟲(chóng)卵巢發(fā)育、卵子形成、以及生殖能力的影響,而VgR在社會(huì)性昆蟲(chóng)中的研究雖然已涉及行為調(diào)控等,但相比Vg而言亟待進(jìn)一步深入探討。我們相信,在功能基因組的飛速發(fā)展下,將大大提高人們對(duì)昆蟲(chóng)VgRs功能機(jī)制的認(rèn)識(shí),并為害蟲(chóng)治理提供新思路。
References)
Amdam GV,Page RE,Fondrk MK,etal. Hormone response to bidirectional selection on social behavior [J].Evol.Dev., 2010, 12: 428-436.
Bryant B,Alexander SR. Programmed autophagy in the fat body ofAedesaegyptiis required to maintain egg maturation cycles [J].PLoSONE,2011,6(11): e25502.
Bonasio R,Zhang G,Ye C,etal. Genomic comparison of the antsCamponotusfloridanusandHarpegnathossaltator[J].Science,2010,329: 1068-1071.
Brisson JA,Richards S. Genome sequence of the pea aphidAcyrthosiphonpisum[J].PLoSBiol., 2010, 8(2): e1000313.
Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis [J].Science,1986, 232: 34-47.
Bujo H,Hermann M,Kaderli MO,etal. Chicken oocyte growth is mediated by an eight ligand repeat member of the LDL receptor family [J].EMBOJ., 1994,13: 5165-5175.
Chen ME,Lewis DK,Keeley LL,etal. cDNA cloning and transcriptional regulation of the vitellogenin receptor from the fire ant,SolenopsisinvictaBuren (Hymenoptera: Formicidae) [J].InsectMol.Biol.,2004, 13: 195-204.
Cheng L, Guo JY,Liu SS,etal. Molecular cloning,sequence analysis and developmental expression profile of vitellogenin receptor gene in the whiteflyBemisiatabaciMiddle East-Asia Minor 1 (Hemiptera: Aleyrodidae) [J].ActaEnt.Sin., 2013,56(6): 584-593. [程璐, 郭建洋, 劉樹(shù)生, 等. 煙粉虱MEAM1隱種卵黃原蛋白受體基因cDNA的克隆、序列分析及在不同發(fā)育時(shí)期的表達(dá)[J]. 昆蟲(chóng)學(xué)報(bào), 2013, 56(6): 584-593.]
Cho KH, Raikhel AS. Organization and developmental expression of the mosquito vitellogenin receptor gene [J].InsectMol.Biol., 2001, 10(5): 465-474.
Ciudad L,Piulachs MD,Bellés X. Systemic RNAi of the cockroach vitellogenin receptor results in a phenotype similar to that of the Drosophila yolkless mutant [J].FEBSJ.,2006, 273: 325-335.
Cong L,Yang WJ,Jiang XZ,etal. The essential role of vitellogenin receptor in ovary development and vitellogenin uptake inBactroceradorsalis[J].Int.J.Mol.Sci.,2015,16: 18368-18383.
Danzer K,Weber B,Hille-Rehfeld A,etal. Identification of three internalization sequences in the cytoplasmic tail of the 46 kDa mannose 6-phosphate receptor [J].Biochem.J.,1997,326: 497-505.
Davis CG,Goldstein JL,Südhof TC,etal. Acid-dependent ligand dissociation and recycling of LDL receptor mediated by growth factor homology region [J].Nature,1987,326: 760-765.
Dunn R,Hicke L. Multiple roles for Rsp5p-dependent ubiquitination at the internalization step of endocytosis [J].J.Biol.Chem.,2001,276: 25974-25981.
Ferenz HJ. Yolk protein accumulation inLocustamigratoria(Orthoptera: Acrididae) oocytes [J].Int.J.InsectMorphol.&Embryol.,1993,22: 295-314.
Ge LQ,WU JC. Research progress in insect vitellin and its hormone regulation [J].ChineseBulletinofEntomology,2010,47(2): 236-246. [戈林泉, 吳進(jìn)才. 昆蟲(chóng)卵黃蛋白及其激素調(diào)控的研究進(jìn)展[J]. 昆蟲(chóng)知識(shí),2010, 47(2): 247-253.]
Grant B,Hirsh D. Receptor-mediated endocytosis in theCaenorhabditiselagansoocyte [J].Mol.Bio.Cell, 1999,10: 4311-4326.
Guidugli-Lazzarini KR. Expression analysis of putative vitellogenin and lipophorin receptors in honey bee (ApismelliferaL.) queens and workers [J].J.InsectPhysiol.,2008, 54(7): 1138-1147.
Guo JY. Vitellogenesis,Vitellogenin and its Receptor Sequence Analysis of Whiteflies,Bemisiatabaci[D]. Zhejiang:Zhejiang University, Doctoral Dissertation, 2010. [郭建洋. 煙粉虱卵黃發(fā)生、卵黃蛋白及其受體基因序列的分析[D]. 浙江: 浙江大學(xué),博士學(xué)位論文,2010]
He WY,You MS,Vasseur L,etal. Developmental and insecticide-resistant insights from the de novo assembled transcriptome of the diamondback moth,Plutellaxylostella[J].Genomics,2012,99(3): 169-177.
Herz J,Bock HH. Lipoprotein receptors in the nervous system.Annu.Rev.Biochem., 2002,71: 405-434.
Herz J,Gotthardt M,Willnow TE. Cellular signalling by lipoprotein receptors [J].Curr.Opin.Lipidol., 2000,11: 161-166.
Herz J,Hamann U,Rogne S,etal. Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor [J].EMBOJ.,1988,7(13): 4119-4127.
Hjalm G,Murray E,Crumley G,etal. Cloning and sequencing of human gp330,a Ca2+-binding receptor with potential intracellular signaling properties [J].Eur.J.Biochem.,1996,239: 132-137.
Holt RA,Subramanian GM,Halpern A,etal. The genome sequence of the malaria mosquitoAnophelesgambiae[J].Science,2002,298: 129-149.
Howard JP,Huton JL,Olson JM,etal. Sla1p serves as the targeting signal recognition factor for NPXY(1,2)D-mediated endocytosis [J].J.CellBiol.,2002,157: 315-326.
Jeon H,Meng W,Takagi J,etal. Implications for familial hypercholesterolemia from the structure of the LDL receptor YWTD-EGF domain pair [J].Nat.Struct.Biol., 2001,8: 499-504.
Kirkness EF,Haas BJ,Sun WL,etal. Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle [J].Proc.Natl.Acad.Sci.,2010,107(27): 12168-12173.
Lei CL,Rong XL,2003. General Entomology[M]. Beijing: China Agriculture Press [M]. [雷朝亮, 榮秀蘭, 2003. 普通昆蟲(chóng)學(xué)[M]. 北京: 中國(guó)農(nóng)業(yè)出版社.]
Lin WJ,Chien CY,Tsai CL,etal. A nonovary-specific vitellogenin receptor from the oriental fruit fly,Bactroceradorsalis[J].Arch.InsectBiochem.,2015, 90(4): 169-180.
Lin Y,Meng Y,Wang YX,etal. Vitellogenin receptor mutation leads to the oogenesis mutant phenotype “scantyvitellin” of the silkworm,Bombyxmori[J].J.Biol.Chem.,2013, 288: 13345-13355.
Liu QN,Zhu BJ,Liu CL,etal. Characterization of vitellogenin receptor(VgRs)from the Chinese oak silkworm,Antheraeapernyi[J].B.Insectol.,2011, 64(2): 167-174.
Lowe TM,Eddy SR. tRNA scan-SE: a program for improved detection of transfer RNA genes in genomic sequence [J].NucleicAcidsRes.,1997,25(5): 955-64.
Lu HL,Vinson SB,Patricia VP. Oocyte membrane localization of vitellogenin receptor coincides with queen flying age,and receptor silencing by RNAi disrupts egg formation in fire ant virgin queens [J].FEBSJ.,2009,276: 3110-3123.
Lu K,Shu YH,Zhou JL,etal. Molecular characterization and RNA interference analysis of vitellogenin receptor fromNilaparvatalugens[J].J.InsectPhysiol., 2015, 73: 20-29.
Matozzo V,Gagnéb F,Marina MG,etal. Vitellogenin as a biomarker of exposure to estrogenic compounds inaquatic invertebrates: A review [J].Environ.Int., 2008,34: 531-545.
Okabayashi K,Shoji H,Nakamura T,etal. cDNA cloning and expression of theXenopuslaevisvitellogenin receptor [J].Biochem.Biophys.Res.Commun., 1996,224: 406-413.
Peng L,He WY,Xia XF,etal. Prospects for the management of insect pests in the genomic era [J].ChineseJournalofAppliedEntomology,2015,52(1): 1-22. [彭露, 何瑋毅, 夏曉峰, 等. 基因組學(xué)時(shí)代害蟲(chóng)治理的研究進(jìn)展及前景.應(yīng)用昆蟲(chóng)學(xué)報(bào)[J], 2015,52(1): 1-22.]
Qian C,Fu WW,Wei GQ,etal. Identification and expression analysis of vitellogenin receptor from the wild silkworm,Bombyxmandarina[J].Arch.InsectBiochem.Physiol.,2015,89(4): 181-192.
Richards S,Gibbs RA,Weinstock GM,etal. The genome of the model beetle and pestTriboliumcastaneum[J].Nature,2008,452: 949-955.
Roy-Zokan EM,Cunningham CB,Hebb LE,etal. Vitellogenin and vitellogenin receptor gene expression is associated with male and female parenting in a subsocial insect [J].Proc.R.Soc.B., 2015, 282: 0787.
Sadd BM,Barribeau SM,Bloch G,etal. The genomes of two key bumblebee species with primitive eusocial organization [J].GenomeBiol.,2015,16: 76.
Sakai J,Hirano A,Takahashi H,etal. Structure,chromosome location and expression of the human very low density lipoprotein receptor gene [J].J.Biol.Chem., 1994,269: 2173-2182.
Saito A,Pietromonaco S,Loo AK-C,etal. Complete cloning and sequencing of rat gp 330/‘megalin’,a distinctive member of the low density lipoprotein receptor gene family [J].Proc.Natl.Acad.Sci., 1994,91: 9725-9729.
Salvemini M,Robertson M,Aronson B,etal.Ceratitiscapitatatransformer-2 gene is required to establish and maintain the autoregulation of Cctra,the master gene for female sex determination [J].Int.J.Dev.Biol.,2009,53(1): 109-120.
Sappington TW,Kokoza VA,Cho WL,etal. Molecular characterization of the mosquito vitellogenin receptor reveals unexpected high homology to the Drosophila yolk protein receptor [J].Proc.Natl.Acad.Sci., 1996, 93: 8934-8939.
Sappington TW, Raikhel AS. Ligand-binding domains in vitellogenin receptors and other LDL-receptor family members share a common ancestral ordering of cysteine-rich repeats [J].J.Mol.Evol.,1998, 46(4): 476-487.
Schonbaum CP,Lee S,Mahowald AP. The Drosophila yolkless gene encodes a vitellogenin receptor belonging to the low density lipoprotein receptor superfamily [J].Proc.Natl.Acad.Sci.,1995, 92: 1485-1489.
Shu YH,Wang JW,Lu K,etal. The first vitellogenin receptor from a Lepidopteran insect: Molecular characterization,expression patterns and RNA interference analysis [J].InsectMol.Biol.,2011, 20: 61-73.
Singh NK, Pakkianathan BC,Kumar M,etal. Vitellogenin from the silkworm,Bombyxmori: An effective anti-bacterial agent [J].PLoSONE,2013,8(9): e73005.
Sun XM,Scoutar AK. Expression in vitro of alternatively spliced variants of the messenger RNA for human apolipoprotein E receptor-2 identifies in human tissues by ribonuclease protection assays [J].Eur.J.Biochem., 1999,262: 230-239.
Takahashi S,Kawarabayasi S,Nakai T,etal. Rabbit low density lipoprotein receptor-like protein with distinct ligand specificity [J].Proc.Natl.Acad.Sci., 1992,89: 9252-9256.
Thomas WS,Alexander SR. Molecular characteristics of insect vitellogenins and vitellogenin receptors [J].InsectBiochem.Mol.Biol., 1998,28: 277-300.
Tufail M,Takeda M. Molecular cloning,characterization and regulation of the cockroach vitellogenin receptor during oogenesis [J].InsectMol.Biol., 2005, 14: 389-401.
Tufail M,Takeda M. Molecular cloning and developmental expression pattern of the vitellogenin receptor from the cockroach,Leucophaeamaderae[J].InsectBiochem.Mol.Biol., 2007, 37: 235-245.
Tufail M,Takeda M. Molecular characteristics of insect vitellogenins [J].J.InsectPhysiol.,2008,54: 1447-1458.
Tufail M,Takeda M. Insect vitellogenin/lipophorin receptors: Molecular structures,role in oogenesis,and regulatiory mechanisms [J].J.InsectPhysiol.,2009, 55: 87-103.
Wang AR,Kim MJ,Lee JY,etal. The mitochondrial genome of the black dwarf honey bee,Apisandreniformis(Hymenoptera: Apidae) [J].Mitochondr.Dna, 2014, 24(3): 208-210.
Wang XH,Fang XD,Yang PC,etal. The locust genome provides insight into swarm formation and long-distance flight [J].Nat.Commun., 2014,5: 2957.
Weinstock GM,Robinson GE,Gibbs RA,etal. Insights into social insects from the genome of the honeybeeApismellifera[J].Nature,2006,443: 931-949.
Woodard SH,Fischman BJ,Venkat A,etal. Genes involved in convergent evolution of eusociality in bees [J].Proc.Natl.Acad.Sci.,2011,108(18): 7472-7.
Xia XF,Zheng DD,Zhong HZ,etal. DNA sequencing reveals the midgut microbiota of diamondback moth,Plutellaxylostella(L.) and a possible relationship with insecticide resistance [J].PLoSONE,2013,8(7): e68852.
Xu YY,Zhu BJ,Liu QN,etal. Prokaryotic expression of vitellogenin receptor gene ofActiasseleneHubner [J].Afr.J.Agr.Res.,2012,7(21): 3166-3174.
Yamamoto T,Davis CG,Brown MS,etal. The human LDL receptor: A cysteine-rich protein with multiple Alu sequences in its Mrna [J].Cell, 1984, 39(1): 27-38.
You MS,Yue Z,He WY,etal. A heterozygous moth genome provides insights into herbivory and detoxification [J].Nat.Genet., 2013,45(2): 220-225.
Zhan S,Merlin C,Boore JL,etal. The monarch butterfly genome yields insights into long-distance migration [J].Cell,2011,147(5): 1171-1185.
Zhang WN, Xiao HJ,Liang GM,etal. Tradeoff between reproduction and resistance evolution to Bt-toxin inHelicoverpaarmigera: Regulated by vitellogenin gene expression [J].Bull.Entomol.Res.,2014,104: 444-452.
A review of insect vitellogenin receptors (VgRs) and their fundamental functions
WANG Jia-Wei*, PENG Lu*,ZOU Ming-Min,YANG Yi-Fan,WANG Lei, YOU Min-Sheng**
(Institute of Applied Ecology,Fujian Agriculture and Forestry University, Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests,Key Laboratory of Integrated Pest Management of Fujian and Taiwan, China Ministry of Agriculture,Fuzhou 350002,China)
Insect vitellogenin receptors (VgRs) belong to the low-density lipoprotein receptor (LDLR) gene superfamily,which share a group of five structural domains: ligand-binding domain (LBD),epidermal growth factor precursor homology domain (EGFD), transmembrane domain (TMD), O-linked sugar domain (OLSD),and cytoplasmic domain (CPD). The expression studies demonstrate that insect VgRs are usually ovary-bound receptors involved in mediating dynamic endocytosis of the major yolk protein precursors Vg. VgR is the basic substance for vitellogenesis,and dominates the oocyte development of insects. In addition,recent advances in this area have shown that insect VgRs are not only associated with the ovary activation, vitellogenesis,and oogenesis,but also play a critical role in information exchange,labor differentiation,behavior formation,and immune regulation,which has become a potential new target for pest control. This article presents an overview of the research progress in insectVgRs, including their genomic information, molecular structures, phylogenetic relationships,expression profiles and regulating functions. We believe that this review article addresses available literature, and provides potential prospects with the hope to improve the genetic strategies and tactics currently employed in ecologically-based pest management.
Insect; vitellogenin receptor; expression profiling; reproductive regulation; functions
國(guó)家自然科學(xué)基金(31320103922, 31230061, 31401744)
*共同第一作者, 王加偉,男,碩士生,主要從事昆蟲(chóng)分子生物學(xué)方面的研究,E-mail: wangjiawei0908@sina.com;彭露,女,講師,主要從事昆蟲(chóng)分子生物學(xué)與基因組學(xué)方面的研究,E-mail: penglu819@fafu.edu.cn
**
Author for correspondence,E-mail:msyou@iae.fjau.edu.cn
2016-03-31;接受日期Accepted:2016-05-18
Q963
A
1674-0858(2016)04-0801-12