石書(shū)彪 陳煥新 李冠男 胡云鵬 黎浩榮 胡文舉
(1 華中科技大學(xué)制冷與低溫實(shí)驗(yàn)室 武漢 430074;2 University of Nebraska-Lincoln 內(nèi)布拉斯加 68410;3 北京建筑大學(xué) 供熱供燃?xì)馔L(fēng)及空調(diào)工程北京市重點(diǎn)實(shí)驗(yàn)室 北京 100044)
?
基于小波去噪和神經(jīng)網(wǎng)絡(luò)的冷水機(jī)組故障診斷
石書(shū)彪1陳煥新1李冠男1胡云鵬1黎浩榮2胡文舉3
(1 華中科技大學(xué)制冷與低溫實(shí)驗(yàn)室武漢430074;2 University of Nebraska-Lincoln內(nèi)布拉斯加68410;3 北京建筑大學(xué) 供熱供燃?xì)馔L(fēng)及空調(diào)工程北京市重點(diǎn)實(shí)驗(yàn)室北京100044)
對(duì)基于神經(jīng)網(wǎng)絡(luò)方法的冷水機(jī)組故障監(jiān)測(cè)效率取決于訓(xùn)練數(shù)據(jù)和被測(cè)數(shù)據(jù)的質(zhì)量問(wèn)題進(jìn)行了研究。采用小波變換的方法剔除測(cè)量數(shù)據(jù)中的噪聲,提高數(shù)據(jù)質(zhì)量,從而提高冷水機(jī)組故障診斷效率。結(jié)果表明:采用小波變換使得各個(gè)水平故障的檢測(cè)效率均得到提高,尤其水平一的故障檢測(cè)效率提高明顯。故障水平一檢測(cè)率的提高能夠及時(shí)的辨別冷水機(jī)組的故障,從而采用措施防止故障進(jìn)一步惡化,對(duì)降低能源消耗、提高系統(tǒng)的可靠性以及保證室內(nèi)舒適性具有重要的意義。通過(guò)利用ASHRAE Project提供的數(shù)據(jù)對(duì)故障診斷與檢測(cè)(fault detection and diagnosis)策略進(jìn)行驗(yàn)證,檢測(cè)率明顯提高。
冷水機(jī)組;故障檢測(cè)與診斷;神經(jīng)網(wǎng)絡(luò);小波分析;貝葉斯正則化
冷水機(jī)組和空調(diào)系統(tǒng)的性能下降、不恰當(dāng)控制策略以及故障導(dǎo)致的能量浪費(fèi)占據(jù)了商業(yè)建筑總能耗的15%~30%,為了節(jié)約能源、提供一個(gè)舒適的室內(nèi)環(huán)境[1],故障診斷和檢測(cè)(fault detection and diagnosis (FDD)技術(shù)近年來(lái)已經(jīng)成為制冷空調(diào)系統(tǒng)的研究熱點(diǎn)之一。根據(jù)德國(guó)Frank P M[2]教授的觀點(diǎn),所有的故障診斷方法可以劃分為基于信號(hào)處理的方法、基于解析模型的方法和基于知識(shí)的方法。鑒于空調(diào)領(lǐng)域中進(jìn)行故障診斷的數(shù)學(xué)模型極其復(fù)雜,而知識(shí)的方法具有不需要精確的數(shù)學(xué)模型的特性,具備很好的應(yīng)用前景。已有不少學(xué)者采用主元分析(principal component analysis,PCA)[3-5]、支持向量機(jī)(support vector machine,SVD[6]、支持向量數(shù)據(jù)描述(support vector data description,SVDD)[7-8]方法故障檢測(cè)和診斷的研究工作。冷水機(jī)組作為空調(diào)系統(tǒng)中的主要冷熱交換設(shè)備,也是最主要的能耗設(shè)備,對(duì)冷水機(jī)組進(jìn)行FDD研究具有非常重要的研究?jī)r(jià)值。
冷水機(jī)組運(yùn)行時(shí),測(cè)量的數(shù)據(jù)中包含噪聲,將數(shù)據(jù)直接輸入神經(jīng)網(wǎng)絡(luò)進(jìn)行故障識(shí)別,會(huì)降低神經(jīng)網(wǎng)絡(luò)進(jìn)行故障診斷的檢測(cè)率,因而需要對(duì)初始數(shù)據(jù)進(jìn)行預(yù)處理,去除初始數(shù)據(jù)中的噪聲對(duì)神經(jīng)網(wǎng)絡(luò)進(jìn)行故障診斷的干擾。小波變換是應(yīng)用非常廣泛的變換域去噪方法,采用小波變換去除噪聲可以避免用傅里葉變換去噪帶來(lái)的信號(hào)折損,因此利用小波變換可以有效去除噪聲,還原初始數(shù)據(jù)中的有用信號(hào)[9]。小波變換作為一種去噪的方法在空調(diào)領(lǐng)域也有一定的應(yīng)用。Du Z M等[10]采用小波變換對(duì)初始數(shù)據(jù)進(jìn)行預(yù)處理,分解得到特征向量矩陣,作為神經(jīng)網(wǎng)絡(luò)的輸入進(jìn)行故障診斷。Xu X H等[11]采用三尺度小波變換進(jìn)行數(shù)據(jù)分解,將其低頻數(shù)據(jù)用于主元分析方法進(jìn)行冷水機(jī)組傳感器的故障檢測(cè)和診斷。冷水機(jī)組進(jìn)行故障診斷時(shí),利用小波變換對(duì)初始變量采取軟閾值去噪,處理后的特征變量作為神經(jīng)網(wǎng)絡(luò)的輸入變量,采用BP神經(jīng)網(wǎng)絡(luò)建模,利用建好的預(yù)測(cè)模型完成故障診斷。本研究采用ASHRAE Project提供的數(shù)據(jù)進(jìn)行驗(yàn)證。
小波變換近年來(lái)作為一種數(shù)學(xué)工具已經(jīng)廣泛用于對(duì)一維或者兩維信號(hào)進(jìn)行去噪、壓縮、編碼[12]。信號(hào)采集過(guò)程中,原始信號(hào)受到各種復(fù)雜因素的影響,使得采集信號(hào)中一般都含有大量的噪聲,掩蓋了信號(hào)的特征信息,需要對(duì)數(shù)據(jù)進(jìn)行處理,提取有用的原始信號(hào)。小波去噪的原理是:選擇合適的基函數(shù)和小波分解層數(shù)對(duì)含噪信號(hào)進(jìn)行分解,然后對(duì)高頻信號(hào)進(jìn)行閾值量化處理,將低頻信號(hào)和處理后的高頻信號(hào)進(jìn)行重構(gòu)信號(hào)。和初始信號(hào)相比,利用重構(gòu)信號(hào)(小波去噪后的信號(hào))進(jìn)行冷水機(jī)組動(dòng)態(tài)故障檢測(cè)和診斷時(shí)具有更好的效果。小波去噪是一種信號(hào)的時(shí)間頻率的分析方法,連續(xù)小波的基函數(shù)為:

(1)
式中:a為伸縮因子;b為平移因子。
2.1 神經(jīng)網(wǎng)絡(luò)原理
神經(jīng)網(wǎng)絡(luò)由輸入層、隱含層、輸出層構(gòu)成,如圖1所示。輸入層的信號(hào)對(duì)應(yīng)小波去噪處理后的輸出信號(hào),輸入層節(jié)點(diǎn)的個(gè)數(shù)和選擇特征變量的個(gè)數(shù)相等,隱含層的層數(shù)由映射定理分析可知[13],一個(gè)S型隱含層的BP神經(jīng)網(wǎng)絡(luò)能夠以期望的精度逼近任意非線(xiàn)性函數(shù),因而一個(gè)S型隱含層能夠?qū)渌畽C(jī)組進(jìn)行故障診斷。隱含層節(jié)點(diǎn)數(shù)的確定目前采用試湊法,根據(jù)經(jīng)驗(yàn)公式初步確定隱含層神經(jīng)元節(jié)點(diǎn)數(shù)的大概范圍,評(píng)估神經(jīng)網(wǎng)絡(luò)對(duì)冷水機(jī)組故障檢測(cè)率的高低,選出最佳隱含層節(jié)點(diǎn)數(shù)。輸出層的節(jié)點(diǎn)數(shù)和故障類(lèi)別相同(包括正常運(yùn)行狀態(tài))。
第j個(gè)隱含層神經(jīng)節(jié)點(diǎn)的輸出為:
hj=(∑wjiχi+Φj)
(2)
式中:wji為輸入層的第i個(gè)節(jié)點(diǎn)和隱含層的第j個(gè)節(jié)點(diǎn)之間的連接權(quán)值;Φj為隱含層的第j個(gè)節(jié)點(diǎn)的閾值。輸出層第k個(gè)節(jié)點(diǎn)的輸出對(duì)應(yīng)特定的故障,輸出層的表達(dá)式為:
Zj=(∑wkjχj+Φ′k)
(3)
式中:wkj為第j個(gè)隱含層節(jié)點(diǎn)和第k個(gè)輸出層節(jié)點(diǎn)的連接權(quán)值;Φ′k為第k個(gè)輸出層節(jié)點(diǎn)的閾值。隱含層和輸出層的變換函數(shù)通常采用Sigmoid函數(shù)或者線(xiàn)性函數(shù),Sigmoid函數(shù)使得神經(jīng)網(wǎng)絡(luò)能夠處理復(fù)雜的非線(xiàn)性問(wèn)題。神經(jīng)網(wǎng)絡(luò)將輸入信息從輸入層經(jīng)隱含層逐層計(jì)算傳向輸出層,若輸出層沒(méi)有得到期望的輸出,則計(jì)算輸出層的誤差值,轉(zhuǎn)向反向傳播,通過(guò)網(wǎng)絡(luò)將誤差信號(hào)沿原來(lái)的連接通路反傳回來(lái)得到每層的誤差信號(hào),用來(lái)修改各層神經(jīng)元的權(quán)值和閾值直至達(dá)到目標(biāo),得誤差滿(mǎn)足設(shè)定的精度。
2.2 貝葉斯正則化原理
神經(jīng)網(wǎng)絡(luò)權(quán)值和閾值的選擇成為模型構(gòu)造最關(guān)鍵的一個(gè)部分,采用貝葉斯正則化可以使網(wǎng)絡(luò)獲得較小的權(quán)值和閾值,從而使神經(jīng)網(wǎng)絡(luò)的響應(yīng)變得平滑,提高BP神經(jīng)網(wǎng)絡(luò)的泛化能力[14]。貝葉斯算法采用均方誤差與權(quán)值的線(xiàn)性組合值作網(wǎng)絡(luò)性能評(píng)價(jià)函數(shù),即:
(4)
式中:yi為網(wǎng)絡(luò)預(yù)測(cè)向量;ti為網(wǎng)絡(luò)目標(biāo)向量;γ為比例系數(shù)。可見(jiàn),貝葉斯正則化能自動(dòng)限制網(wǎng)絡(luò)權(quán)值的規(guī)模避免造成對(duì)訓(xùn)練數(shù)據(jù)過(guò)擬合,增強(qiáng)神經(jīng)網(wǎng)絡(luò)的泛化能力[15]。
根據(jù)Comstock and Braun對(duì)冷水機(jī)組的故障調(diào)查報(bào)告,冷水機(jī)組常發(fā)生7種故障:冷凝器結(jié)垢(ConFoul)、制冷劑過(guò)量(ExcsOil)、制冷劑泄露(RefLeak)、有不凝性氣體(NonCon)、冷凍水流量減少(RefuEF)、冷卻水流量減少(ReduCF)、油過(guò)量(RefOver),每種故障會(huì)對(duì)制冷機(jī)組的制冷效率產(chǎn)生一定的不良影響。本文采用ASHRAE 1043-RP提供的數(shù)據(jù)對(duì)故障診斷模型進(jìn)行驗(yàn)證。ASHRAE實(shí)驗(yàn)采用離心式壓縮機(jī)、殼管式蒸發(fā)器、冷凝器以及節(jié)流閥組成的90冷噸的冷水機(jī)組。通過(guò)冷水機(jī)組產(chǎn)生7組類(lèi)型的故障,每種故障人為的引入4個(gè)故障水平。每個(gè)實(shí)驗(yàn)持續(xù)864 min,通過(guò)改變冷凍水給水溫度、冷卻水進(jìn)水溫度、制冷量三個(gè)變量,獲得并測(cè)試27種工況。在每個(gè)實(shí)驗(yàn)中測(cè)得433組數(shù)據(jù),每組數(shù)據(jù)共記錄64個(gè)變量。采用文獻(xiàn)[7]中的8個(gè)特征向量(表1)進(jìn)行故障診斷。故障診斷流程圖見(jiàn)圖2,整個(gè)故障診斷流程步驟如下:
1)從ASHRAE 1043-RP提供的64個(gè)變量中選出影響故障的主要變量,然后對(duì)每個(gè)變量進(jìn)行小波去噪處理。
2)將數(shù)據(jù)分成兩部分,一份對(duì)神經(jīng)網(wǎng)絡(luò)進(jìn)行訓(xùn)練,一份驗(yàn)證神經(jīng)網(wǎng)絡(luò)模型。
3)鑒于BP神經(jīng)網(wǎng)絡(luò)泛化能力差,對(duì)BP神經(jīng)網(wǎng)絡(luò)進(jìn)行貝葉斯正則化,提高故障診斷率。
4)利用訓(xùn)練好的BP神經(jīng)網(wǎng)絡(luò)對(duì)預(yù)測(cè)數(shù)據(jù)進(jìn)行故障識(shí)別。

圖2 故障診斷邏輯圖Fig.2 Fault diagnosis logic diagram
3.1 小波去噪
通過(guò)小波去噪提取信號(hào)中的有用信號(hào),剔除干擾信號(hào)。首先采用db3小波基函數(shù)的3層分解作為小波去噪。進(jìn)行故障診斷過(guò)程中,選取8個(gè)特征向量,需要對(duì)8個(gè)特征向量進(jìn)行小波去噪,圖3所示為故障水平一的ReduCF 的TCI、TCO、TR-dis、To-sump 4個(gè)變量的幅值變化(小波去噪前)。圖4所示為進(jìn)行小波去噪后的圖形,通過(guò)圖3與圖4的對(duì)比,經(jīng)過(guò)小波去噪后,曲線(xiàn)更加光滑,噪點(diǎn)剔除明顯。

圖3 小波去噪前Fig.3 Wavelet denoising before

圖4 小波去噪后Fig.4 Wavelet denoising
3.2 實(shí)驗(yàn)數(shù)據(jù)預(yù)處理
實(shí)驗(yàn)數(shù)據(jù)來(lái)源于ASHRAE Research Project 1043-RP。整個(gè)實(shí)驗(yàn)中測(cè)試64個(gè)變量,選取其中的8個(gè)特征變量(表1)進(jìn)行故障診斷。由于8個(gè)特征變量的參數(shù)單位不同,直接將原始數(shù)據(jù)輸入BP神經(jīng)網(wǎng)絡(luò)進(jìn)行訓(xùn)練會(huì)使得網(wǎng)絡(luò)的性能和收斂性變差,所以必須先對(duì)神經(jīng)網(wǎng)絡(luò)輸入數(shù)據(jù)進(jìn)行歸一化處理。本文設(shè)計(jì)的激勵(lì)函數(shù)采用的是S函數(shù),輸出設(shè)定在(-1, 1)或(0, 1)[16]之間。輸出數(shù)據(jù)本身處于(0, 1)中,不需要進(jìn)行歸一化。
3.3 仿真結(jié)果
通過(guò)比較去噪前后每個(gè)故障水平的每個(gè)故障檢測(cè)率和平均檢測(cè)率來(lái)驗(yàn)證小波去噪的效果,表2為去噪前后的冷水機(jī)組檢測(cè)率。圖5~圖8所示為冷水機(jī)組的故障檢測(cè)率圖,圖9所示為平均故障檢測(cè)率圖。圖中橫坐標(biāo)1~8分別對(duì)應(yīng)冷水機(jī)組運(yùn)行正常工況、冷凝器結(jié)垢、油過(guò)量、制冷劑泄漏、有不凝性氣體、冷凍水流量減少、冷卻水流量減少、制冷劑過(guò)量總共8種運(yùn)行工況,縱坐標(biāo)表示在每種工況下的故障診斷率。(BP-1表示未進(jìn)行小波去噪,BP-2表示采用小波去噪。)
表18個(gè)故障指示特征
Tab.1Description of eight fault indicative features

特征變量特征變量描述特征變量特征變量描述TEO蒸發(fā)器出水溫度TCA冷凝器制冷劑飽和溫度與出水溫度之差TCI冷凝器進(jìn)水溫度TRC-sub過(guò)冷度TCO冷凝器出水溫度TR-dis排氣溫度TEA蒸發(fā)器出水溫度與制冷劑的飽和溫度之差To-sump壓縮機(jī)殼底油溫
表2兩種方法的故障檢測(cè)率
Tab.2Fault detection rate of two methods

故障類(lèi)別故障水平一故障水平二故障水平三故障水平四BP-1BP-2BP-1BP-2BP-1BP-2BP-1BP-2正常0.590.990.710.880.80.940.930.98冷凝器結(jié)垢0.530.860.6910.7610.931油過(guò)量0.910.9310.870.9710.960.98制冷劑泄露0.570.850.750.790.980.90.990.98有不凝性氣體0.9910.9910.9810.991冷凍水流量減少0.710.790.760.7510.940.910.98冷卻水流量減少0.90.780.950.90.960.990.991制冷劑過(guò)量0.720.60.830.870.990.9410.96平均檢測(cè)率0.740.850.8350.88250.930.963750.96250.985

圖5 故障水平一的檢測(cè)率Fig.5 Detection rate of the first fault level

圖6 故障水平二的檢測(cè)率Fig.6 Detection rate of the second fault level
3.4 結(jié)果分析
根據(jù)表2分析可知,經(jīng)過(guò)小波去噪后平均檢測(cè)率有了較大的提高,尤其是處于故障水平一時(shí),平均檢測(cè)率明顯提高,這說(shuō)明通過(guò)小波去噪,剔除測(cè)量初始變量的干擾信號(hào),還原有用信號(hào),能有效提高診斷效率。故障水平一處于故障發(fā)生的初始階段,檢測(cè)率的提高對(duì)及時(shí)辨別運(yùn)行中的冷水機(jī)組故障,防止故障的進(jìn)一步惡化具有重大意義。在冷水機(jī)組故障中,冷凝器對(duì)整個(gè)機(jī)組運(yùn)行性能起非常關(guān)鍵的作用,冷凝器結(jié)垢導(dǎo)致冷水機(jī)組制冷效率降低,而且故障檢測(cè)不及時(shí),故障會(huì)進(jìn)一步惡化,最終導(dǎo)致冷凝器臟堵,整個(gè)冷水機(jī)組運(yùn)行失靈,嚴(yán)重時(shí)導(dǎo)致設(shè)備損壞。冷水機(jī)組上測(cè)量的變量不進(jìn)行處理直接輸入BP神經(jīng)網(wǎng)絡(luò),此時(shí)故障水平一冷凝器結(jié)垢的檢測(cè)率僅為0.53(采用的冷凝器是雙通道,含有164根管道,故障水平一情況下,有20根管道已經(jīng)結(jié)垢,見(jiàn)表3),如果未能檢測(cè)出故障,結(jié)垢的冷凝器管道數(shù)目進(jìn)一步增加達(dá)到33根,對(duì)應(yīng)于故障水平二,此時(shí)BP神經(jīng)網(wǎng)絡(luò)的診斷率提高16%,達(dá)到0.69,仍有檢測(cè)不出來(lái)的可能性,結(jié)垢的管道數(shù)會(huì)進(jìn)一步增加,制冷效率會(huì)進(jìn)一步下降。相反,利用小波去噪對(duì)測(cè)量參數(shù)進(jìn)行處理輸入神經(jīng)網(wǎng)絡(luò),冷凝器管道數(shù)結(jié)垢20根,即故障水平一時(shí),檢測(cè)率達(dá)到0.86,基本能夠檢測(cè)出冷凝器結(jié)垢的故障,即使沒(méi)有檢測(cè)出來(lái),進(jìn)入故障水平二,冷凝器結(jié)垢的數(shù)目達(dá)到33根時(shí),此時(shí)檢測(cè)率達(dá)到1。說(shuō)明對(duì)原始數(shù)據(jù)進(jìn)行去噪處理,有利于消除噪音,提高BP神經(jīng)網(wǎng)絡(luò)對(duì)故障診斷的檢測(cè)率。

圖7 故障水平三的檢測(cè)率Fig.7 Detection rate of the third fault level

圖8 故障水平四的檢測(cè)率Fig.8 Detection rate of the fourth fault level
表3冷凝器結(jié)垢水平
Tab.3Condenser fouling level

故障水平預(yù)期運(yùn)行狀況實(shí)際運(yùn)行狀況正常運(yùn)行164根未結(jié)垢的管道未結(jié)垢管故障水平一減少12%的管道20管道結(jié)垢故障水平二減少20%的管道33管道結(jié)垢故障水平三減少30%的管道49管道結(jié)垢故障水平四減少45%的管道74管道結(jié)垢
根據(jù)以上分析,選取8個(gè)特征向量作為影響7個(gè)故障發(fā)生量的主要因素,然后通過(guò)BP-1和BP-2進(jìn)行對(duì)比,可以得到以下結(jié)論:
1)驗(yàn)證小波去噪能消除噪音對(duì)BP診斷模型的干擾,有利于提高檢測(cè)率,能更加準(zhǔn)確的對(duì)冷水機(jī)組進(jìn)行實(shí)時(shí)監(jiān)控和故障預(yù)測(cè)。
2)尤其解決了冷凝器結(jié)垢故障檢測(cè)率偏低的局面,有利于防止冷凝器管道結(jié)垢數(shù)量的進(jìn)一步增多,提高冷水機(jī)組的整體制冷效率。
3)對(duì)小波去噪后的測(cè)量數(shù)據(jù)進(jìn)行建模,4個(gè)故障水平的整體檢測(cè)率均得到提高。故障水平一檢測(cè)率的提高能夠及時(shí)辨別冷水機(jī)組的故障,從而采取措施防止故障進(jìn)一步惡化,對(duì)降低能源消耗、提高系統(tǒng)的可靠性以及保證室內(nèi)舒適性具有重要的意義。
本文受2013年壓縮機(jī)技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金項(xiàng)目(230031)和供熱供燃?xì)馔L(fēng)及空調(diào)工程北京市重點(diǎn)實(shí)驗(yàn)室研究基金資助課題(NR2016K02)項(xiàng)目資助。(The project was supported by the 2013 State Key Laboratory of Compressor Technology (No. 230031)and Beijing Key Lab of Heating and Gas Supply, Ventilating and Air Conditioning Engineering (No. NR2013K02).)
[1]Zhou Q, Wang S, Xiao F. A novel strategy for the fault detection and diagnosis of centrifugal chiller systems[J]. HVAC & R Research, 2009, 15(1): 57-75.
[2]Frank P M. Analytical and qualitative model-based fault diagnosis a survey and some new results[J]. European Journal of Control, 1996, 2(1): 6-28.
[3]Wang S W, Cui J T. A robust fault detection and diagnosis strategy for centrifugal chillers[J]. HVAC & R Research, 2006, 12(3): 407-428.
[4]Wang S W, Cui J T. Sensor-fault detection, diagnosis and estimation for centrifugal chiller systems using principal component analysis method[J]. Applied Energy, 2005, 82(3): 197-213.
[5]Chen Y M, Lan L L. A fault detection technique for air-source heat pump water chiller/heaters[J]. Energy and Buildings, 2009, 41(8): 881-887.
[6]李冠男, 胡云鵬, 陳煥新, 等. 基于SVDD的冷水機(jī)組傳感器故障檢測(cè)及效率分析[J]. 化工學(xué)報(bào), 2015, 26(5): 1815-1820. (LI Guannan, HU Yunpeng, CHEN Huanxin, et al. SVDD-based chiller sensor fault detection method and its detection efficiency[J]. CIESC Journal, 2015,26(5): 1815-1820.)
[7]Zhao Y, Wang S W, Xiao F. Pattern recognition-based chillers fault detection method using Support Vector Data Description (SVDD)[J]. Applied Energy, 2013, 112: 1041-1048.
[8]Luo H, Wang Y R, Cui J. A SVDD approach of fuzzy classification for analog circuit fault diagnosis with FWT as preprocessor[J]. Expert Systems with Applications, 2011, 38(8): 10554-10561.
[9]Chang S G, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression[J]. IEEE Trans Image Process, 2000, 9(9): 1532-1546.
[10] Du Z, Jin X, Yang Y. Wavelet neural network-based fault diagnosis in air-handling units[J]. HVAC & R Research, 2008, 14(6): 959-973.
[11] Xu X H, Xiao F, Wang S W. Enhanced chiller sensor fault detection, diagnosis and estimation using wavelet analysis and principal component analysis methods[J]. Applied Thermal Engineering,2008,28(2/3):226-237.
[12] Ballesteros L D M, Moreno A J M. Wavelet-denoising on hardware devices with perfect reconstruction,low latency and adaptive thresholding[J]. Computers & Electrical Engineering, 2013, 39(4): 1300-1311.
[13] 虞和濟(jì), 陳長(zhǎng)征, 張省. 基于神經(jīng)網(wǎng)絡(luò)的智能診斷[J]. 振動(dòng)工程學(xué)報(bào), 2000, 13(2): 202-209. (YU Heji, CHEN Changzheng, ZHANG Sheng. Intelligent diagnosis based on neural networks[J]. Journal of Vibration Engineering, 2000, 13(2): 202-209.)
[14] 宋雷, 黃騰, 方劍, 等. 基于貝葉斯正則化BP神經(jīng)網(wǎng)絡(luò)的GPS高程轉(zhuǎn)換[J]. 西南交通大學(xué)學(xué)報(bào), 2008, 43(6): 724-728. (SONG Lei, HUANG Teng, FANG Jian, et al. Conversion of GPS height based on bayesian regularization BP neural network[J]. Journal of Southwest Jiaotong University, 2008, 43(6): 724-728.)
[15] 曹家興, 陸建平. 遺傳算法-貝葉斯正則化BP神經(jīng)網(wǎng)絡(luò)擬合滴定糖蜜中有機(jī)酸[J]. 分析化學(xué), 2011, 39(5): 743-747. (CAO Jiaxing, LU Jianping. Titration analysis of multi-organic acids in sugarcane molasses by back-propagation neural network integrated with bayesian regularizati on and genetic algorithm[J]. Chinese Journal of Analytical Chemistry, 2011, 39(5): 743-747.)
[16] 陳昌松, 段善旭, 殷進(jìn)軍. 基于神經(jīng)網(wǎng)絡(luò)的光伏陣列發(fā)電預(yù)測(cè)模型的設(shè)計(jì)[J]. 電工技術(shù)學(xué)報(bào), 2009, 24(9): 153-158. (CHEN Changsong, DUAN Shanxu, YIN Jinjun. A survey of fault diagosis for PV array based on BP neural network[J]. Transactions of China Electrotechnical Society, 2009, 24(9): 153-158.)
About the corresponding author
Chen Huanxin, male, professor, Refrigeration and Cryogenics Laboratory, Huazhong University of Science and Technology, +86 27-87558330, E-mail: chenhuanxin@tsinghua.org.cn. Research fields: computer simulation and optimization of refrigeration and air conditioning system, refrigeration and air conditioning equipment development and new technology research, vehicle refrigeration and its control technology.
Fault Diagnosis of Chillers Based on Neural Network and Wavelet Denoising
Shi Shubiao1Chen Huanxin1Li Guannan1Hu Yunpeng1Li Haorong2Hu Wenju3
(1. Refrigeration and Cryogenics Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China; 2. University of Nebraska-Lincoln, Nebraska, 68410, USA; 3. Beijing University of Civil Engineering and Architecture, Beijing, 100044, China)
Chiller fault detection based on neural network is a data-based analysis method. The fault detection efficiency relies on the quality of the training data and the mesasured data.The wavelet transfer method which can remove the measurement nosise is used to improve the detection efficiencies of chiller.The results show that wavelet transfer make the detection efficiencies of fault level improved, especially the first level. The increase of the first level detection rate will be able to timely identify the chiller fault, and take the measures to prevent further deterioration of chiller fault, which is of important significance to reduce energy consumption and improve the reliability of the air-conditioning system and ensure the indoor thermal comfort. The FDD (fault detection and diagnosis)strategy is validated through using ASHRAE Project data, which shows that the detection rate is improved obviously.
chiller; fault detection and diagnosis; BP neural network; wavelet denoising; bayesian regularization
0253-4339(2016) 01-0012-06
10.3969/j.issn.0253-4339.2016.01.012
國(guó)家自然科學(xué)基金(51328602)資助項(xiàng)目。(The project was supported by the National Natural Science Foundation of China(No. 51328602).)
2015年7月7日
TU831.4;TP183
A
簡(jiǎn)介
陳煥新, 男,教授,華中科技大學(xué)制冷與低溫實(shí)驗(yàn)室,(027)87558330,E-mail: chenhuanxin@tsinghua.org.cn。研究方向:制冷空調(diào)系統(tǒng)計(jì)算機(jī)模擬及優(yōu)化,制冷空調(diào)設(shè)備開(kāi)發(fā)及新技術(shù)研究,車(chē)輛制冷及其測(cè)控技術(shù)。