韓瑨,吳正鈞,,鄢明輝,高彩霞,吳申懋(.乳業生物技術國家重點實驗室,上海0046;.上海乳業生物工程技術研究中心,上海0046;.光明乳業研究院光明乳業股份有限公司,上海0046)
不溶性葡聚糖的研究進展
韓瑨1,吳正鈞1,2,鄢明輝2,高彩霞3,吳申懋3
(1.乳業生物技術國家重點實驗室,上海200436;2.上海乳業生物工程技術研究中心,上海200436;3.光明乳業研究院光明乳業股份有限公司,上海200436)
不溶性葡聚糖是一類不溶于水或堿溶液的葡萄糖多聚物,主要由微生物產生的葡萄糖基轉移酶催化蔗糖合成而來,其主鏈通常由葡萄糖以α-(1,3)、α-(1,6)、β-(1,3)或β-(1,4)糖苷鍵鍵合而成。本文從來源、功能與應用、調控的角度總結了不溶性葡聚糖的研究進展,并對其發展趨勢進行了展望。
不溶性葡聚糖;來源;功能;應用;調控
不溶性葡聚糖(insoluble glucan,簡稱IG)是一類不溶于特定溶劑(通常為水溶液或堿溶液)的葡萄糖多聚物,這種碳水化合物不但來源廣泛,在植物、真菌以及細菌的代謝產物中均有報道,而且種類繁多,根據分子構型的不同可分為:α-葡聚糖(α-glucan)[1]和β-葡聚糖(β-glucan)[2],其葡萄糖殘基大多以α-(1,3)[3]、α-(1,6)[4]、β-(1,3)[5]或β-(1,4)[6]糖苷鍵連接而成,此外,根據溶解特性差異還有水不溶性葡聚糖(water-insoluble glucan,簡稱WIG)[7]和堿不溶性葡聚糖(alkaliinsoluble glucan,簡稱AIG)[8]之分。如細菌來源的IG主要來自糖苷水解酶第70家族(glycoside-hydrolase family 70)中的葡萄糖基轉移酶(glucosyltransferase,簡稱GTF)的合成作用,這些GTF主要存在于胞外生境中[9]或被錨定于胞壁上[10],負責內源性前體物質(如短鏈葡聚糖)[11]和終產物(IG)[12]的合成。目前報道較多的IG有dextran、curdlan和cellulose 3種,其多糖結構如圖1所示,與可溶性葡聚糖相比,IG因其狹隘的應用范圍而少人問津,因此,本文將從來源,功能以及合成調控角度對IG的研究進展進行概述。
不溶性葡聚糖的部分來源如表1所示,不難看出,植物中的IG主要存在于谷物,且均為β-構型的WIG,研究表明,谷物中WIG的含量取決于谷物的品系,如Cyril和PS-100品系燕麥的WIG含量可達26.7%~28.2%,小米(Panicum miliaceum L.)、蕎麥(Fagopyrum)和莧屬植物(Amaranthus sp.L.)次之,為20%左右[2]。
與植物來源的IG相比,真菌IG的構型、溶解特性以及分布范圍更具多樣性。以霉菌為例,來自不同種霉菌的IG往往構型和溶解特性各異,如文氏曲霉(As-pergillus wentii)產水不溶性(1→3)-α-glucan[13],樟疫霉(Phytophthora cinnamo)和枝頂孢雷(Acremonium diospyri)產的(1→3)-β-glucan分別是水不溶性和堿不溶性的[14-15],而木霉(Trichoderma longibrachiatum)的WIG屬于(1→4)-β-glucan[16]。除霉菌以外,茯苓、虎奶菇、釀酒酵母等一些可食用真菌也是真菌類IG的重
要來源[3,17-18]。

圖1 3種典型的不溶性葡聚糖:(A)右旋糖苷、(B)熱凝膠多糖、(C)纖維素Fig.1 Three typical insoluble-glucan:(A)dextran,(B)curdlan,(C)cellulose

表1 不溶性葡聚糖的部分來源Table 1 Partial sources of insoluble glucan
有別于植物和真菌IG,細菌類IG的構型極為豐富,基本涵蓋了所有已知的構型,但都是水不溶性多糖。在這些產IG的細菌中,鏈球菌屬細菌,尤其是變異鏈球菌(Streptococcus mutans),因其代謝產物水不溶性α-glucan的致齲性而成為最早引起人們關注的對象[19],隨著IG研究的不斷深入,明串珠菌(Leuconostoc)[20]、芽孢桿菌(Bacillus)[5]等也先后加入了IG產生菌的行列,進而成為研究的新熱點。
2.1免疫調控作用
目前有關IG功能與應用的研究主要集中于免疫調控作用。Cassone等發現,以不同碳源培養獲得的白念珠菌(Candida Albicans)菌株,其細胞壁上可溶性和不溶性組分(β-glucan)的比例有差異,并且,胞壁中不溶性組分比例高的細胞具有顯著的抗腫瘤作用,表明不溶性β-glucan是酵母細胞壁上唯一一種具備抗腫瘤活性的組分[30]。SUZUKI等的動物實驗結果表明,攝入Zymocel(一種酵母來源的IG)可引發炎癥反應,進而通過活化細胞因子網絡和巨噬細胞來激活免疫系統[31]。Graubaum等通過一項關于β-glucan對感冒的發生率和癥狀影響的臨床研究發現,每天攝入β-glucan不但可以顯著降低感冒的發生率(P=0.019),而且能明顯緩解咽痛、吞咽困難、聲音嘶啞、咳嗽、流涕等一些典型的感冒癥狀[32]。從枝頂孢霉(Acremonium diospyri)中可提取到AIG和堿溶性葡聚糖(alkali soluble glucan,簡稱ASG)兩類葡聚糖,當主要組分是(1→3)-β-glucan的WIG作用于印度明對蝦(Fenneropenaeus indicus)時,可增加酚氧化酶原(prophenoloxidase)和活性氧中間體(reactive oxygen intermediate)的活性,而以(1→3)-α-glucan為主的ASG卻不具備同樣的免疫刺激活性,因此Anas等認為這種免疫刺激的差異主要是由受試樣品(AIG和ASG)中(1→3)-β-glucan含量不同引起的[15]。Maity等通過對兩株真菌(Pleurotus florida 和Calocybe indica var.APK2)原生質體的融合獲得了雜交蘑菇PCH9FB,其雜交體中提取的水不溶性βglucan對巨噬細胞、脾細胞和胸腺細胞均有顯著的活化效果[33]。
2.2其他功能與應用
除了上述的增強免疫作用外,IG在其他方面也有一定的應用價值。WOOD等利用酶反應基本規律,將燕麥和大麥中提取到的不溶性β-glucan作為底物來測定對應酶(β-glucanase)的活性,建立了一種商業酶制劑中β-glucanase活力的檢測方法[34]。研究人員發現,當IG每天以小鼠體重0.2%的的劑量通過口服途徑作用于高脂膳食誘導的肥胖小鼠,6周后受試對象的體重,糞便pH值,血清中膽固醇、甘油三酯和脂蛋白的含量均有顯著的降低,同時,腸道內的乳桿菌數量與對照組相比,也得到明顯的恢復,這表明IG具有減肥和整腸的雙重特性[35]。通過2-環氧丙烷(Epichlorohydrin)處理IG的方法,Vaidya等成功地將IG中的自由羥基轉化為能與酶分子中各種基團形成共價鍵的活性環氧基團,環氧化的IG被用作基質來固定皺褶念珠菌脂肪酶(Candida rugosa lipase)時,終產物的酶活與得率分別為8 136.7 U/g和59.6%,并且固定后的酶活相當穩定,4℃保藏條件下的半衰期可達285 d[36]。
3.1抑制IG的合成
傳統藥用植物是自然界中IG合成抑制劑的重要來源之一,例如民間專治齲齒和牙周疾病的中草藥細辛(Asarum sieboldii),其水提取物和乙醇提取物均可有效抑制變異鏈球菌的生長、產酸及合成IG能力,并顯著降低菌體的吸附性[37],無獨有偶的是,這種抑菌降吸附作用同樣被發現于云南木香(Saussurea lappa)的乙醇提取物中[38]。和烏龍茶或者綠茶相比,啤酒花球果花托(hop bract)中的高分子多酚類物質(36 000 Da~40 000 Da)可以更高效地抑制變異鏈球菌和遠緣鏈球菌中GTF的活性和菌體細胞的粘附作用,但卻不影響菌株生長和產酸[39]。除了上述多酚類物質以外,游離脂肪酸(free fatty acid)[40]、酵素(mutastein)[41]、細菌素(nisin)[42]、阿卡波糖(acarbose)[43]、鞣酸(tannic acid)[44]等一些結構相對明確的化合物均可被用于抑制GFT的活性,進而阻遏IG的形成。植物內生菌(鏈霉菌ST8)的發酵液經乙酸乙酯萃取后得到的提取物在一定濃度范圍(0.05 mg/mL~5 mg/mL)內可阻止變異鏈球菌ATCC25175和104B在玻璃和唾液包被的羥磷灰石表面吸附[45]。對于以蔗糖為底物的IG合成反應而言,木糖基果糖苷(xylosylfructoside)、麥芽糖基果糖苷(maltosylfructoside)、麥芽糖基蔗糖(maltosylsucrose)、黑曲霉糖基葡萄糖(nigerosylglucose)、異麥芽糖(isomaltose)、異麥芽糖基果糖苷(isomaltosylfructoside)等蔗糖的衍生物或結構類似物具有抗IG合成與粘附的功能,而其自身只會被微生物少量地代謝利用,因此可作為抗齲齒的碳源來應用[46]。憑借單克隆抗體的技術手段,Ochiai等從骨髓瘤細胞與脾細胞的雜交細胞分泌物中篩選GTF的單克隆抗體,結果發現,相較于其他抗體對GTF無抑制活性而言,抗體(lgM型免疫球蛋白)29EG的抑制效果可達50%,進一步研究發現,抗體29EG和GTF的結合位點與其他抗體不同,由此可見,抗體對GTF的特異性抑制與酶分子上抗原抗體的結合位點有關[47]。有趣的是,中性或堿性條件下幾種特定蛋白(α-casein,albumin)與醛糖(glucose,glyceraldehyde,glycolaldehyde)的美拉德反應產物對負責合成IG的GTF也有特異性抑制的效果,但不影響可溶性葡聚糖合成酶的活性[48]。
3.2減少IG的積累
采用相應的酶對IG進行酶解是減少IG在生物合成后進一步積累的最行之有效的方法之一。Ebisu等發現,胰酪胨培養基經黃質菌屬菌株Ek-14發酵后的上清液中,含有一種可特異性內切IG中α-(1→3)糖苷鍵的水解酶(mutanase),該酶的等電點與分子量分別為pH 8.5和65 000 Da,在pH6.3、42℃的反應條件下的酶解效果最佳,當此酶作用于變異鏈球菌OMZ 176來源的IG時可釋放出多種糖類產物(葡萄糖、異麥芽糖、黑曲霉糖等),從而增強了底物(IG)的可溶性[49],當mutanase濃度達到40 mU/mL時即可使貼壁葡聚糖基本完全解體。一項有關口腔菌以色列放線菌C和黃褐擬桿菌來源的dextranase(EC 3.2.1.11)對變異鏈球菌IG產量影響的研究指出,濃度為2 mU/mL的酶液可抑制60%IG的形成,濃度為5 mU/mL的酶液可使變異鏈球菌在玻璃表面吸附的機率降低80%,此外,低濃度酶液對已吸附在玻璃上的變異鏈球菌也有較強的清除作用(50%~60%)[50]。導致齲齒的鏈球菌通過合成不溶性的(1→3)-α-glucan和(1→6)-α-glucan來形成牙齒表面生物膜,進而增加菌體在牙齒表面的吸附效果,因此,采用mutanase和dextranase混合作用于可以更有效地控制牙齒表面不溶性葡聚糖生物膜的形成[51]。
3.3促進IG的合成
鑒于早期人們對IG的認知僅限于增加細菌吸附性、形成牙菌斑和造成成齲齒等負面影響,因此有關IG調控的報道幾乎都是負向調控研究,而促進IG的合成卻極少關注。Mukasa等發現,高濃度的一價或二價陽離子可大幅刺激WIG的生成,其原理為:(1)提高GTF活性。當反應體系中缺失和存在反應前體dextran時,高濃度陽離子可分別將GTF活性提高1.6和2.7倍;(2)改變反應產物特性。在高濃度陽離子的影響下,反應產物可由原先的可溶性葡聚糖改變為不溶性葡聚糖[52]。Fukushima等注意到,利用變異鏈球菌來源的GTF酶制劑合成IG時首先會經歷一個持續幾分鐘的滯后期,但若在反應體系中加入少量外源性的(1→3)-α-glucan即可在不改變反應速率的情況下,顯著縮短滯后時間,研究者指出,這種滯后期縮短的作用具有其特異性,只在合成含有大量α-(1→3)鍵的葡聚糖時有效[53]。
長久以來,大量有關不溶性葡聚糖增加口腔中致齲細菌粘附性的報道使IG被視作一類有害的微生物代謝產物,甚至有人將IG合成能力作為衡量口腔中變異鏈球菌致齲性的重要指標[54],盡管之后有研究認為變異鏈球菌在牙齒表面的粘附作用是GTF和細胞表面蛋白類組分反應的結果,并非與IG的形成有關[55],但長期對IG的負面認知,加上狹隘的加工性能依然令IG極少被人們所關注。直到近年來,借助飛速發展的研究手段,IG才得以在許多生理功能或產品應用方面有了前所未有的“零”的突破,但還存在一些問題有待解決:一、導致IG其不溶性發生的特殊結構或特定機制有必要進一步闡明;二、需要在更多領域深入發掘IG潛在的功效和應用價值,從而擴大IG的應用前景;三、通過篩選高安全性IG產生菌的方法來拓展IG的來源,進而更好的服務于可應用領域。
[1] COTE G,AHLGREN J,SMITH M.Some structural features of an insoluble α-D-glucan from a mutant strain of Leuconostoc mesenteroides NRRL B-1355[J].Journal of Industrial Microbiology and Biotechnology,1999,23(1):656-660
[2]HOZOV B,KUNIAK L,MORAVCIKOVA P,et al.Determination of water-insoluble beta-D-glucan in the whole-grain cereals and pseudocereals[J].Czech Journal of Food Sciences,2007,25(6):316
[3]JIN Y,ZHANG L,TAO Y,et al.Solution properties of a water-insoluble(1→3)-α-d-glucan isolated from Poria cocos mycelia[J].Carbohydr Polym,2004,57(2):205-209
[4]ZAHNLEY J C,SMITH M R.Insoluble Glucan Formation by Leuconostoc mesenteroides B-1355[J].Applied and environmental microbiology,1995,61(3):1120-1123
[5]GUMMADI S N,KUMAR K.Production of extracellular water insoluble β-1,3-glucan(curdlan)from Bacillus sp.SNC07[J].Biotechnology and Bioprocess Engineering,2005,10(6):546-551
[6]PAVLOSTATHIS S G,MILLER T L,WOLIN M J.Kinetics of insoluble cellulose fermentation by continuous cultures of Ruminococcus albus[J].Applied and environmental microbiology,1988,54(11):2660-2663
[7]DAVIS H M,BOYKO W J,EDWARDS J R.Structural determination of a water-insoluble glucan from Streptococcus mutans 6715 by carbon-13 nuclear magnetic resonance spectroscopy[J].Carbohydrate research,1986,152:279-282
[8]LUKONDEH T,ASHBOLT N J,ROGERS P L,et al.NMR confirmation of an alkali-insoluble glucan from Kluyveromyces marxianus cultivated on a lactose-based medium[J].World Journal of Microbiology and Biotechnology,2003,19(4):349-355
[9]TSUMORI H,KUMADA H,UMEMOTO T,et al.Purification and characterization of extracellular glucosyltransferase synthesizing water-insoluble glucan from Streptococcus rattus[J].Journal of general microbiology,1989,135(2):325-333
[10]HAMADA S,HORIKOSHI T,MINAMI T,et al.Purification and characterization of cell-associated glucosyltransferase synthesizing water-insoluble glucan from serotype c Streptococcus mutans[J]. Journal of general microbiology,1989,135(2):335-344
[11]GILMORE K,RUSSELL R,FERRETTI J.Expression of gtfS is essential for normal insoluble glucan synthesis by Streptococcus downei[J].Infection and immunity,1993,61(4):1246-1250
[12]GERMAINE G R,HARLANDER S K,LEUNG W-L S,et al.Streptococcus mutans dextransucrase:functioning of primer dextran and endogenous dextranase in water-soluble and water-insoluble glucan synthesis[J].Infection and immunity,1977,16(2):637-648
[13]CHOMA A,WIATER A,KOMANIECKA I,et al.Chemical characterization of a water insoluble(1→3)-α-d-glucan from an alkaline extract of Aspergillus wentii[J].Carbohydr Polym,2013,91(2):603-608
[14]ZEVENHUIZEN L,BARTNICKI-GARCIA S.Chemical structure of the insoluble hyphal wall glucan of Phytophthora cinnamomi[J]. Biochemistry,1969,8(4):1496-1502
[15]ANAS A,LOWMAN D W,WILLIAMS D L,et al.Alkali insoluble glucan extracted from Acremonium diospyri is a more potent immunostimulant in the Indian White Shrimp,Fenneropenaeus indicus than alkali soluble glucan[J].Aquaculture Research,2009,40(11):1320-1327
[16]TANAKA T,OI S.Structure of Water-insoluble Glucan Synthesized by β-Transglycosylase of Trichoderma longibrachiatum[J].Agricultural and biological chemistry,1984,48(9):2265-2269
[17]ZHANG L,ZHANG M,DONG J,et al.Chemical structure and chain conformation of the water-insoluble glucan isolated from Pleurotus tuber-regium[J].Biopolymers,2001,59(6):457-464
[18]ENSLEY H E,TOBIAS B,PRETUS H A,et al.NMR spectral analysis of a water-insoluble(1→3)-β-D-glucan isolated from Saccharomyces cerevisiae[J].Carbohydrate research,1994,258:307-311
[19]DAVIS H M,HINES H B,EDWARDS J R.Structural elucidation of a water-insoluble glucan produced by a cariogenic oral Streptococcus[J].Carbohydrate research,1986,156:69-77
[20]PADMANABHAN P A,KIM D-S.Production of insoluble dextran using cell-bound dextransucrase of Leuconostoc mesenteroides NRRL B-523[J].Carbohydrate research,2002,337(17):1529-1533 [21]SVIHUS B,NEWMAN C,NEWMAN R,et al.Changes in extract viscosity,amino acid content,and soluble and insoluble β-glucan and dietary fibre content of barley during different high moisture storage conditions[J].Animal feed science and technology,1997,64 (2):257-272
[22]WANG T,DENG L,LI S,et al.Structural characterization of a water-insoluble(1→3)-α-D-glucan isolated from the Penicillium chrysogenum[J].Carbohydr Polym,2007,67(1):133-137
[23]CHAKRABORTY I,MONDAL S,ROUT D,et al.A water-insoluble (1→3)-β-d-glucan from the alkaline extract of an edible mushroom Termitomyces eurhizus[J].Carbohydrate research,2006,341 (18):2990-2993
[24]MANDAL S,MAITY K K,BHUNIA S K,et al.Chemical analysis of new water-soluble(1→6)-,(1→4)-α,β-glucan and water-insoluble(1→3)-,(1→4)-β-glucan(Calocyban)from alkaline extract of an edible mushroom,Calocybe indica (Dudh Chattu)[J].Carbohydrate research,2010,345(18):2657-2663
[25]SONNENBERG A,SIETSMA J,WESSELS J.Biosynthesis of alkaliinsoluble cell-wall glucan in Schizophyllum commune protoplasts [J].Journal of General Microbiology,1982,128(11):2667-2674
[26]KAR CSONYI ?,KUNIAK L.Polysaccharides of Pleurotus ostreatus:isolation and structure of pleuran,an alkali-insoluble β-D-glucan[J].Carbohydr Polym,1994,24(2):107-111
[27]TSUMURAYA Y,MISAKI A.Structure of the water-insoluble α-D-glucan of Streptococcus salivarius HHT[J].Carbohydrate research,1979,74(1):217-225
[28]SHUKLA R,SHUKLA S,BIVOLARSKI V,et al.Structural characterization of insoluble dextran produced by Leuconostoc mesenteroides NRRL B-1149 in the presence of maltose[J].Food Technology and Biotechnology,2011,49(3):291-296
[29]MONTVILLE T J,COONEY C L,SINSKEY A J.Measurement and synthesis of insoluble and soluble dextran by Streptococcus mutans [J].Journal of dental research,1977,56(8):983-989
[30]CASSONE A,BISTONI F,CENCI E,et al.Immunopotentiation of anticancer chemotherapy by Candida albicans,other yeasts and insoluble glucan in an experimental lymphoma model[J].Sabouraudia,1982,20(2):115-125
[31]SUZUKI T,OHNO N,CHIBA N,et al.Immunopharmacological activity of the purified insoluble glucan,zymocel,in mice[J].Journal of pharmacy and pharmacology,1996,48(12):1243-1248
[32]HANS-JOACHIM G,REGINA B,HEIKE S,et al.A double-blind,randomized,placebo-controlled nutritional study using an insoluble yeastbeta-glucantoimprovetheimmunedefensesystem[J].Food and Nutrition Sciences,2012
[33]MAITY K,SAMANTA S,BHANJA S K,et al.An immunostimulating water insoluble β-glucan of an edible hybrid mushroom:Isolation and characterization[J].Fitoterapia,2013,84:15-21
[34]WOOD P J,J RGENSEN K G.Assay of(1→3)(1→4)-β-d-glucanase using the insoluble complex between cereal(1→3)(1→4)-β-d-glucan and Congo Red[J].Journal of Cereal Science,1988,7(3):295-308
[35]JI-LIN D,YING-YING Z,LIN L,et al.Effect of Oat Soluble and Insoluble β-glucan on Lipid Metabolism and Intestinal LactobacillusinHigh-fatDiet-inducedObeseMice[J].Journal of Food and Nutrition Research,2014,2(8):510-516
[36]VAIDYA B K,SINGHAL R S.Use of insoluble yeast β-glucan as a support for immobilization of Candida rugosa lipase[J].Colloids and Surfaces B:Biointerfaces,2008,61(1):101-105
[37]YU H-H,SEO S-J,HUR J-M,et al.Asarum sieboldii extracts attenuate growth,acid production,adhesion,and water-insoluble glucan synthesis of Streptococcus mutans[J].Journal of medicinal food,2006,9(4):505-509
[38]YU H-H,LEE J-S,LEE K-H,et al.Saussurea lappa inhibits the growth,acid production,adhesion,and water-insoluble glucan synthesis of Streptococcus mutans[J].Journal of ethnopharmacology,2007,111(2):413-417
[39]TAGASHIRA M,UCHIYAMA K,YOSHIMURA T,et al.Inhibition by hop bract polyphenols of cellular adherence and water-insoluble glucan synthesis of Mutans streptococci[J].Bioscience,biotechnology,and biochemistry,1997,61(2):332-335
[40]KURIHARA H,GOTO Y,AIDA M,et al.Antibacterial Activity against Cariogenic Bacteria and Inhibition of Insoluble Glucan Production by Free Fatty Acids Obtained from Dried Gloiopeltis furcata [J].Fisheries science,1999,65(1):129-132
[41]HAYASHIDA O,HASUMI K,ENDO A.Chemical and functional properties of mutastein,an inhibitor of insoluble glucan synthesis by Streptococcus sobrinus[J].Bioscience,biotechnology,and biochemistry,1997,61(4):588-591
[42]YAMAKAMI K,TSUMORI H,SAKURAI Y,et al.Sustainable inhibition efficacy of liposome-encapsulated nisin on insoluble glucanbiofilm synthesis by Streptococcus mutans[J].Pharmaceutical biology,2013,51(2):267-270
[43]WRIGHT W,THELWELL C,SVENSSON B,et al.Inhibition of catalytic and glucan-binding activities of a streptococcal GTF forming insoluble glucans[J].Caries research,2002,36(5):353-359
[44]FURIGA A,DOLS-LAFARGUE M,HEYRAUD A,et al.Effect of antiplaque compounds and mouthrinses on the activity of glucosyltransferases from Streptococcus sobrinus and insoluble glucan production[J].Oralmicrobiologyandimmunology,2008,23(5):391-400
[45]TAECHOWISAN T,SITTHIPANYA A,WANBANJOB A,et al. Streptomyces sp.ST8 extracts attenuate growth,acid production,adhesion,biofilm formation,and water-insoluble glucan synthesis of Streptococcus mutans[J].Microbial Ecology in Health and Disease,2009,21(2):78-86
[46]IMAI S,TAKEUCHI K,SHIBATA K,et al.Screening of sugars inhibitory against sucrose-dependent synthesis and adherence of insoluble glucan and acid production by Streptococcus mutans[J]. Journal of dental research,1984,63(11):1293-1297
[47]OCHIAI K,FUKUSHIMA K,SHIOTA T,et al.Characterization of monoclonal antibodies against glucosyltransferase synthesizing water-insoluble glucan from Streptococcus sobrinus B13[J].Journal of dental research,1990,69(2):477-482
[48]KOBAYASHI S,KOGA K,HAYASHIDA O,et al.Specific inhibition of insoluble glucan synthase(GTF-I)by Maillard reaction products from casein and albumins[J].Agricultural and biological chemistry,1990,54(6):1417-1424
[49]EBISU S,KATO K,KOTANI S,et al.Isolation and purification of Flavobacterium alpha-1,3-glucanase-hydrolyzing,insoluble,sticky glucan of Streptococcus mutans[J].Journal of bacteriology,1975,124 (3):1489-1501
[50]SCHACHTELE C F,STAAT R H,HARLANDER S K.Dextranases from oral bacteria:inhibition of water-insoluble glucan production and adherence to smooth surfaces by Streptococcus mutans[J].Infection and immunity,1975,12(2):309-317
[51]TSUMORI H,SHIMAMURA A,SAKURAI Y,et al.Combination of Mutanase and Dextranase Effectively Suppressed Formation of Insoluble Glucan Biofilm by Cariogenic Streptococci[M].Interface O-ral Health Science 2011.Springer.2012:215-217
[52]MUKASA H,SHIMAMURA A,TSUMORI H.Effect of salts on water-insoluble glucan formation by glucosyltransferase of Streptococcus mutans[J].Infection and immunity,1979,23(3):564-570
[53]FUKUSHIMA K,MOTODA R,IKEDA T.Effects of exogenous insoluble glucan primer on insoluble glucan synthesis by Streptococcus mutans[J].Journal of dental research,1981,60(9):1707-1712
[54]WENHAM D,DAVIES R,COLE J.Insoluble glucan synthesis by mutansucrase as a determinant of the cariogenicity of Streptococcus mutans[J].Journal of general microbiology,1981,127(2):407-415
[55]FUKUSHIMA K,TAKADA K,MOTODA R,et al.Independence of water-insoluble glucan synthesis and adherence of Streptococcus mutans to smooth surfaces[J].FEBS letters,1982,149(2):299-303
Progress in the Study of Insoluble Glucan
HAN Jin1,WU Zheng-jun1,2,YAN Ming-hui2,GAO Cai-xia3,WU Shen-mao3(1.State Key Laboratory of Dairy Biotechnology,Shanghai 200436,China;2.Shanghai Engineering Research
Center of Dairy Biotechnology,Shanghai 200436,China;3.Dairy Research Institute,Bright Dairy&Foods Co.Ltd.,Shanghai 200436,China)
Insoluble glucan,a typical glucose polymer with α-(1,3)-,α-(1,6)-,β-(1,3)-or β-(1,4)-glycosidic linkage in the backbone,is insoluble in water or alkali solution and mainly biosynthesized by microbial glucosyltransferase catalysing sucrose as the substrate.In this article,the progress in the research and development of insoluble glucan resource,functionality,application and regulation was reviewed and the future perspective is also predicted.
insolubleglucan;resource;functionality;application;regulation
10.3969/j.issn.1005-6521.2016.15.049
“十二五”國家科技支撐計劃課題:發酵乳制品乳酸菌菌種與發酵劑的研究與開發(2013BAD18B01);“十二五”國家863項目:優良益生菌高效篩選與應用關鍵技術(2011AA100901)
韓瑨(1980—),男(漢),高級工程師,碩士,研究方向:乳品科學。
2015-08-26