999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

微波輔助細菌纖維素酯的制備及對Pb(II)的高效去除

2016-09-13 03:10:27王吟孫鳳玲張曉東陶紅楊一瓊
物理化學學報 2016年3期
關鍵詞:改性

王吟 孫鳳玲 張曉東 陶紅 楊一瓊

(上海理工大學環境與建筑學院,上海200093)

微波輔助細菌纖維素酯的制備及對Pb(II)的高效去除

王吟*孫鳳玲張曉東*陶紅楊一瓊

(上海理工大學環境與建筑學院,上海200093)

以細菌纖維素(BC)為原料,通過微波輔助酯化改性的方法制得了兩種改性細菌纖維素,細菌纖維素黃原酸酯(XMBC)和細菌纖維素硫酸酯(SMBC)。對所制備的樣品進行X射線衍射(XRD)、掃描電鏡-電子能譜(SEM-EDS)、傅里葉變換紅外(FT-IR)光譜和BET比表面積分析,通過續批式實驗考察其對Pb(II)的去除效果。研究了pH值、反應時間、溫度、污染物初始濃度、離子強度對其吸附能力的影響以及材料再生性能。結果表明,改性細菌纖維素的比表面積和孔容均有上升,其對Pb(II)的吸附量隨反應溫度和離子強度的增加而降低,最優pH值為5.0。巰基的引入增強了細菌纖維素對Pb(II)的吸附能力,改性后的吸附劑顯示出比原始BC更優異的吸附性能,其中XMBC和SMBC的最大吸附量分別為144.93和126.58mg?g-1,該吸附過程符合準二級速率方程和Langmuir等溫吸附模型。材料對Pb(II)的吸附是自發的放熱過程,且吸附劑易于再生和重復回收。因此,SMBC和XMBC作為從水中富集分離重金屬的新型材料具有及大應用前景。

細菌纖維素;酯化改性;微波輔助;生物吸附;重金屬

1 Introduction

Water pollution caused by heavymetal ionshasbecomeamajor issue and perp lexed researchers for a long time.Among these metals,lead ions are significantcontam ination sources ofwater, because they arewidely used in a variety of industrialprocesses such as electronics,batterymanufacture,petroleum refining,and metalm ining1.Lead exposure,even at low concentrations,can cause serious diseases such as renal disturbances,hepatitis,encephalopathy,anem ia,lung failure,bonelesions,and cancer2. Therefore,the removalof Pb(II)from wastewater issignificant for preserving public health and the environment3,4.At present,there are severalmethods for removing heavymetal ions from w astewater,such as chemical precipitation,membrane filtration,ion exchange,electrodialysis,reverseosmosis,electrolysis,and adsorption technique5-9.However,mostof thesemethods havehigh operating cost and the need for disposal of the resulting solid waste.Due to the advantages of econom ical feasibility and environmental friendly behavior,adsorption is regarded as the best technique for removing heavymetal ions10-12.Consequently,many effective adsorbentswith strong affinity and high loading capacity for Pb(II)w ere subsequently prepared,such as alum inum hydroxide13,carbon14,zeolite15,clay16,resin17,and silicagel.Recently theuse of biosorbents to removemetal ionshas been discussed w idely18,19.

As biosynthesized cellulose,bacterial cellulose(BC)is an extracellular cellulose produced by bacteria of the Acetobacter xylinum20.It is identical to plant cellulose with respect to the microfibrous structure,which has a ribbon-like structure,and the thickness is two orders ofmagnitude smaller than thatof plant cellulose.In addition,it has an ultrafine nanofiber network structure and unique properties including high w ater holding capacity,high tensile strength,elasticity,no secondary pollution, high specific surface,pore structure,andmany hydroxyl groups in the chains21,22.Benefit from these unique properties,BC has attracted an increased interest in commercialapplicationsover the past few years,and italso has the potentialasanew adsorbent for effective separation of heavymetal ions recently.

However,BC cannotbe directly used asan adsorbentbecause of its low adsorption capacity and poor selectivity.Therefore,it isnecessary tomodify BCw ith a bettermode in order to increase the adsorption capacity.Specifically,twomain approaches are utilized for themodification of BC:(1)directmodification,involving the cellulose backbone by introducing chelating functionalities,(2)grafting of specific monomers to the cellulose backbone and subsequent functionalization of these grafted polymer chains.Several chemicalmethods tomodify BC have been reported,diethylenetriam ine BC was synthesized by amination with diethylenetriamine on bacterial cellulose,and its adsorption properties for Cu(II)and Pb(II)were investigated by Shen etal.23.Donia etal.24have reported the preparationofnanomagnetic cellulosehybrid obtained from precipitation of cellulose in presenceof Fe(II)/Fe(III)mixture.Thehybridmaterialwas then functionalizedwith amino group through successive treatmentby glycidylmethacrylateand tetraethylenepentamine,and showed fast kinetics for theadsorption of threeheavymetal ions.O-Rak etal.25grafted poly(vinylidene fluoride)(PVDF)onto bacterial cellulose by a binary blend system.Among these modifications,those containing sulfur-bearing groupshavea strong affinity for heavy metals,and enhance the interaction w ith them.Recently,grafting thiolsor xanthate onto variousorganic compounds to obtain new compositematerialshas been explored26-28,which could improve the physicaland chem ical propertiesof organicmatter for removal of variousmetals.However,to our know ledge,therehave been few reports for suchmodification onto bacterial cellulose.

Microwave irradiation isone of the very effectivemethods for activating chem ical reactions in a homogeneous and selective manner,it also hasmany properties such as rapid volumetric heating,short reaction time,energy saving,and high reaction selectivity.Stonica-Guzun et al.22have reported the synthesis of bacterial cellulose-calcium carbonate composites using a rapid method,microwave irradiation.The resultsproved thatmicrowave irradiation can be used to obtain good quality BC-calcium carbonate com posites.Sathvika etal.29have studied them icrow ave assisted preparation of yeast immobilized cellulose for the removalof toxic Cr(VI),which showed thatm icrowave irradiation could promote the incorporation of yeast in the biopolymermatrix. The adsorption of fluoride onto microwave induced Al-Zr impregnated cellulosewasstudied by Barathi etal.30.Asa result,the innovations in themethodologies have evolved with a view to overcome some of the drawbacks of the existingmethodswhen applied to a specific problem.

In thisstudy,we focused on BC asastartingmaterial to prepare tw o new biosorbents,xanthate-bacterial cellulose and sulfatebacterial celluloseby esterificationmodification through a novel microwave assisted method,sincemicrowave assisted methodology could be conceived asan energy efficientand accelerating the etherification process.Our approach w as to offer interesting possibilities to obtain the cross-linkwith various functionalgroups in a dispersiveway on the BC,maximizing subsequentadsorption for Pb(II).Themain objective of the study w as to determ ine the adsorption capacity of thebiosorbents,to establish the applicable isotherm modeland to elucidate the sorptionmechanism.

2 Experimental

2.1Materia ls

All reagents used in thiswork were of analytical grade and purchased from Sinopharm Chemical ReagentShanghaiCo.Ltd. Pb(NO3)2wasused assource for Pb(II)ions.Stock solution(1000mg?L-1)of the studied ionswasprepared in distilledwater.

2.2Preparation and p retreatmento fbac terial ce llu lose

BC was prepared in static culture on amodified HSmedium containing 2%fructose,and extracted from Acetobactersp.which isolated from the traditionally fermented vinegaraccording to the reported method31,32.The gel-like pellicles were washed w ith running tapwater for 24h to removeany residueon their surfaces and stirred in a 0.1mol?L-1NaOH solution for 24h at70°C followed by extensive washing w ith deionized water until the filtratewasneutral.Thepurified BC gelswere dried under vacuum at80°C and crushed into a 40mesh powder beforebeing stored for futuremodification.

2.3Prepara tion o fm od ified bac te ria l ce llu loses

2.3.1Microwave-assisted xanthatemodified bacteria l ce llu lose

PretreatmentBC(10g),in 10mL of CS2and 100mLof NaOH solution(10%)were taken in a 250m L flask and irradiated in a Panasonic(NN-GF352M,1000W)domesticmicrowaveoven for 180s using only 10%of the total powerw ith interm ittent time durationof 30ssoas to ensure thatcellulosedosenotundergo any degradation.Then 0.25mol?L-1of MgSO4solution wasadded and stirred at room temperature for24h.

2.3.2Mic row ave-assisted su lfatemodified bac terial ce llu lose

Firstly,the sodium BC(10g)w as m ixed w ith 60m L epichlorohydrin and 125mL 2mol?L-1NaOH,and keptunder the samem icrowave condition as above to form epoxypropy l-BC. Afterwards,50mLH2SO4and 60mL isoamylolwere added to the particles and them ixture was stirred for 1 h at ambient temperature.

Finally,the obtained products were collected and w ashed thoroughly with deionizedwater to beneutral,dried in vacuum at 60°C.Designed as XMBC(xanthate-modified BC)and SMBC (sulfate-modified BC),respectively.

A ll of the synthesis conditions have been optim ized in the laboratory.

2.4Characterization o f themodified bac terial cellu loses

Surface areasand poroussize distribution of themodified BCs weremeasured by nitrogen adsorption and desorption analysis (ASAP 2020,Micrometrics,USA).Crystalstructures of samples were determ ined by performing X-ray diffraction(XRD)on D8 ADVANCE X-ray diffraction spectrometer(Bruker,German). Surfacemorphologies were exam ined by a scanning electron m icroscope(SEM,HitachiS4700,Japan)w ith theworking distance of 5-12mm and an accelerating voltage of 20keV.The SEMwasequipped w ith an energy dispersion spectrometer(EDS) and itwas used to perform theanalysis of chemical constituents of the biosorbents.Infrared(IR)absorption spectraweremeasured at room temperature on a Fourier transform infrared(FT-IR) spectroscopy(Nicolet Instrument Corporation,USA)using the KBr Pellettechnique.

2.5Adsorp tion experim en t

Adsorption experimentsw ere carried out using a batch w ise method.Allbatch reactorswere placed on a shakerat150r?min-1under controlled temperature.The solution pH wasadjusted from 1.0to6.0w ith0.1mol?L-1HClor0.1mol?L-1NaOH.Theamount of metal ions adsorbed on the adsorbents at adsorption equilibrium,qe(mg?g-1),was calculated according to the follow ing Eq. (1):

where C0and Ceare the initial and equilibrium metal ion concentrations(mg?L-1),respectively,V is the volumeof the solution (L),and W is themassof the adsorbentused(g).

Theeffectsof pH and ionic strengthwere studiedwithin the pH rangeof 1.0-6.0and for non-fixed ionic strength,0.1,1 and 10mmol?L-1NaNO3solution w ith the initial Pb(II)concentration of 20mg?L-1and the contact time of 24h at25°C.Adsorption kineticsw ere studied using an initial concentration of 20mg?L-1w ith the sorbent dosage of 2.0g at 25°C.During the kinetics experiment,aliquots of sampleswerewithdrawn at fixed intervals and the concentration of the Pb(II)ions in each of thesampleswas determined.Adsorption isothermswere studied atvarious initial concentrations of Pb(II)ions under three different temperatures (288,298,308K)with the sorbentdosageof 0.05g.

Before analysis,samplesweremeasured immediately after the solution w as filtered through a 0.45μm membrane.The amount of remainingmetal ionswasdeterm ined by an atomic absorption spectrophotometer(AAnalyst600,PerkinElmer company,USA).

2.6Deso rp tion and regeneration experim en t

Reusability of thebiosorbentswereexamined in a0.1mol?L-1ethylene diam ine tetraacetic acid(EDTA)23,24and 0.5mol?L-1thioureaacidified with dropsof 0.2mol?L-1H2SO4solution24as the regenerators.Typically,the biosorbents w ithmetal ions adsorbed was added into 50mL of the desorption solution.The mixtureswere stirred in awaterbath shakerat150r?m in-1and at 25°C for 1 h,and sampleswere taken from the solution tomonitor the amountofmetal ions desorbed into the solution.A fter the desorption test,thebiosorbentswere separated andwashedw ith deionized water,and reused in the next cycle of adsorption experiment.Theadsorption-desorption experimentswere conducted for five cycles.

3 Results and discussion

3.1Characterization of modified bacteria lcellu loses Fig.1 show s the X-ray diffraction patterns of the biosorbents. According to the powder diffraction file(PDF)based on the XRD database obtained from a jade5software,the profile of BC is cellulose IIXRD pattern(2θ=12.26°,20.16°,21.13°)33,itw as clear that the original BC without pretreated with NaOH hadtypical cellulose Idiffraction anglesataround 14.87°,16.25°,and 22.64°34.SMBC and XMBC show the similar cellulose IIpattern with BC,however,the degreeof crystallinitywassmaller than that of BC and crystalline structurewasweakened for SMBC.These changes indicate that the crystalline regionsof the BC havebeen destroyed during the dissolution and homogeneous sulfating processeswhich formsamore stable cellulose IIpolymorph35.It is beneficial to decrease the degree of crystallinity of BC by etherification because structure of hydrogen bonding is destroyed. At the same time,adsorption efficiency is improved by the introduction of thiolgroup into the structureof BC.

Fig.1 XRD patternsof bacterial cellulose(BC),xanthatem odified bacterial cellulose(XMBC),and su lfate-modified bacterial cellulose(SMBC)

Fig.2 In frared spectra of theb iosorbents

FT-IR spectra of thebiosorbents are presented in Fig.2.In all samples,the spectraexhibit typicalpeaks for functional groups. The broad band centered at3320cm-1is corresponding to the O―H stretching vibration.The C―H asymmetric and symmetric tensile vibrationmode isobserved at2900cm-1.The peak at1636cm-1originates from thebendingmodeof theadsorbedwater,as well asC―O antisymmetric bridge stretching vibration at1160cm-1.The C―O―C mode from the pyranose rings′skeletal vibrationsobserved at1060cm-1,and theβ-glucosidic linkagesat 898 cm-136.Theseabsorption bandsare characteristic absorption bands of cellulose37,38,indicating that the structure of BC is not destroyed by themodification.Moreover,the peak intensity of the modified BCs becomes weaker than BC,indicating that the modification reduced the infrared absorption sensitivity of cellulosemolecules.The spectrum of SMBC showsadditionalnew band at813 cm-1corresponding to S=O stretching vibration,this proved the presence of sulfate groups.For XMBC,there are severalpeaksin the rangeof1300-1500cm-1assigning to theC―S bending vibration,imp lying the existence of―O―CSSH. Moreover,the transmittanceof O―H at3320cm-1decreased after the modification,indicating that the hydroxy l groups play an important role during microwave irradiation.The localized rotationson an almost immobileOH group arising asa resultof the dielectric heating involve energy transfer to surrounding solvent molecules.

The surface physical parameters obtained from the N2adsorption isotherms(Table 1)suggests that the BET surfacearea and totalpore volume change significantly afteretherification.In comparison w ith BC,the BET surface area and total pore volume increase to126m2?g-1and 0.05cm3?g-1forXMBC,and to134m2?g-1and 0.09 cm3?g-1for SMBC.Meanwhile,the pore size reduces to 2.8 nm for XMBC and 4.3 nm for SMBC.Although the surface areaof XMBC issmaller than SMBC,the pore sizeof XMBC is smaller,which ismore suitable for the adsorption ofmetal ions.

Fig.3 shows the SEMand EDSanalysis ofmodified BC.For SEMimages,the dense network structure can beobserved on the surface of BC.The average diameter of the sample is approximately 50-100nm.Comparedwith BC,XMBC and SMBC have denser netw orksand the ribbon become broader.Itm ight due to that xanthate can adhereon the surfaceof the BC nanofibrilsand incorporates into the ribbon.The result indicates thatesterification treatmentunder a short timemicrowave heating can improve the porosity,structure and crystalof the bacterial cellulosematerial, w hich is consistentw ith the literature result39.

Furthermore,the EDSspectra of selected zoneof the samples are carried out to investigate the chemical constituents in the BC matrix.For XMBC and SMBC,there isa peak corresponding to S elementwhich confirms the success of themodification by xanthate and sulfate.This result is in good agreementw ith the XRD observation.

Table1 Physical proper ties of theb iosorben ts

3.2Resu lts o f adsorp tion experim ents

3.2.1EffectofpH on static adsorption

ThepH levelof the solution hasa profound impactonmetal ion adsorption efficiency because it changes both the form of functionalgroupson themodified celluloseand also the form ofmetal ions40.Fig.4shows theeffectof pH on theadsorption behavior. When the pH was adjusted to a higher value of 6.0,lead precipitationwasobserved owning to the increaseof theOH-ions in the adsorptionmedium,as a result,the pH rangew as setat 1.0-6.0to investigate theeffectof solution pH on theadsorption perfor-mance.It is found that the removalefficiency of Pb(II)increases quick ly w ith increasing pH to 5.0.The XMBC shows the best removal efficiency(91.99%),and it exhibited approximately 10%-20%higher Pb(II)removalefficiency than theunmodified BC.Thismay be ascribed to the preferential ofmetal complex formation between thiolgroup and Pb(II)41.SMBC showsa little lower removalefficiency of 86.23%than XMBC,thisobservation can beexplained by the smallpore sizeof XMBC,which ismore suitable for the adsorption ofmetal ions.When the pH valuewas above5.0,the adsorption capacity declined.The reason could be attributed to the very unstable complex on thebiosorbent surface. As for the BC,the system stillshowsdecent removalefficiency, likely due to the charge attraction between negatively charged carboxylategroupson the cellulose surfaceand positively charged Pb(II).With the increaseof pH,more―COOH groups could be dissociated into COO-groups,indicating higher adsorption capacity of Pb(II)ions due to electrostatic attraction42.At the same time,the negative charge density on the carbon surface increased due to depronation of the H+ion-containing binding sites,thereby improving the adsorption capacity toward Pb(II)ions41.And when the pH was higher than 5.0,competition between H+and Pb(II) ions for surface adsorption sites decreased.To increase the adsorption capacity aspossibleand keep Pb(II)asa simple form,i. e.,Pb(II)in the solutions,pH of 5.0is selected for the rest of the batch experiments.

Fig.3 SEMand EDS data of the biosorbents

3.2.2Effectof ionic strength

The presence of salt or co-ions in solution can affect the sorption ofmetal ions.As investigated in Fig.5,Pb(II)adsorptionby the biosorbentsdecreased with increasing ionic strength.The declineof removalefficiency indicates that the cations can alter the surface property of biosorbents and thus can influence the adsorption of Pb(II)on the surface.Actually,there exists a competition force between the hydrated ions(Na+)and Pb(II),thus reducing Pb(II)adsorption43.This indicates that the adsorption interaction between the functionalgroups of thebiosorbents and Pb(II)ions ismainly of ionic interaction nature,which is in agreement with an ion exchangemechanism.Besides,Na+in solutionmay influence the double layer thicknessand interfacepotential44.And for XMBC and SMBC,the impact of ionic strength is relatively smaller than thatof BC,which reveals that the increase of Na+would not inhibit the comp lexion reaction between thiolgroup and Pb(II).

Fig.4Effects of pH on the rem ovalof Pb(II)on the biosorbnets

Fig.5Effectsof ionic strength on the removalofPb(II)on thebiosorbents

Fig.6Adsorption kineticsof Pb(II)on the biosorbents

3.2.3Adsorp tion kinetics

Fig.6demonstrates the adsorption capacity of Pb(II)by the biosorbentsatdifferent time.As illustrated in Fig.6,theadsorption capacity ofmodified BCs rapidly increases in the first30min and then slow ly augments.The adsorption equilibrium has been achieved aftermore than 40m in for XMBC and SMBC.Compared w ith BC,the adsorbing time ofmodified BCs is clearly shortened and the adsorption capacity are clearly increased.One possibleexplanation is that the formation of Pb-thiolate complex through the chelating reaction of S=O and C―Swith Pb(II)is very fastand strong for SMBC and XMBC,respectively45.

To examine themechanism of theadsorption process,adsorption kineticsare tested w ith the pseudo-firsorder equation(Eq.(2)),the pseudo-second-order equation(Eq.(3)),and particle diffusion equation(Eq.(4))based on adsorption equilibrium capacity46.

where qe(mg?g-1)and qt(mg?g-1)are theadsorption quantity at adsorption equilibrium and theadsorption quantity at time t(min), respectively.k1(min-1),k2(g?mg-1?min-1),and ki(mg?g-1?min-1/2) are the kinetics rate constants for the pesudo-first-order,pesudosecond-order,and particle diffusion equation,respectively.c(mg?g-1)is the interceptof intraparticle diffusionmodel.Valuesof c give information about the thickness of the boundary layer,that is,the larger intercept the greater is theboundary layereffect47.

Table2 Pseudo-first-order and pseudo-second-order kineticsparametersof Pb(II)adsorp tion on the biosorbents

The rate constants of adsorption for kineticsmodels are calculated and the results are reported in Table 2.As illustrated in Table2,the valuesof correlation coefficient(R2)for the pseudosecond-order adsorptionmodel are relatively high(>0.9990), moreover,theadsorption capacities calculated by themodel are also close to those determ ined by experiments.However,the values of R2for the pseudo-first-order are not satisfactory. Therefore,itcan be concluded that the pseudo-second-orderadsorption model ismore suitable for describing the adsorption kinetics of Pb(II)on thebiosorbents.It reveals that the chem ical adsorption was themain control process for the biosorbents48.The product k2qe2is the initialsorption rate,represented asaswe can see in Table2,the initialsorption rateofmodified BCsare much higher than that of BC,verified that themodification is favorable for promoting the adsorption rate.The result indicates thatboth physicaland chemicaladsorption existed in adsorption process,butchem icaladsorption wasdom inated.

The intra-particle diffusion constants are computed from the plotof qtvs t1/2(Fig.7).A ll plots in Fig.7 presentmulti-linear and therewere three differentportionswith differentslopes,indicating that several processes affected the Pb(II)adsorption on allmaterials.The p lots for the initial linear did not pass through origin (c≠0)(Table 3),implying that intraparticle diffusion isnot the only rate-controlling step and boundary layer controlmay affect theadsorption.

3.2.4Adsorp tion isotherm s

Theadsorption quantity of Pb(II)by thebiosorbentsatdifferent initial concentration of Pb(II)are presented in Fig.8.The adsorption capacity of Pb(II)increasesw ith increasing initial concentration.In the early stage,the adsorption capacity increases sharply,after that,the slop of curve decreasesobviously and the curve flattens out.Furthermore,the adsorbed amounts all decreaseswith the increasing of temperature,which indicates an exotherm ic process in nature.

Theadsorption dataareanalyzedwith Langmuir(Eq.(5))49and Freundlich(Eq.(6))50isotherm models:

where Ce(mg?L-1)is theequilibrium concentration ofmetal ions, qe(mg?g-1)is the amountofmetal ionsadsorbed,qm(mg?g-1)is themaximum adsorption capacity ofmetal ions,and b(L?mg-1) is the Langmuir adsorption equilibrium constant related to the affinity of the binding sites.Kf(mg?g-1)and n are the Freundlich constants.

Fig.7 Intraparticlediffusion kinetics for adsorp tion of Pb(II)on thebiosorbents

Fig.8 Adsorp tion isotherm sof Pb(II)on thebiosorbents

Table3 Intraparticle diffusionm odel constan ts and correlation coefficients for adsorption of Pb(II)on thebiosorben ts

Table 4Langmuir and Freundlich isotherm parameters for adsorption of Pb(II)on thebiosorbentsat different temperatures

The valuesof the constantsand the correlation coefficientsare listed in Table 4.Based on the coefficient obtained,it can be concluded that the Langmuir equation gives a better fit(R2> 0.9990)to the experimental data than that of the Freundlich equation,which indicatesamonolayermolecule adsorption during theadsorption process.A steady decrease in KL(Langmuir constant(L?mol-1))valuesw ith increasing temperaturein Table 4proves that theaffinity of Pb(II)forall thebiosorbentsdecreasesw ith rising temperature from 288 to 308 K,also illustrating that the process is exothermic in nature.It can be seen that themaximum adsorption capacity of Pb(II)followed the orderas XMBC (144.93mg?g-1)>SMBC(126.58mg?g-1)>BC(66.67mg?g-1), show ing a favorable Pb(II)removal w ith the modification. Moreover,Freundlich isotherm data in Table 4disp lays that the valuesof n weremore than 1 for the two biosorbentsatdifferent temperatures,suggesting thatPb(II)adsorptionwas favorable.

Theaboveadsorption resultsare comparedwith othermodified cellulose-based adsorbents(Table5).Under similar testconditions in terms of optimum pH,room temperature,the XMBC and SMBC demonstrate higher adsorption capacity than the chosen adsorbents.Taking into account of its considerable adsorption capacity andcost-effective sources,the XMBC and SMBC develop in presentstudy havegreatpotential forapplication in Pb(II)removal from aqueous solution.

3.2.5Adsorp tion the rm odynam ics

The thermodynam ic parameters,such as change in standard freeenergy(ΔG0,kJ?mol-1),enthalpy(ΔH0,kJ?mol-1),andentropy (ΔS0,J?mol-1?K-1)were determ ined by using the following equations48:

Table5Com parison of them axim um adsorption of Pb(II)on various celluloses

Table6Valuesof thermodynam ic parameters for adsorption of Pb(II)onto thebiosorbents

Table7 Desorption and regeneration efficienciesof Pb(II)on the biosorbents

3.3Regene ration o fm od ified bac te rial cellu lose

In practicalapplication,it isvery important to investigate the ability of an adsorbent to be regenerated and reused57.The effect of five adsorption-desorption consecutive cycleson the efficiency of the individualadsorption of Pb(II)on thebiosorbents isstudied. Table 7 shows the corresponding desorption efficienciesobtained at EDTA and acidified thiourea.For desorption conducted w ithEDTA solution,itwas found that the Pb(II)adsorbed on allbiosorbentswaseasily desorbed.The desorption efficiency reached about 98%after first cycle,and the biosorbents could retain greater than 92%of their initial adsorption capacity after five cycles,which indicates that thereare no irreversible siteson the surfaceof thebiosorbent.Moreover,The desorbedmaterialswere highly effective for the readsorption of Pb(II),and the adsorption abilitywaskeptconstantafter several repetitionsof theadsorptiondesorption cycles.For desorption conducted with the acidified thiourea solution,the desorption efficiency reached about 94% after the firstcycle,which is lower than the EDTA solution.And the adsorption capacity reduced significantly after the third cycle. Thismay be attributed to the differentmechanisms of the two eluents.EDTA is a better regenerator for desorption of heavy metal ions due to its high affinity to metal ions.W hen using acidified thiourea,theabundanthydrogen ions in the solution,a dom inant protonation reaction takes place between hydrogen ions and active sites(COO-groups).Thus,the complexation between theactive sites andmetal ions is destroyed and the adsorbent is regenerated.How ever,the structure ofmodified BCs and their adsorption active sitesareeasily destroyed by the acid solution, leading to lower adsorption capacities after each regeneration cycle.While the EDTA solution is am ild desorption solution which does notdestroy the active sites.Therefore,theadsorption onmodified BCs remained athigh value after several recycling procedures.

4Conclusions

In this work,two different modified bacterial celluloses (SMBC,XMBC)were synthesized by introducing xanthateand sulfate asmodification agents under a short timem icrowave heating.The characteristics analysis revealed thatmodification brought the network structure of the bacterial cellulosemuch denser and improved its surface area.The experimental data showed that thebestadsorption performanceof thebiosorbents for Pb(II)were obtained in solution at pH 5.0.The adsorption equilibrium time of themodified BCswere shortened compared w ith BC,which was 40m in for XMBC and SMBC.The adsorption kinetics closely followed the pseudo-second-order kineticsmodel. The adsorption isotherm data were well fitted with Langmuir model and the maximum adsorption capacity of Pb(II)were followed the order of XMBC(144.93mg?g-1)>SMBC(126.58 mg?g-1)>BC(66.67mg?g-1)at298 K.Theadsorption process of Pb(II)was controlled by both boundary layer control and intraparticle diffusion,and wasan exotherm ic reaction,indicating that the adsorbing rate could beaccelerated with the decrease of reaction temperature.The spent biosorbent could be readily regenerated for reuseby EDTA solution.The presentstudy provided the relatively comprehensive data for the XMBC and SMBC application to the removalofmetal ion in thew astewater.

References

(1)Freitas,O.M.M.;Martins,R.J.E.;Delerue-Matos,C.M.; Boaventura,R.A.R.J.Hazard.Mater.2008,153(1-2),493. doi:10.1016/j.jhazmat.2007.08.081

(2)Cheung,M.R.Asian Pac.J.Cancer Prev.2013,14(5),3105. doi:10.7314/APJCP.2013.14.5.3105

(3)Reddad,Z.;Gerente,C.;Andres,Y.;Cloirec,P.L.Environ. Sci.Technol.2002,36(9),2067.doi:10.1021/es0102989

(4)Crini,G.Prog.Polym.Sci.2005,30(1),38.doi:10.1016/j. progpolymsci.2004.11.002

(5)Ngah,W.S.W.;Hanafiah,M.A.K.M.Bioresour.Technol. 2008,99(10),3935.doi:10.1016/j.biortech.2007.06.011

(6)D jedidi,Z.;Bouda,M.;Souissi,M.A.;Cheikh,R.B.;Mercier, G.;Tyagi,R.D.;Blais,J.F.J.Hazard.Mater.2009,172(2-3),1372.doi:10.1016/j.jhazmat.2009.07.144

(7)Abou-Shady,A.;Peng,C.;Bi,J.;Xu,H.;Juan,A.O. Desalination 2012,286(1),304.doi:10.1016/j. desal.2011.11.041

(8)Chen,T.;Wang,T.;Wang,D.J.;Zhao,J.Q.;Ding,X.C.;Wu, S.C.;Xue,H.R.;He,J.P.Acta Phys.-Chim.Sin.2010,26, 3249.[陳田,王濤,王道軍,趙建慶,丁曉春,吳士超,薛海榮,何建平.物理化學學報,2010,26,3249.]doi:10.3866/ PKU.WHXB20101134

(9)Say,R.;Birlik,E.;Erdemgil,Z.;Denizli,A.;Ers?z,A. J.Hazard.Mater.2008,150(3),560.doi:10.1016/j. jhazmat.2007.03.089

(10)Kul,A.R.;Koyuncu,H.J.Hazard.Mater.2010,179(1-3), 332.doi:10.1016/j.jhazmat.2010.03.009

(11)Niu,Y.;Feng,S.;Qu,R.;Ding,Y.;Wang,D.;Wang,Y.Int.J. Quantum Chem.2011,111(5),991.doi:10.1002/qua.v111.5

(12)Anwar,J.;Shafique,U.;Salman,M.;Dar,A.;Anwar,S. Bioresour.Technol.2010,101(6),1752.doi:10.1016/j. biortech.2009.10.021

(13)Wang,W.;Zhang,X.;Wang,H.;Wang,X.;Zhou,L.;Liu,R.; Liang,Y.WaterRes.2012,46(13),4063.doi:10.1016/j. watres.2012.05.017

(14)Ren,X.;Shao,D.;Yang,S.;Hu,J.;Sheng,G.;Tan,X.;Wang, X.Chem.Eng.J.2011,170(1),170.doi:10.1016/j. cej.2011.03.050

(15)Hamidpour,M.;Kalbasi,M.;Afyuni,M.;Shariatmadari,H.; Holm,P.E.;Hansen,H.C.B.J.Hazard.Mater.2010,181(1-3),686.doi:10.1016/j.jhazmat.2010.05.067

(16)Jiang,M.Q.;Jin,X.Y.;Lu,X.Q.;Chen,Z.L.Desalination 2010,252(1-3),33.doi:10.1016/j.desal.2009.11.005

(17)Wang,L.;Yang,L.;Li,Y.;Zhang,Y.;Ma,X.;Ye,Z.Chem. Eng.J.2010,163(3),364.doi:10.1016/j.cej.2010.08.017

(18)Chen,H.;Zhao,J.;Dai,G.;Wu,J.;Yan,H.Desalination 2010, 262(1),174.doi:10.1016/j.desal.2010.06.006

(19)Wang,X.S.;Lu,Z.P.;Miao,H.H.;He,W.;Shen,H.L.Chem. Eng.J.2011,166(3),986.doi:10.1016/j.cej.2010.11.089

(20)Klemm,D.;Schumann,D.;Udhardt,U.;Marsch,S.Prog. Polym.Sci.2001,26(9),1561.doi:10.1016/S0079-6700(01) 00021-1

(21)Shinsuke,I.;Manami,T.;Minoru,M.;Hiroyuki,S.;Hiroyuki, Y.Biomacromolecules 2009,10(9),2714.doi:10.1021/ bm9006979

(22)Stoica-Guzun,A.;Stroescu,M.;Jinga,S.I.;Jipa,I.M.;Dobre, T.Ind.Crop.Prod.2013,50(10),414.doi:10.1016/j. indcrop.2013.07.063

(23)Shen,W.;Chen,S.Y.;Shi,S.K.;Li,X.;Zhang,X.;Hu,W.L.; Wang,H.P.Carbohyd.Polym.2009,75(1),110.doi:10.1016/ j.carbpol.2008.07.006

(24)Donia,A.M.;A tia,A.A.;Abouzayed,F.I.Chem.Eng.J. 2012,191(19),22.doi:10.1016/j.cej.2011.08.034

(25)O-Rak,K.;Phakdeepataraphan,E.;Bunnak,N.;Ummartyotin, S.;Sain,M.;Manuspiya,H.Chem.Eng.J.2014,237(1),396. doi:10.1016/j.cej.2013.10.032

(26)Zhu,H.Y.;Jiang,R.;Xiao,L.;Li,W.J.Hazard.Mater.2010, 179(1-3),251.doi:10.1016/j.jhazmat.2010.02.087

(27)Xia,L.;Hu,Y.X.;Zhang,B.H.Trans.NonferrousMet.Soc. China 2014,24(3),868.doi:10.1016/S1003-6326(14)63137-X

(28)Chand,P.;Bafana,A.;Pakade,Y.B.Int.Biodeter.Biodegr. 2015,97,60.doi:10.1016/j.ibiod.2014.10.015

(29)Sathvika,T.;Manasi;Rajesh,V.;Rajesh,N.Chem.Eng.J. 2015,279,38.doi:10.1016/j.cej.2015.04.132

(30)Barathi,M.;Santhana Krishna Kuma,A.;Rajesh,N. J.Environ.Chem.Eng.2013,1(4),1325.doi:10.1016/j. jece.2013.09.026

(31)Pedro,C.;Joana,A.S.,M.;Eliane,T.;Luísa,S.,S.;Carmen,S. R.,F.;Armando,J.D.,S.;Carlos,P.N.Bioresour.Technol. 2011,102(15),7354.doi:10.1016/j.biortech.2011.04.081

(32)Wang,J.Q.;Lu,X.K.;Ng,P.F.;Lee,K.I.;Fei,B.;Xin,J.H.; Wu,J.Y.J.Colloid Interface Sci.2015,440,32.doi:10.1016/j. jcis.2014.10.035

(33)Zhang,J.;Li,D.;Zhang,X.;Shi,Y.J.Appl.Polym.Sci.1993, 49,741.doi:10.1002/app.1993.070490420

(34)Tokoh,C.;Takabe,K.;Fujita,M.;Saiki,H.Cellulose 1998,5(4),249.doi:10.1023/A:1009211927183

(35)Qin,Z.Y.;Ji,L.;Yin,X.Q.;Zhu,L.;Lin,Q.;Qin,J.M. Carbohyd.Poly.2014,101(101),947.doi:10.1016/j. carbpol.2013.09.068

(36)Yu,X.L.;Tong,S.R.;Ge,M.F.;Wu,L.Y.;Zou,J.C.;Cao,C. Y.;Song,W.G.J.Environ.Sci-China 2013,25(5),933.doi: 10.1016/S1001-0742(12)60145-4

(37)Heinze,T.;Liebert,T.;Koschella,A.Esterification of Polysaccharide,1sted.;Springer:Berlin,2006.

(38)Ivanova,N.V.;Korolenko,E.A.;Korolik,E.V.;Zhbankov,R. G.J.Appl.Spectrosc+.1989,51(2),847.doi:10.1007/ BF00659967

(39)Lu,M.;Zhang,Y.M.;Guan,X.H.;Xu,X.H.;Gao,T.T. T.Nonferr.Metal.Soc.2014,24(6),1912. doi:10.1016/S1003-6326(14)63271-4

(40)Yang,R.;Aubrecht,K.B.;Ma,H.;Wang,R.;Grubbs,R.B.; Hsiao,B.S.;Chu,B.Polymer 2014,55(5),1167.doi: 10.1016/j.polymer.2014.01.043

(41)Wu,Z.;Cheng,Z.;Ma,W.Bioresour.Technol.2012,104(1), 807.doi:10.1016/j.biortech.2011.10.100

(42)Fan,L.;Chen,Y.;Wang,L.;Jiang,W.Adsorpt.Sci.Technol. 2011,29(5),495.doi:10.1260/0263-6174.29.5.495

(43)Zhang,J.;Cai,D.Q.;Zhang,G.L.;Cai,C.J.;Zhang,C.L.; Qiu,G.N.;Zheng,K.;Wu,Z.Y.Appl.Clay Sci.2013,83-84, 137.doi:10.1016/j.clay.2013.08.033

(44)Chen,C.L.;Wang,X.K.Appl.Geochem.2007,22(2),436. doi:10.1016/j.apgeochem.2006.11.010

(45)Lu,M.;Guan,X.H.;Xu,X.H.;Wei,D.Z.Chin.Chem.Lett. 2013,24,253.doi:10.1016/j.cclet.2013.01.034

(46)Fu,X.C.;Shen,W.X.;Yao,T.Y.;Hou,W.H.Physical Chemistry,5th ed.;Higher Education Press:Beijing,2009.[傅獻彩,沈文霞,姚天揚,侯文華.物理化學.第五版.北京:高等教育出版社,2009.]

(47)Zhu,H.Y.;Jiang,R.;Xiao,L.;Li,W.J.Hazard.Mater.2010, 179(1-3),251.doi:10.1016/j.jhazmat.2010.02.087

(48)Wang,Z.;Yin,P.;Qu,R.;Chen,H.;Wang,C.;Ren,S.Food Chem.2013,136(136),1508.doi:10.1016/j. foodchem.2012.09.090

(49)Kong,J.;Huang,L.;Yue,Q.;Gao,B.Desalin.Water Treat. 2014,52(13-15),2440.doi:10.1080/19443994.2013.794713 (50)Foo,K.Y.;Hameed,B.H.Bioresour.Technol.2012,111(5), 425.doi:10.1016/j.biortech.2012.01.141

(51)Chen,S.Y.;Zou,Y.;Yan,Z.Y.;Shen,W.;Shi,S.K.;Zhang, X.;Wang,H.P.J.Hazard.Mater.2009,161,1355.doi: 10.1016/j.jhazmat.2008.04.098

(52)Musyoka,S.M.;Ngila,J.C.;Moodley,B.;Petrik,L.; Kindness,A.Anal.Lett.2011,44(11),1925.doi:10.1080/ 00032719.2010.539736

(53)Liu,Y.J.Chem.Eng.Data 2009,54(7),1981.doi:10.1021/ je800661q

(54)Kong,J.;Yue,Q.;Sun,S.;Gao,B.;Kan,Y.;Li,Q.;Wang,Y. Chem.Eng.J.2014,241(4),393.doi:10.1016/j. cej.2013.10.070

(55)Albadarin,A.B.;Mangwand,C.;Ala′H,A.;Walker,G.M.; A llen,S.J.;Ahmad,M.N.M.Chem.Eng.J.2012,179,193. doi:10.1016/j.cej.2011.10.080

(56)Sag,Y.;Kutsal,T.Biochem.Eng.J.2000,35(8),801.doi: 10.1016/S0032-9592(99)00154-5

(57)Liu,C.X.;Bai,R.B.J.Membrane Sci.2006,284(1-2),313. doi:10.1016/j.memsci.2006.07.045

Microwave-Assisted Synthesis of Esterified Bacterial Celluloses to Effectively Remove Pb(II)

WANG Yin*SUN Feng-Ling ZHANG Xiao-Dong*TAO Hong YANG Yi-Qiong
(SchoolofEnvironmentand Architecture,University ofShanghaifor Science and Technology,Shanghai200093,P.R.China)

Twomodified bacterialcelluloses,xanthate-modified bacterialcellulose(XMBC)and sulfate-modified bacteria lcellulose(SMBC),were prepared from bacterialcellu lose(BC)esterified w ith xanthate and sulfate, respective ly,usingm ic row ave irrad iation.The as-p repared sam p les we re cha racte rized by X-ray d iffraction (XRD),scanning electronm icroscopy-energy-dispersive spectroscopy(SEM-EDS),Fourier transform infrared (FT-IR)spectroscopy,and Brunauer-Emmett-Teller(BET)surface ana lysis.Batch experimentswere carried out to determ ine the ability o f XMBC and SMBC to remove Pb(II)from solution.The effects ofpH,contact time, tem perature,initialadsorp tion concentration,and ionic strength on Pb(II)removalwere investigated a long with regene ration perform ance.Bo th the specific su rface area and tota lpo re volume of the modified biosorben ts were higher than those ofunmodified bacterialcellu lose.The adsorption o f Pb(II)decreased with increasing temperature and ionic strength,and the optimalpH was 5.0.The introduction of thiolgroups on bacterialcellulose increased its adsorp tion capacity for Pb(II);themodified biosorbents exhibited adsorption capacities of144.93 mg?g-1for XMBC and 126.58mg?g-1for SMBC.The adsorption rate closely followed a pseudo-second order modeland the adso rption isotherm data were consistentw ith the Langm uirmodel.The adso rption of Pb(II)wasexotherm ic,and the spentadsorbents could be readily regenerated for reuse.As a result,SMBC and XMBC are prom isingmaterials for the preconcentration and separation ofheavymetals from large volumes ofaqueous solutions.

October20,2015;Revised:December24,2015;Published onWeb:December29,2015.

Bacterialcellulose;Etherificationmodification;Microwave assistance;Biosorption;Heavymetal

O647

10.3866/PKU.WHXB201512294

*Corresponding authors.WANG Yin,Email:625xiaogui@163.com.ZHANG Xiao-Dong,Email:fatzhxd@126.com;Tel:+86-13917013840.

The projectwas supported by the Foundation of Key Laboratory of Yangtze RiverWaterEnvironment,Ministry of Education(TongjiUniversity), China(YRWEF201503),Program of Ability Construction in Shanghai LocalCollege,China(13230502300),Program of Supporting Young Teachers in ShanghaiCollege,China(ZZSLG14015),and ShanghaiSailing Program,China(14YF1409900).

長江水環境教育部重點實驗室開放課題(YRWEF201503),上海地方能力建設項目(13230502300),上海高校青年教師培養資助計劃(ZZSLG14015)及上海市青年科技英才楊帆計劃(14YF1409900)資助?Editorialofficeof Acta Physico-Chim ica Sinica

猜你喜歡
改性
尼龍6的改性研究進展
P(3,4HB)/PHBV共混改性及微生物降解研究
中國塑料(2016年12期)2016-06-15 20:30:07
汽車用ABS/PC共混物改性研究進展
中國塑料(2016年2期)2016-06-15 20:30:00
有機磷改性納米SiO2及其在PP中的應用
中國塑料(2016年2期)2016-06-15 20:29:59
我國改性塑料行業“十二·五”回顧與“十三·五”展望
中國塑料(2016年5期)2016-04-16 05:25:36
三聚氰胺甲醛樹脂的改性研究進展
聚乳酸的阻燃改性研究進展
中國塑料(2015年3期)2015-11-27 03:41:38
ABS/改性高嶺土復合材料的制備與表征
中國塑料(2015年11期)2015-10-14 01:14:14
聚甲醛增強改性研究進展
中國塑料(2015年9期)2015-10-14 01:12:17
聚乳酸擴鏈改性及其擠出發泡的研究
中國塑料(2015年4期)2015-10-14 01:09:19
主站蜘蛛池模板: 97精品久久久大香线焦| 日韩免费成人| 97青草最新免费精品视频| 国产视频a| 五月激情婷婷综合| 综合色天天| a网站在线观看| 99ri精品视频在线观看播放| 波多野结衣一区二区三视频| 久久中文无码精品| 久久国产黑丝袜视频| 免费观看国产小粉嫩喷水 | 久久综合色88| 露脸国产精品自产在线播| 午夜精品久久久久久久99热下载 | 亚洲精品在线影院| 亚洲第七页| 精品国产Ⅴ无码大片在线观看81| 多人乱p欧美在线观看| 欧美性猛交一区二区三区| 欧美五月婷婷| 永久免费av网站可以直接看的| 亚洲伊人久久精品影院| 一区二区理伦视频| 久久不卡精品| 波多野结衣无码视频在线观看| 国产成人福利在线视老湿机| 免费国产一级 片内射老| 欧美日韩国产精品综合| 在线观看91香蕉国产免费| 欧美亚洲另类在线观看| www.youjizz.com久久| 中国国产A一级毛片| 在线观看无码av五月花| 久久精品这里只有精99品| 亚洲欧美在线看片AI| 久久综合色播五月男人的天堂| 无码区日韩专区免费系列| 久久九九热视频| 91九色最新地址| 欧美成人手机在线视频| 动漫精品啪啪一区二区三区| 毛片网站在线看| 国产91小视频在线观看| 秋霞国产在线| 专干老肥熟女视频网站| 国产原创演绎剧情有字幕的| 国产国拍精品视频免费看| 亚洲午夜综合网| 九九热在线视频| 少妇极品熟妇人妻专区视频| 亚洲中字无码AV电影在线观看| 久久综合色天堂av| 成人午夜亚洲影视在线观看| 亚洲精品第1页| 91成人在线观看| 亚洲女同欧美在线| 婷婷亚洲视频| 国产在线精品99一区不卡| 亚洲国产欧美中日韩成人综合视频| 国产大全韩国亚洲一区二区三区| 夜色爽爽影院18禁妓女影院| 欧美成人怡春院在线激情| 欧美亚洲国产视频| 国产不卡国语在线| 老司国产精品视频91| 综合色在线| 亚洲中文字幕在线精品一区| 欧美精品亚洲精品日韩专区| 国产精品自在在线午夜| 视频一本大道香蕉久在线播放| 午夜日b视频| 蜜臀av性久久久久蜜臀aⅴ麻豆| 精品无码一区二区在线观看| 亚洲日韩Av中文字幕无码| 国产欧美自拍视频| 免费三A级毛片视频| 国产区在线观看视频| 91久久国产综合精品女同我| 美女内射视频WWW网站午夜| 亚洲天堂精品视频| 久久午夜夜伦鲁鲁片不卡 |