范立云,白云,敬思,劉洋,馬修真
(1.哈爾濱工程大學(xué) 動力與能源工程學(xué)院,黑龍江 哈爾濱 150001; 2.成都威特電噴有限責任公司,四川 成都 611731)
?
高壓共軌噴油系統(tǒng)多次噴射噴油量的波動
范立云1,白云1,敬思2,劉洋1,馬修真1
(1.哈爾濱工程大學(xué) 動力與能源工程學(xué)院,黑龍江 哈爾濱 150001; 2.成都威特電噴有限責任公司,四川 成都 611731)
針對高壓共軌噴油系統(tǒng)在噴油過程中壓力波動引起多次噴射穩(wěn)定性下降的問題,根據(jù)系統(tǒng)多次噴射循環(huán)噴油量波動特性,建立了系統(tǒng)仿真模型,通過試驗驗證了模型的準確性。利用所建模型,分別對預(yù)-主噴射和主-后噴射中循環(huán)噴油量隨噴油間隔的波動特性進行研究,分析表明:相同預(yù)噴不同主噴時,主噴油量波動幅值隨噴射間隔增大而減小,波動周期不隨主噴油量增加而變化且波動相位一致,在與整數(shù)倍壓力波動周期時間差值接近的主噴油持續(xù)期內(nèi),預(yù)主噴射間隔對主噴波動量波動影響規(guī)律相似;相同主噴不同預(yù)噴時,主噴油量波動幅值隨預(yù)噴油量增加而增大;相同主噴不同后噴時,隨主后噴射間隔增大,后噴油量波動減小,波動周期相同,隨后噴油量增加波動幅值變化較小;后噴相同主噴不同時,與整數(shù)倍壓力波動周期的時間差值相同的主噴持續(xù)期,其噴射引起的后噴油量波動規(guī)律相似。
內(nèi)燃機;高壓共軌;噴油系統(tǒng);多次噴射;噴油量;波動特性;數(shù)值仿真
網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/23.1390.u.20160623.0827.010.html
高壓共軌噴油系統(tǒng)具有噴射壓力高、噴油定時和噴油規(guī)律柔性可調(diào)等優(yōu)點,能有效提高柴油機動力性能[1-3]。高壓共軌系統(tǒng)多次噴射技術(shù)可以有效改善柴油機燃油經(jīng)濟性并降低排放[4-5]。然而,燃油噴射時激起的壓力波動會導(dǎo)致多次噴射時系統(tǒng)循環(huán)噴油量波動,而噴油量波動會影響多次噴射中系統(tǒng)循環(huán)噴油量一致性,進而對發(fā)動機排放及其工作穩(wěn)定性產(chǎn)生影響。Henein等[6]通過流率測試試驗臺研究了高壓共軌噴油系統(tǒng)主噴、預(yù)主噴及主后噴射特性,分析表明:系統(tǒng)循環(huán)供油量、供油持續(xù)期及不同噴射模式下噴油量特性受燃油壓力影響。系統(tǒng)內(nèi)燃油壓力波動傳播特性對共軌噴油系統(tǒng)噴射特性影響重大,Catania等[7]建立了共軌噴油系統(tǒng)零維數(shù)值模型,通過試驗與理論相結(jié)合的方法研究了系統(tǒng)多次噴射過程中壓力波動頻率特性。蘇海峰等[8]采用實驗測量與數(shù)值模擬相結(jié)合的研究方法,分析了多次噴射過程中水擊壓力波動影響下的噴油器控制腔、蓄壓腔液力過程和控制球閥、針閥運動規(guī)律,結(jié)果表明高壓共軌多次噴射油量波動是由于水擊壓力波動對針閥運動特性和噴射壓力產(chǎn)生的周期性綜合影響造成的。梁鳳標等[9]建立了高壓共軌噴射系統(tǒng)計算模型,通過試驗驗證了模型的準確性,分析了系統(tǒng)多次噴射機理,確定了多次噴射的噴油定時和噴油脈沖間隔。祝軻卿等[10]通過對高壓共軌噴油系統(tǒng)多次噴射的預(yù)噴和主噴油量測量分析,得到了主噴油量在小噴油間隔時明顯的波動性,通過試驗分析確定了噴油器的電液力延遲和噴油間隔時高壓燃油的波動是主要原因。
本文研究了高壓共軌噴油系統(tǒng)預(yù)-主噴射和主-后噴射過程中循環(huán)噴油量隨噴油間隔的波動規(guī)律,對高壓共軌系統(tǒng)優(yōu)化設(shè)計及控制具有重要指導(dǎo)意義。
高壓共軌噴油系統(tǒng)主要包括油箱、高壓油泵、共軌管、噴油器、電控單元(electronic control unit ,ECU)和各類傳感器,其結(jié)構(gòu)示意圖如圖1所示。
凸輪驅(qū)動高壓油泵柱塞向上運動,柱塞腔內(nèi)燃油因被壓縮而壓力升高并流經(jīng)高壓油管被泵送至共軌管中,共軌管內(nèi)高壓燃油流經(jīng)高壓油管流入噴油器并分為兩路,一路通過進油節(jié)流孔流入控制腔,另一路流入噴嘴。噴油器電磁閥未通電時,出油節(jié)流孔關(guān)閉,針閥落座關(guān)閉噴孔,系統(tǒng)不噴油。電磁閥通電后,銜鐵受電磁力吸引而拉動控制閥桿克服彈簧預(yù)緊力向上運動,控制腔內(nèi)燃油經(jīng)出油節(jié)流孔流入低壓油腔,針閥隨之開啟噴孔,系統(tǒng)噴油。ECU通過調(diào)節(jié)高壓油泵上的量油閥對軌壓進行調(diào)節(jié),并通過控制電磁閥通斷電實現(xiàn)對噴油器進行控制,從而完成對系統(tǒng)的實時控制[11]。
高壓共軌噴油系統(tǒng)是集電磁、機械和液力于一體系統(tǒng)。因此,需要結(jié)合運動件機械運動方程、燃油流動特性方程及電磁場耦合方程等求解系統(tǒng)各特性參數(shù)。
柱塞腔連續(xù)方程:
(1)
式中:Pp為柱塞腔壓力,Vp為柱塞腔容積,E為燃油體積模量,dp為柱塞直徑,hp為柱塞升程,Fc為出油球閥有效流通面積,μc為出油球閥流量系數(shù),ρ為燃油密度,Pc為出油閥腔壓力,Pi為供油腔壓力,δp為柱塞偶件間隙,η為燃油動力粘度,lp為柱塞偶件運動長度,μl為柱塞腔至低壓油路的流量系數(shù),Fl為柱塞腔至低壓油路有效流通面積,Pl為低壓油路壓力,γ和ξ為階躍函數(shù):
柱塞運動方程:
(2)
式中:np為高壓供油泵轉(zhuǎn)速,φ為高壓供油泵凸輪轉(zhuǎn)角。
電磁場耦合方程:
(3)
式中:U為線圈驅(qū)動電壓,i為驅(qū)動電流,R為勵磁線圈電阻,φ為磁通量,Rn為磁路磁阻。
電磁閥運動方程:
(4)
式中:mf為電磁閥運動件質(zhì)量,hf為電磁閥控制閥桿升程,Ff為電磁力,Fy為電磁閥所受燃油液壓力,kf為電磁閥彈簧剛度,hf0為電磁閥彈簧預(yù)壓縮長度。
共軌管及油管內(nèi)連續(xù)方程及動量方程:
(5)
(6)
式中:p為壓力,u為燃油流速,k為燃油粘性阻力系數(shù),x為共軌管或油管長度,t為時間。
控制腔連續(xù)方程:
(7)

盛油槽連續(xù)方程:
(8)

針閥運動方程:
(9)
式中:mn為針閥運動件質(zhì)量,hn為針閥升程,fn為針閥橫截面積,fna為針閥密封錐面面積,kn為針閥彈簧剛度,hn0為針閥彈簧預(yù)壓縮長度。
利用方程(1)~(9)并結(jié)合初始條件和邊界條件等可以求解得出高壓共軌噴油系統(tǒng)噴射特性。本文基于上述方程在AMESim仿真平臺中建立了高壓共軌噴油系統(tǒng)仿真模型,如圖2所示。

圖2 高壓共軌噴油系統(tǒng)仿真模型Fig.2 Simulation model of high pressure common rail injection system
為驗證所建立數(shù)值模型的準確性,建立了高壓共軌噴油系統(tǒng)試驗臺,如圖3所示,系統(tǒng)壓力波動特性決定了系統(tǒng)噴油率形狀,而系統(tǒng)循環(huán)噴油量大小由噴油率決定。圖4為軌壓120 MPa、噴油脈寬分別為500 μs與1 200 μs兩種典型工況下系統(tǒng)噴油率試驗測量值與數(shù)值仿真結(jié)果的對比,由圖4可知系統(tǒng)噴油率仿真結(jié)果與試驗測量值具有較高的一致性,表明所建立的高壓共軌噴油系統(tǒng)數(shù)值仿真模型能夠準確預(yù)測系統(tǒng)的噴油特性。

圖3 高壓共軌噴油系統(tǒng)試驗臺Fig.3 Test bench of high pressure common rail injection system

圖4 不同噴油脈寬下噴油率對比Fig.4 Comparisons of injection rate at different injection pulse widths
3.1預(yù)噴射-主噴射噴油量波動
3.1.1相同預(yù)噴不同主噴下噴油量波動
圖5為軌壓120 MPa下預(yù)噴油量(12 mm3)相同,主噴油量不同時,主噴波動量在不同預(yù)主噴射間隔下的變化曲線。由圖5可知,預(yù)噴油量一定時,主噴油量為30 mm3時的主噴油量波動幅度最大,而主噴油量為45、60、90、120 mm3時的主噴油量波動幅度較主噴油量為30 mm3條件下明顯減小。此外,主噴油量波動量隨預(yù)主噴射間隔增大呈衰減式波動變化,噴油量波動幅值隨噴射間隔增大而減?。恢鲊娪土坎▌又芷诓浑S著主噴油量增加而變化且波動相位一致。圖6是單次噴射油量為12 mm3時盛油槽壓力與預(yù)-主噴射時預(yù)噴油量為12 mm3不同主噴油量下系統(tǒng)噴油率曲線。由圖6可知,盛油槽壓力波動周期約為1.1 ms,而噴油量為30 mm3的主噴油持續(xù)期為0.83 ms,約為0.76倍壓力波動周期;主噴油量為45 mm3和90 mm3的主噴波動量波動規(guī)律相似,其主噴油持續(xù)期分別為1.15 ms和2.15 ms,約為1.05和1.95倍壓力波動周期;主噴油量為60 mm3和120 mm3的主噴油量波動規(guī)律相似,其主噴油持續(xù)期分別為1.49 ms和2.82 ms,約為1.35和2.56倍壓力波動周期。因此,在與整數(shù)倍壓力波動周期時間差值接近的主噴油持續(xù)期內(nèi),壓力波動對主噴波動量的影響規(guī)律相似,主噴波動量波動規(guī)律隨預(yù)主噴射間隔增加也相似。當主噴油持續(xù)期為壓力波動周期整數(shù)倍時,壓力波動引起的主噴油量波動相互補償,減少了主噴波動量;而當主噴持續(xù)期非壓力波動周期整數(shù)倍時,主噴持續(xù)期內(nèi)壓力隨預(yù)主噴射間隔增加而波動,由此引起的主噴油量波動也隨預(yù)主噴射間隔增加而周期性波動。因此,主噴油持續(xù)期約為壓力波動周期整數(shù)倍時的主噴油量波動幅值小于主噴油持續(xù)期非壓力波動周期整數(shù)倍時的主噴油量波動幅值。由預(yù)噴射引起的系統(tǒng)內(nèi)壓力波動為隨時間增加而幅值衰減的振蕩波,隨噴油脈寬的增加,主噴油持續(xù)期內(nèi)波動平緩,其引起的主噴波動量相應(yīng)減小。

圖5 相同預(yù)噴不同主噴時主噴油量波動Fig.5 The main fuel injection quantity fluctuation at the same pilot injection and different main injection

圖6 不同主噴油量下系統(tǒng)噴油率及盛油槽壓力Fig.6 The injection rate and fuel pressure in nozzle volume at different main fuel injection quantity
3.1.2相同主噴不同預(yù)噴下噴油量波動
圖7所示為軌壓120 MPa下預(yù)噴油量(1、6、12和18 mm3)不同、主噴油量(60 mm3)相同時,主噴波動量在不同預(yù)主噴射間隔下的變化曲線。由圖7可知,在確定的預(yù)噴油量下,主噴波動量隨預(yù)主噴射間隔增加呈幅值衰減的周期性變化規(guī)律,波動幅值小于4 mm3,波動周期在1.06~1.1 ms;主噴油量波動幅值隨預(yù)噴油量增加而增大,波動相位滯后。

圖7 相同主噴不同預(yù)噴時主噴油量波動Fig.7 The main fuel injection quantity fluctuation at the same main injection and different pilot injection
軌壓為120 MPa噴油量分別為1、6、12和18 mm3時系統(tǒng)噴油率及盛油槽壓力如圖8所示,系統(tǒng)噴油時盛油槽壓力下降,隨著噴油脈寬增加,壓力下降幅度及時間均增大,隨后壓力上升并呈減幅周期性波動,波動周期在1.06~1.1 ms且不受噴油量的影響,這是預(yù)主噴射過程主噴波動量隨預(yù)主噴射間隔減幅周期性波動的主要原因。此外,噴油結(jié)束時刻隨噴油量增加而延遲,盛油槽壓力波動相位滯后,導(dǎo)致主噴油波動量相位滯后,同時壓力波動幅值隨噴油量增加而增大,因此,主噴油波動量波動幅值隨噴油量增加而增大。預(yù)噴油量相同預(yù)主噴射間隔不同時,主噴開始時刻對應(yīng)的盛油槽壓力波動不同,導(dǎo)致主噴油持續(xù)期內(nèi)噴油壓力波動不同,主噴油持續(xù)期內(nèi)噴油壓力隨預(yù)主噴射間隔增加呈幅值衰減的周期性波動,引起主噴油波動量隨預(yù)主噴射間隔增加而衰減性周期波動規(guī)律。

圖8 不同預(yù)噴油量下系統(tǒng)噴油率及盛油槽壓力Fig.8 The injection rate and fuel pressure in nozzle volume at different pilot fuel injection quantity
3.2主噴射-后噴射噴油量波動
3.2.1相同主噴不同后噴下噴油量波動
圖9所示為120 MPa軌壓下主噴油量(120 mm3)相同、不同后噴油量(6、12、18和24 mm3)時,后噴油量波動量隨主后噴射間隔變化曲線。

圖9 相同主噴不同后噴時后噴油量波動Fig.9 The post fuel injection quantity fluctuation at the same main injection and different post injection
由圖9可知,同一主噴油量下,隨主后噴射間隔增大,后噴油量波動減小,后噴波動量波動周期相同,隨后噴油量增加波動幅值增大,但變化幅度較小,波動幅值變化率隨后噴油量增加而減小。后噴噴油持續(xù)期小于一個完整壓力波動周期(后噴油量為24 mm3的噴油持續(xù)期為0.70 ms,約為0.64倍壓力波動周期),當噴油持續(xù)期小于0.5倍壓力波動周期時,噴油持續(xù)期對應(yīng)的壓力波動幅度隨噴油持續(xù)期增加而增大,當噴油持續(xù)期大于半個壓力波動周期時,噴油持續(xù)期內(nèi)的前半周期壓降得到一定程度的補償,因此后噴波動量隨后噴脈寬增加而增大,但當后噴持續(xù)期接近0.5倍壓力波動周期時,后噴波動量變化率減小。主噴油量相同時,針閥運動位移相同,針閥位移變化引起的系統(tǒng)內(nèi)燃油壓力波動幅值與周期不變,由于后噴油脈寬較小,系統(tǒng)內(nèi)激起的燃油壓力波動不會相互抵消,所以隨著后噴脈寬增加,后噴油量受壓力波動影響程度增大。因此,由主后噴油間隔的變化引起的后噴油量波動幅度隨后噴脈寬增大而增加。
3.2.2相同后噴不同主噴下噴油量波動
圖10為120 MPa軌壓下主噴油量(30、45、60、90和120 mm3)不同、后噴油量(6 mm3)相同時,后噴波動量隨主后噴射間隔波動規(guī)律。

圖10 相同后噴不同主噴時后噴油量波動Fig.10 The post fuel injection quantity fluctuation at the same post injection and different main injection
由圖10可知,主噴油量為30、60和120 mm3時后噴油量波動規(guī)律相似,而主噴油量為45 mm3和90 mm3時后噴油量波動規(guī)律相似,前者后噴波動量幅值大于后者。圖11為主噴油持續(xù)期內(nèi)不同倍數(shù)壓力波動周期時盛油槽壓力曲線,其中T為壓力波動周期(軌壓為120 MPa時T為1.1 ms)。若壓力波動周期數(shù)為N(N為正整數(shù)),主噴油持續(xù)期為t,則t∈[(N-1)T,NT]時,t=(N-1)T的噴射結(jié)束后盛油腔壓力波動幅值最小,而t=(N-0.5)T的噴射結(jié)束后盛油腔壓力波動幅值最大。若以函數(shù)A(T)表示壓力波動幅值,則在t∈[(N-1)T,NT]時,不同噴油持續(xù)期對應(yīng)的壓力波動幅值由大到小依次為A((N+0.5)T)>A((N+0.75)T)>A((N+0.25)T)>A(NT)>A((N-1)T)。在與整數(shù)倍壓力波動周期的時間差值相同的噴油持續(xù)期內(nèi),若噴油持續(xù)期不是整數(shù)倍壓力波動周期,盛油槽壓力波動幅值隨噴油持續(xù)期增加而減小,如圖11(a)、(b)、(c)所示。但若噴油持續(xù)期為整數(shù)倍壓力波動周期,盛油槽壓力波動幅值隨噴油持續(xù)期增加而增大,但變化幅度很小,如圖11(d)所示。


圖11 不同倍數(shù)壓力波動周期時盛油槽壓力Fig.11 The fuel pressure in nozzle volume at different pressure fluctuation period
120 MPa軌壓下噴油量為30、45、60、90和120 mm3的噴油持續(xù)期分別對應(yīng)0.76、1.05、1.35、1.95和2.56倍壓力波動周期,45 mm3和90 mm3噴油量的噴油持續(xù)期均接近整數(shù)倍壓力波動周期,其噴油結(jié)束后引起的壓力波動幅值較小,后噴油量波動規(guī)律相似且幅值較小,而盛油槽壓力波動幅值隨噴油持續(xù)期增加而增大,因此90 mm3主噴油量引起的后噴油量波動幅值高于主噴油量為45 mm3。噴油量為30、60和120 mm3的噴油持續(xù)期均非整數(shù)倍壓力波動周期,其引起的盛油槽壓力波動較大,導(dǎo)致后噴油量波動幅值較大,因30 mm3噴油量的噴油持續(xù)期小于一個壓力波動周期,而盛油槽壓力在第一個周期內(nèi)波動幅度最大,因此其引起的壓力波動幅值最大,相應(yīng)的后噴油量波動幅值也最大,而120 mm3主噴油量的噴油持續(xù)期比60 mm3主噴油量的噴油持續(xù)期更接近N+0.5倍壓力波動周期,其引起的后噴油量波動幅值比60 mm3主噴油量大。
1)建立了高壓共軌噴油系統(tǒng)數(shù)值仿真模型,在不同噴油脈寬下對系統(tǒng)噴油率計算結(jié)果與試驗測量值對比,結(jié)果表明所建立的數(shù)值仿真模型能夠準確預(yù)測系統(tǒng)的噴射特性。
2)相同預(yù)噴不同主噴時,主噴油量波動量隨預(yù)主噴射間隔增大呈衰減式波動變化,噴油量波動幅值隨噴射間隔增大而減小,主噴油量波動周期不隨主噴油量增加而變化且波動相位一致,在與整數(shù)倍壓力波動周期時間差值接近的主噴油持續(xù)期內(nèi),預(yù)主噴射間隔對主噴波動量波動影響規(guī)律相似;相同主噴不同預(yù)噴時,主噴油量波動幅值隨預(yù)噴油量增加而增大。
3)相同主噴不同后噴時,隨主后噴射間隔增大,后噴油量波動減小,后噴波動量波動周期相同,隨后噴油量增加波動幅值變化較??;后噴油量相同主噴油量不同時,主噴油量對后噴油量波動特性的影響主要取決于主噴持續(xù)期對應(yīng)的壓力波動周期數(shù),與整數(shù)倍壓力波動周期的時間差值相同的主噴持續(xù)期,其噴射引起的后噴油量波動規(guī)律相似。
[1]PARK S H, YOON S H, LEE C S. Effects of multiple-injection strategies on overall spray behavior, combustion, and emissions reduction characteristics of biodiesel fuel[J]. Applied energy, 2011, 88(1): 88-98.
[2]CARLUCCI P, FICARELLA A, LAFORGIA D. Effects of pilot injection parameters on combustion for common rail diesel engines[R]. SAE Technical Paper 2003-01-0700, 2003.
[3]仇滔, 雷艷, 彭璟, 等. 高壓共軌燃油系統(tǒng)軌壓控制策略研究[J]. 內(nèi)燃機工程, 2013, 34(2): 83-87.
QIU Tao, LEI Yan, PENG Jing, et al. Research of rail pressure control strategy on common rail fuel system[J]. Chinese internal combustion engine engineering, 2013, 34(2): 83-87.
[4]BADAMI M, MALLAMO F, MILLO F, et al. Influence of multiple injection strategies on emissions, combustion noise and BSFC of a DI common rail diesel engine[R]. SAE Technical Paper 2002-01-0503, 2002.
[5]BARATTA M, CATANIA A E, FERRARI A. Hydraulic circuit design rules to remove the dependence of the injected fuel amount on dwell time in multijet CR systems[J]. Journal of fluids engineering, 2008, 130(12): 121104.
[6]HENEIN N A, LAI M C, SINGH I P, et al. Characteristics of a common rail diesel injection system under pilot and post injection modes[R]. SAE Technical Paper 2002-01-0218, 2002.
[7]CATANIA A E, FERRARI A, MANNO M, et al. Experimental investigation of dynamics effects on multiple-injection common rail system performance[J]. Journal of engineering for gas turbines and power, 2008, 130(3): 032806.
[8]蘇海峰, 張幽彤, 郝剛, 等. 高壓共軌多次噴射油量波動現(xiàn)象分析[J]. 北京理工大學(xué)學(xué)報, 2011, 31(7): 795-798.
SU Haifeng, ZHANG Youtong, HAO Gang, et al. Analysis on multiple-injection fuel quantity fluctuation for high pressure common rail system[J]. Transactions of Beijing Institute of Technology, 2011, 31(7): 795-798.
[9]梁鳳標, 李德桃, 劉久斌, 等. 高壓共軌式柴油機多次噴射的數(shù)值模擬[J]. 農(nóng)業(yè)機械學(xué)報, 2006, 37(9): 40-43, 35.
LIANG Fengbiao, LI Detao, LIU Jiubin, et al. Fuel injection control of high pressure common rail diesel engine[J]. Transactions of the Chinese society for agricultural machinery, 2006, 37(9): 40-43, 35.
[10]祝軻卿, 徐權(quán)奎, 楊林, 等. 高壓共軌噴油系統(tǒng)多次噴射油量精確測量與規(guī)律分析[J]. 農(nóng)業(yè)工程學(xué)報, 2007, 23(8): 117-121.
ZHU Keqing, XU Quankui, YANG Lin, et al. Multiple-injection quantity measurement and analysis in high pressure common rail injection system[J]. Transactions of CSAE, 2007, 23(8): 117-121.
[11]TIAN Bingqi, FAN Liyun, MA Xiuzhen, et al. Study of the fluctuation in the cycle fuel injection quantity in a common-rail system for a heavy-duty vehicle diesel engine[J]. Proceedings of the institution of mechanical engineers, part D: journal of automobile engineering, 2015, 229(7): 819-834.
本文引用格式:
范立云,白云,敬思,等.高壓共軌噴油系統(tǒng)多次噴射噴油量的波動[J]. 哈爾濱工程大學(xué)學(xué)報, 2016, 37(8):1063-1069.
FAN Liyun, BAI Yun, JING Si,et al. Fuel injection quantity fluctuation in multiple injections of high-pressure common-rail fuel injection system[J]. Journal of Harbin Engineering University, 2016, 37(8): 1063-1069.
Fuel injection quantity fluctuation in multiple injections of high-pressure common-rail fuel injection system
FAN Liyun1, BAI Yun1, JING Si2, LIU Yang1, MA Xiuzhen1
(1. College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China; 2. Chengdu Wit Electric Fuel Injection Co., Ltd., Chengdu 611731, China)
To solve the instability problem, caused by pressure fluctuation during multiple injections of high-pressure common-rail fuel injection systems, we developed a numerical simulation model of the system based on the fluctuation of fuel injection quantity and validated the accuracy of the model by comparing its results with those from experimental measurements. We investigated the fluctuation characteristics of the fuel injection quantity with respect to the variation of the injection interval. The multi-injection modes are the pilot and main injections and the main and post injections. The results show that with the same pilot injection and different main injection, the fluctuation amplitude of the main fuel injection quantity decreases with increasing injection interval, and the fluctuation period of the main injection does not vary with increases in the main fuel injection quantity with the same fluctuation phase. In addition, the injection interval has a similar influence on the fluctuation of the main fuel injection quantity when the duration of the main injection approaches the time difference of the integer times of pressure fluctuation period. With the same main injection and a different pilot injection, the fluctuation amplitude of the main fuel injection quantity increases with increases in the pilot fuel injection quantity. For the same main injection and different post injection, increasing in injection interval between the main and post injections decreases the fluctuation in the post fuel injection quantity, and the fluctuation period of the post fuel injection quantity does not vary. Moreover, the fluctuation amplitude changes slightly with increases in the fuel injection quantity. At the same post injection and different main injection, the injection interval has a similar influence on the fluctuation of the post fuel injection quantity when the duration of the main injection approaches the time difference of the integer times of pressure fluctuation period.
internal combustion engine; high-pressure common-rail; fuel injection system; multiple injections; fuel injection quantity; fluctuation characteristic; numerical simulation
2015-09-15.網(wǎng)絡(luò)出版日期:2016-06-23.
國家自然科學(xué)基金項目(51279037,51379041,51475100);教育部科學(xué)技術(shù)研究項目(113060A).
白云(1987-),男,博士研究生;
范立云(1981-),男,教授,博士生導(dǎo)師.
范立云,E-mail:fanly_01@163.com.
10.11990/jheu.201509048
TK421.4
A
1006-7043(2016) 08-1063-07