999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

中國銅期貨市場期貨價格期限結構研究

2016-09-26 07:55:27部慧北京航空航天大學經濟管理學院北京100191
系統工程學報 2016年2期
關鍵詞:模型

部慧(北京航空航天大學經濟管理學院,北京100191)

中國銅期貨市場期貨價格期限結構研究

部慧
(北京航空航天大學經濟管理學院,北京100191)

分析了我國上海期貨交易所的銅期貨不同到期期限的期貨合約的價格數據,研究了銅期貨價格的期限結構,樣本期為2004-09—2012-12.結合Kolb提出的統計量,首先對銅期貨市場的現貨升水特征進行了統計分析.接下來,結合Gibson等提出的似無關回歸分析(SUR)的方法,利用代理變量對現貨價格和便利收益率的時間序列性質進行了檢驗,揭示了現貨價格和便利收益率均是均值回轉的過程,也說明Schwartz提出的兩因子模型適用于擬合我國的銅期貨合約價格.因此,本文構建了價格期限結構的兩因子模型,并利用狀態空間模型和卡爾曼濾波方法進行估計.實證結果揭示了我國銅期貨在金融危機之前具有相對穩定的現貨升水特征,尤其在2006年之前更為明顯;金融危機時期該特征曾發生異常逆轉;危機過后較長一段時間銅期貨市場無明顯特征,近期現貨升水特征逐漸恢復但仍很微弱.

期貨市場;現貨升水假說;庫存理論;期限結構模型

1 引 言

商品期貨定價是期貨研究中的一個關鍵問題.商品定價中的一個問題是期貨價格是否是未來預期現貨價格的無偏估計,這源于凱恩斯的現貨升水假說[1,2].期貨市場是否存在現貨升(貼水)特征以及這種特征該如何解釋是研究者們關注的問題.早期的研究主要在于探討期貨市場價格的期限結構特征,后期的研究主要在于探討某種特征的存在是否源于風險溢價的轉移或者其他原因.與此問題相關的商品期貨定價理論主要包括庫存理論和風險溢價理論.庫存理論得到了相對一致的認可,可用于解釋商品期貨價格的期限結構的特征.基于庫存理論,從20世紀80年代至20世紀90年代研究中開始對商品現貨價格和便利收益建立隨機過程模型,20世紀90年代后期的研究更是關注整個商品期貨期限結構的隨機過程建模.期貨價格期限結構模型從單因子模型不斷擴展到三因子模型,已經可以模擬出較為相近的期貨價格曲線[3].

由于商品期貨價格的期限結構關系到套期保值和套利策略的制定和執行效果,因此研究商品期貨價格的期限結構問題對市場分析師和研究人員都具有重要價值.近幾年,越來越多的研究將商品期貨期限結構的研究結果用于討論期貨的投資策略,如遷倉收益、戰術性配置[4,5]以及期貨價格預測[6]等.對我國期貨市場商品價格期限結構問題的研究盡管已有一些工作,例如文獻[7–9]曾討論過單因素模型或者對季節性因素做過討論,但對問題的深入討論仍是需要的.

2 文獻綜述

2.1現貨升水假說的實證研究

Keynes[1]和Hicks[2]提出的現貨升水假說認為,套期保值者通過期貨合約把價格變化的風險轉移給愿意承擔風險的投機者從而降低自身的風險,因此套期保值者愿意持有一個預期收益為負的期貨合約,而投機者由于承擔了風險會要求相應的風險補償.如果市場上以空頭套期保值者占主導,那么在到期日前期貨價格會低于未來的預期現貨價格即現貨升水(normal backwardation).如果市場上以多頭套期保值者占主導,則在到期日前期貨價格會高于未來的預期現貨價格即現貨貼水(contango).對于現貨升水假說的實證檢驗,最早的研究是基于檢驗期貨價格在到期日之前上漲這一推論進行的.Telser[10]檢驗了期貨合約的價格趨勢,結論并不能支持現貨升水假設.Cootner[11]通過檢驗期貨合約的價格趨勢以及投機者收益,卻得出了與Telser相反的結論.Kolb[12]利用多種檢驗期貨價格趨勢的方法對更多的期貨品種在更長的樣本時間段里進行了檢驗,認為僅有一些金屬和豆類的期貨表現出了現貨升水特征,大多數期貨品種并沒有現貨升水特征.Lee等[13]對美國期貨市場上29種商品期貨價格趨勢進行了檢驗,認為現貨升水現象存在.

檢驗期貨價格在到期日之前是否上漲的研究僅能說明是否存在現貨升水現象,但并不能說明是否存在風險溢價的轉移.因此,之后的研究者著重探求期貨市場是否存在市場風險溢價.Cootner[11]提出了風險溢價模型,認為商品期貨價格等于預期現貨價格以風險溢價率折扣后的價格.Dusak[14]在資本資產定價模型(CAPM)框架下檢驗了市場風險溢價,他發現期貨合約的系統風險并不顯著異于零,由此認為并不存在風險溢價的轉移.Carter等[15]在文獻[14]的基礎上加入了投機者頭寸的虛擬變量,并且在市場組合中加入了商品指數,發現了與文獻[14]相反的結論,支持現貨升水的假說.Marcus[16]和Baxter等[17]的研究發現,當在CAPM模型中采用另一個市場指數后,原來存在的風險溢價就并不存在了.研究者們還將研究擴展到基于套利定價理論(APT).Ehrhardt等[18]在APT框架下對風險溢價進行了研究,結論認為期貨市場并不存在風險溢價.M iffre[19]構造了因子敏感系數變化的APT模型,發現美國期貨市場上的玉米、大豆及小麥等品種上的套保者會給投機者提供了一個正的風險溢價,而外匯期貨市場上風險溢價卻是負的.

關于投機者獲得的超額收益是來源于風險轉移還是投機者的價格預測能力也成為爭論的焦點之一.Houthakker[20]和Rockwell[21]區分了投機者從預測價格的能力中獲得的收益.他們將投資者分成3類:大套期保值者、大投機者和小額交易者.Rockwell認為只有在投機者沒有預測價格能力卻能獲得超額收益時才能說明期貨市場存在風險溢價轉移.他假設沒有價格預測能力的小投機者遵循天真投資策略:套保者為多頭(空頭)時,他們為空頭(多頭).Rockwell的實證結果說明天真投資者的收益是零,期貨市場并不存在風險溢價的轉移;但是大投機者卻能夠獲得正的超額收益,這應歸結為大投機者預測價格的能力.Houthakker[20]和Rockwell[21]研究的缺陷在于并沒有使用統計顯著性檢驗.基于此,Chang[22]在Rockwell對投資者的分類和對天真投機者定義的基礎上,通過統計顯著性檢驗證明期貨市場有現貨升水的特征.

2.2庫存理論和期貨價格動態模型

傳統庫存理論將期貨價格的期限結構與商品合約的庫存水平聯系起來.根據庫存持有成本模型,在無套利均衡條件下,期貨價格滿足

其中r為年化無風險利率,u為庫存成本,y為便利收益率.或者表示為

其中Ft(T)是在時刻t距離到期日還有T期的期貨合約價格,Ψt,T代表從t時刻到t+T時刻的邊際便利收益,rT為T期的無風險利率,UT是T期的庫存成本.Ψt,T-UT或y-u被稱之為凈便利收益或凈便利收益率.便利收益的概念由Kaldor[23]首次引入,用以衡量持有現貨庫存由于可以用于消費從而產生的價值,這是期貨合約的持有者所沒有的.如果r<y-u,那么Ft(T)<St,即持有現貨庫存所帶來的便利收益越高,期貨合約越呈現現貨升水現象.

最早將庫存和期貨價格期限結構關系用實證結果呈現出來的是Working[24],但該工作隨后引來諸多討論和批評.Carter等[25]再次檢驗了Working曲線,并認為該曲線是合理的.Gorton等[26]研究了美國期貨市場31種期貨在1969—2006期間的期貨價格和庫存數據,揭示了便利收益率與庫存是遞減非線性的關系,并且提出期貨合約價差是揭示商品期貨風險溢價的良好指標.Deaton等[27]基于一般均衡分析提出了一個商品定價和庫存的模型,該模型將庫存水平與未來現貨價格的方差聯系了起來.Pindyck[28]用一般均衡的思想分析了商品的現貨市場和庫存市場,討論了商品價格、生產和庫存的短期動態關系,解釋了三者之間是如何相互聯系的;并討論了期貨價格、現貨價格與庫存之間的關系.Lin等[29]的研究發現,當現貨價格低時存貨水平和便利收益的相關性較小;當現貨價格高時,存貨水平和便利收益的相關性較大;同時利率的變化會影響到原細的便利收益率.

從20世紀80年代至20世紀90年代開始,研究中對商品現貨價格和便利收益率建立了隨機過程模型;20世紀90年代后期的研究則關注整個商品期貨期限結構的隨機過程建模.期貨價格期限結構模型從單因子模型不斷擴展到三因子模型,已經可以模擬出較好的期貨價格曲線[3].單因子模型以現貨價格為因子,假設便利收益和利率為常數.對現貨價格的動態過程有兩種設定方式:一種是假設現貨價格服從幾何布朗運動,例如文獻[30–32]等;另一種是假設現貨價格服從均值回轉過程,例如文獻[33–37]等.我國的研究大多采用單因子模型,例如文獻[7–9]曾討論過單因素模型或者對季節性因素做過討論.

為了使模型更符合現實,研究工作開始引入兩因子或三因子模型.兩因子模型中第二個因子的選擇大多為便利收益率,例如Gibson等[31],Schwartz[36],Lautier等[38].還有一些研究中第二個因子為長期價格,例如Schwartz等[39].三因子模型中更多的考慮利率因素,例如Schwartz[36].近期的一些研究不斷修正三因子模型.Cortazar等[40]提出了只和商品價格相關的三因子模型;Casassus等[41]將便利收益率視為現貨價格和利率的函數來構建三因子模型,并且允許風險溢價是時變的.Liu等[42]指出工業產品的便利收益率往往有異方差性(便利收益率的變動隨著便利收益率的增加而增大),因此在建立三因素模型時需要考慮異方差性.

3 研究方法

本文對我國的銅期貨合約價格建立由Schwartz[36]提出的兩因子模型,從而構建期貨期限結構曲線.雖然是沿用兩因子模型,但本文試圖對我國期貨價格進行更加詳細的統計檢驗,以使得對模型的設定和參數選擇更加合理有效.本文將檢驗我國銅期貨市場數據的微觀特征,檢驗現貨價格和便利收益率是否為均值回轉的過程.檢驗的方法將采用Gibson等[31]的方法,并做了適當修訂.由于便利收益是不可觀測變量,而現貨價格方面,雖然有銅的現貨市場,但現貨價格并不連續且存在區域性差異,現貨價格的數據質量不高,所以在實證檢驗時本文將采用代理變量進行分析.用Fi,t來表示距離到期日還有i個月的期貨合約在時刻t的價格.選用交割月期貨合約價格(F1,t)作為現貨價格(St)的代理變量,并利用距離到期日還有4個月的期貨合約的價格(F4,t)和現貨價格的代理變量,根據持有成本模型來倒推計算凈便利收益率(δ=y-u),即

其中利率r選取3個月期的SHIBOR利率1這里的利率是年化利率.由于SHIBOR利率數據在2006-10之前不可得,因此在此之前的利率數據采用3個月期的銀行間回購加權利率.,利率和便利收益率均是年化的.

下面進行如下一系列的檢驗.利用式(4)所示的回歸方程檢驗現貨價格是否為均值回轉過程.

檢驗方程(4)中的回歸系統系數a1是否顯著不為零.這里利用現貨價格的代理變量進行分析.進一步,檢驗銅期貨現貨價格是否近似滿足Schwartz[36]提出的兩因子模型.可以將兩因子模型進行離散化的近似,即

并且假設方程(5)和方程(6)的殘差∈t和et相關,相關系數為ρ=corr(∈t,et).

聯立方程(5)和方程(6),利用似無關回歸(seem ingly unrelated regression,SUR)方法對參數κ,α,a,b,ρ進行估計,并檢驗系數是否顯著,以此確定兩因子模型的設定是否適用于我國的銅期貨合約.

在上述統計檢驗的基礎上,構建包含現貨價格(S)和凈便利收益率(δ)的兩因子模型,并假設這兩個因子服從如下所示的聯合隨機過程

其中現貨價格S的均值μ,波動率σ1,凈便利收益δ的均值ακ和波動率σ2均為常數,并且d z1和d z2是相關的,有

Schwartz[36]指出,如果凈便利收益率不是一個隨機過程,而是基于現貨價格的函數δ(S)=κln(S),那么兩因子模型就演化為設定現貨價格是均值回轉過程的單因子模型;如果凈便利收益率是常數,模型就簡化為Brennan等[30]的模型.

定義X=ln S,那么式(7)可寫為

在等價鞅測度下,兩因子模型可以寫為

其中λ是便利收益風險的市場價格,通常假設為常數.而期貨價格(F)則應該滿足如下的微分方程

Schwartz[36]指出Jamshidian等[43]以及Bjerksund[44]已經給出了上述方程的解,即

其中

對于兩因子模型的估計可采用狀態空間模型和卡爾曼濾波方法.狀態空間模型更有利于解決狀態變量不可觀測但已知其是一種Markov過程的情況.根據式(16)可以寫出狀態空間模型的度量方程(measurement equation);根據式(8)~式(10)寫出狀態空間模型的傳遞方程(transition equation)

其中t=1,2,...,NT.yt=(ln F(T1),ln F(T2),...,ln F(TN))T,是觀測值向量;θt=(Xt,δt)T,是對數現貨價格(Xt)和凈便利收益率(δt)構成的狀態向量.上述狀態空間模型的度量方程中

4 數據和期貨價格升貼水特征的統計檢驗

4.1數據和統計描述

本文的分析對象是上海期貨交易所的銅期貨,銅期貨合約通常為每年1月至12月到期的12份期貨合約.采集了2004-09-16—2012-12-14這段樣本期內銅期貨的所有歷史合約的日度數據,共計2003個觀測點.這段數據樣本包含了銅期貨于2004年至2006年間暴漲,受金融危機影響暴跌,并在金融危機后逐漸恢復至危機前的高價位運行的情況(如圖1所示).因此,這段樣本具有研究的代表性.本文以連續合約的收盤價表示不同期限的期貨合約的價格.由于我國銅期貨市場上交易最活躍的是距離到期日還有4個月的合約,而距離到期日最近的當月合約通常可用作現貨價格的代理指標,那么這兩份期貨合約的價差(F4,t-F1,t)就比較好的反映了我國銅期貨價格的期限結構特征,如圖2所示.大多數時間兩份合約價差小于零,尤其在2006年之前這種特征更是明顯.

圖1 銅期貨合約價格走勢Fig.1 Thehistorical pricesof different contracts of copper futures

圖2 銅期貨F4合約與F1合約的價差Fig.2 The price spread between contract F4and F1of copper futures

本文對銅期貨幾份合約的價格序列進行了描述統計分析,如表1所示.

表1 銅期貨不同合約價格的描述統計Table1 The descriptive statistics of copper futures contracts

表1顯示,距離到期日越遠的期貨合約價格的均值越低且波動率越大.然而,距離到期日非常遠的期貨合約F8,F10出現了某種異常,F8雖然滿足離到期日越遠的合約價格越低的特征,但是波動率卻反而減小了; 而F10的統計結果則完全與上述特征相悖.這兩個合約價格的特征異常可能是由于這兩份遠月合約的交易不活躍造成的.若遠月合約由于缺乏流動性而存在一段時間內沒有交易的情況,那么數據記錄則沿用上一個交易價格,這會使得所計算的價格波動率降低.基于這樣的思考,雖然在后面的建模中仍保留了F8,但剔除了F10.

在無套利均衡的假設下,期貨價格在到期日應等于現貨價格.Kolb[12]提出Keynes[1]現貨升水假設(normal backwardation)的一個核心推論就是,在到期日前期貨價格會逐漸上升.這個推論可以表述為E[ln(Fi(tttm)/Fi(tttm+1))]>0,或者E[Fi(tttm)-Fi(0)]<0,這里tttm表示距離到期的時間.檢驗第一種表述,可計算其中RETi(tttm)=ln(Fi(tttm)/Fi(tttm+1)),l為該品種所有合約個數.檢驗第二種表述,可定義Di(tttm)=(Fi(tttm)/Fi(0))-1從而檢驗E[Di(tttm)]<0,對所有tttm>0成立.Kolb[12]指出檢驗后者比檢驗前者更為有效,且更適用于不同價位的期貨品種.

本文所分析的中國銅期貨的樣本內,所有月份合約的對數日收益率的均值μ為5.587e–4,對原假設μ>0的t–統計量為5.124 2,在5%的顯著水平下顯著.對于第二種表述,計算Di,t<0的在所有樣本中出現的頻率占比為59.19%.這兩個結果只能提供對于數據的最為粗糙的認識,仍需要進行更多檢驗.

4.2對現貨價格和凈便利收益率的序列性質檢驗

本文首先利用持有成本模型粗略計算了現貨價格和凈便利收益率的代理變量,并檢驗了序列性質.利用期貨當月合約價格(F1)作為現貨價格(S)的代理變量,并利用距離到期日還有4個月的期貨合約價格(F4),基于式(3)計算得到的凈便利收益率(δ).圖3描繪了現貨價格(S)、凈便利收益率(δ)以及利率(r)和凈便利收益率的利差(q=r-δ).

圖3 利用代理變量計算的現貨價格(S),凈便利收益率(δ)和利率與凈便利收益率之差(q=r-δ)Fig.3 The spotprice(S),convenient yield(δ)and the difference of the interest rateand netconvenience yield(q=r-δ)based on the proxy variables

對現貨價格和凈便利收益率兩個序列建立如式(4)~式(6)的檢驗,結果如表2所示.

表2 現貨價格對數收益率和便利收益率的性質檢驗Table2 The test resultsof log spotprice return and connivent yield

表2中第1行的結果顯示現貨價格對數收益率不是序列相關的;第二行的結果顯示對數現貨價格是一個均值回轉的過程,因為方程的回歸系數不為零且為負值.聯立方程(5)和方程(6)并利用SUR估計,估計結果顯示現貨價格變化和便利收益率有關,便利收益率是一個均值回轉的過程.這符合Schwartz[36]提出的兩因子模型的假設.這里存在一個值得注意的問題,即在研究時間序列的微觀特征尤其連續時間序列的特征時,回歸的方法已經不再適用了,表2所示的回歸方程擬合優度都很差就是這個原因.由此可見,需要建立連續時間過程的期貨價格期限結構模型.

5 期貨價格期限結構模型的實證結果

建立如方程(7)~方程(9)所示的期貨價格期限結構的兩因子模型,并用如方程(18)和方程(19)所示的狀態空間模型和卡爾曼濾波來估計參數.這里,使用期貨合約價格F2,F4,F6和F8來進行建模和參數估計.建模時所有數據均是年化數據,為此近似以260個交易日為一年換算Fi,t(T)中的t和T,即ta= t/260,t=1,2,3,...,2003,而T= (ti-t)/260,其中ti是某個期貨合約的到期日,而t是當前觀測時刻.在等價鞅測度下,設定無風險收益率r為0.03,接近代理變量利率的歷史均值.估計時,設定誤差容忍度為5×10-8,并設定最大迭代次數為3 000.參數穩定后(μ,σ1)=(0.7514,0.2726),(κ,α,σ2,ρ)= (0.1796,0.2923,0.2500,0.2813).上述參數全部都在5%的顯著性水平下顯著.等價鞅測度下,λ為0.0974.根據兩因子模型得到的狀態變量現貨價格和便利收益率如圖4所示.

圖4所示的兩因子模型估計的現貨價格與圖3所示的現貨價格代理變量當月期貨合約價格(F1)幾乎一致.這與本文設定的模型容忍程度有關.并且,也說明利用當月合約(F1)作為現貨價格的代理變量具有合理性.圖4中由兩因子模型估計的便利收益率與圖3中用代理變量計算的便利收益率差別較大.這是因為我國的利率市場非市場化,很難獲得無風險利率的代理指標,這使得圖3所示的計算結果非常受限并且不準確.

圖4 兩因子模型估計的狀態變量現貨價格和凈便利收益率Fig.4 Two-factormodel’sestimation resultsof state variables-spot price and netconvince yield

從一定程度上講,利用兩因子模型來估計便利收益率更為合理.圖4表明,在樣本最開始的一段時間銅期貨的便利收益率非常高,此后呈現逐漸降低的趨勢,并曾在金融危機時期大幅下降呈現異常狀態.本文計算了所估計的便利收益率的均值為0.110 4,便利收益率大于所設定的利率水平的觀測點占總樣本的97.45%.但是金融危機前后便利收益率與設定的利率水平的差異變化明顯,金融危機之前便利收益率遠大于利率,而金融危機之后二者的差異變得非常小.由此可見,銅期貨價格雖然呈現現貨升水特征,但是這種特征在金融危機前后有明顯差別.

圖5 兩因子模型估計的遠期價格曲線(ta=t/Z60,t=l,Z,3,...,Z003)Fig.5 Two-factor Modelgenerated forward price curves(ta=t/Z60,t=l,Z,3,...,Z003)

圖5是基于兩因子模型的估計結果擬合出不同時點上的遠期價格曲線.由于兩因子模型中所有變量均是年化數據,包括期貨合約的到期時間T,所以圖5橫坐標是觀測序列的時間軸,采用260個交易日為一年的方式進行年化,即ta=t/260,t=1,2,3,...,2003.遠期價格Ft(T)中T的含義就是在任何時刻t看未來某個時刻ti到期的期貨合約還能存續的時間長度,即圖5中實線表示兩因子模型所估計的每個時點的現貨價格,而虛線表示每個時點所應對的不同期限的遠期合約價格所構成的遠期曲線.從圖5中可以發現,起始時刻開始的1年內(即起始時刻到第260個交易日期間),遠期曲線向右下傾斜程度更大,即現貨升水(normal backwardation);而此后的近3年(大約780個交易日)中雖然遠期曲線向右下傾斜程度減弱但仍然呈現現貨升水.在距離起始時刻接近4年左右的時候(對應回日歷日期為2008年金融危機時期)隨著現貨價格降至最低點,遠期曲線出現非常明顯的翻轉,即遠期曲線變為向右上傾斜,這說明這是出現了現貨貼水(contango).隨后很長一段時間,遠期曲線近似于水平,并且偶爾有遠期曲線向右上傾斜的情況出現.總的來說,我國銅期貨市場在金融危機之前具有相對穩定的現貨升水特征,尤其在2006年之前更為明顯;我國銅期貨市場在金融危機時期曾出現了現貨貼水特征;金融危機之后很長一段時間,我國銅期貨沒有明顯的現貨升水或現貨貼水;直至樣本期最后,現貨升水特征才逐漸恢復但仍然十分微弱.

6 結束語

本文利用上海期貨交易所銅期貨合2004-09—2012-12的數據,對其價格期限結構特征進行了研究.本文基于代理變量得到的現貨價格和便利收益率,利用簡單回歸和SUR回歸分析,證實了現貨價格和便利收益率均是均值回轉的過程,這也說明了Schwartz[36]提出的兩因子動態模型適用于擬合我國的銅期貨合約價格.因此,構建了兩因子模型,并利用狀態空間模型和卡爾曼濾波方法對參數進行了估計.利用兩因子模型,估計得到了不可觀測狀態變量現貨價格和便利收益率,擬合了不同時間點上的遠期價格曲線.實證結果揭示了我國銅期貨在金融危機之前具有相對穩定的現貨升水特征,尤其在2006年之前更為明顯;金融危機時期該特征曾發生異常逆轉;危機過后較長一段時間銅期貨市場無明顯特征,近期現貨升水特征逐漸恢復但仍很微弱.根據庫存理論,便利收益率較高應與銅庫存持續低位有關系,因而利用這種方法也可以間接推斷影響期貨定價的銅庫存狀態.

[1]Keynes JM.A Treatise on Money.Vol.2.London:Macm illan,1930.

[2]Hicks JR.Valueand Capital.Cambridge:Oxford University Press,1939.

[3]LautierD.Term structuremodelsof commodity prices:A review.Journalof A lternative Investments,2005,8(1):42–64.

[4]Frankfurter M M,Accomazzo D.Term Structure and Roll Yield:Not Your Father’s Backwardation.SSRNWorking Paper Series 1609776,2010.

[5]FuertesAM,M iffre J,RallisG.Tacticalallocation in commodity futuresmarkets:Combiningmomentum and term structuresignals. Journalof Banking&Finance,2010,34(10):2530–2548.

[6]Bernard J,Khalaf L,Kichian M,etal.Forecasting commodity prices:GARCH,jumps,andmean reversion.Journalof Forecasting, 2008,27(4):279–291.

[7]王蘇生,王麗,李志超,等.基于卡爾曼濾波的期貨價格仿射期限結構模型.系統工程學報,2010,25(3):346–353. Wang SS,Wang L,Li Z C,et al.A ffine term structuremodels of futures prices based on Kalman filter.Journal of Systems Engineering,2010,25(3):346–353.(in Chinese)

[8]王麗,王蘇生,劉艷,等.中國期貨價格期限結構模型實證分析.大連海事大學學報:社會科學版,2010,9(1):12–15,114. Wang L,Wang SS,Liu Y,etal.Empiricalanalysis on term structuremodelsof futuresprices in China.Journalof Dalian Maritime University:SocialSciences Edition,2010,9(1):12–15,114.(in Chinese)

[9]金璟,李水前,張毅,等.橡膠期貨價格的期限結構及季節影響研究.云南農業大學學報:社會科學版,2012,6(1):57–61. Jing J,LiY Q,Zhang Y,etal.A study on influencesof term structure and seasonlity on China’snatural rubber future prices.Journal of Yunnan Agricultural University:Social Science Edition,2012,6(1):57–61.(in Chinese)

[10]Telser LG.Futures trading and the storageof cotton andwheat.The Journalof Political Economy,1958,66:233–255.

[11]Cootner P.Returns to speculators:Telser versusKeynes.The Journalof PoliticalEconomy,1960,68(4):396–404.

[12]Kolb R.Isnormalbackwardation normal.Journalof FuturesMarkets,1992,12(1):75–91.

[13]Lee JW,Zhang Y L.Evidenceon normalbackwardation and forecasting theory in futuresmarkets.JournalofDerivativesand Hedge Funds,2009,15(2):158–170.

[14]Dusak K.Futures trading and investor returns:An investigation of commodity market risk premiums.The Journal of Political Economy,1973,81(6):1387–1406.

[15]Carter C,RausserG,Schm itz A.Efficientassetportfoliosand the theory ofnormalbackwardation.The Journalof PoliticalEconomy, 1983,91(2):319–331.

[16]Marcus A.Efficientassetportfoliosand the theory of normalbackwardation:A comment.The Journalof Political Economy,1984, 92(1):162–164.

[17]Baxter J,Conine TE Jr,Tamarkin M.On commoditymarket risk prem iums:Additionalevidence.Journalof FuturesMarkets,1985, 5(1):121–125.

[18]EhrhardtM,Jordan J,Walking R A.An application of arbitrage pricing theory to futuresmarkets:Tests of normalbackwardation. Journalof FuturesMarkets,1987,7(1):21–34.

[19]M iffre J.Normalbackwardation isnormal.Journalof FuturesMarkets,2000,20(9):803–821.

[20]Houthakker H.Can speculators forecastprices.The Review of Econom icsand Statistics,1957,39(2):143–151.

[21]Rockwell C.Normal backwardation,forecasting,and the returns to commodity futures traders.Food Research Institute Studies, 1967,7(S):107–130.

[22]Chang E.Returns to speculatorsand the theory ofnormalbackwardation.Journalof Finance,1985,40(1):193–208.

[23]Kaldor N.Speculation and econom ic stability.The Review of Econom ic Studies,1939,7(1):1–27.

[24]Working H.Price relationsbetween July and Septemberwheat futuresatChicago since1885.WheatStudies,1933,9(6):187–240. [25]Carter C,Giha C.Theworking curve and commodity storage under backwardation.American Journalof Agricultural Economics, 2007,89(4):864–872.

[26]Gorton GB,HayashiF,RouwenhorstKG.The fundamentalsof commodity futures returns.Review of Finance,2013,17(1):35–105. [27]Deaton A,LaroqueG.On thebehaviourof commodity prices.Review of Economic Studies,1992,59(1):1–24.

[28]Pindyck R.The dynamicsof commodity spotand futuresmarkets:A primer.Energy Journal,2001,22(3):1–29.

[29]LinW T,Duan CW.Oilconvenience yieldsestimated underdemand/supply shock.Review ofQuantitative Financeand Accounting, 2007,28(2):203–225.

[30]Brennan M J,Schwartz ES.Evaluating natural resources investments.Journalof Business,1985,58(2):135–157.

[31]Gibson R,Schwartz E S.Stochastic convenience yield and the pricing of oil contingent claims.Journal of Finance,1990,45(3): 959–976.

[32]Gabillon J.Anaysing the Forward Curve:inManaging Energy PriceRisk London.London:Risk Publications,FinancialEngineering Ltd.,1995.

[33]Laughton D G,Jacoby H D.Reversion,timing options,and long-term decision-making.FinancialManagement,1993,22(3):225–240.

[34]Laughton D G,Jacoby H D.The effects of reversion on commodity projects of different length//Trigeorgis L.Real Options in Capital Investments:Models,Strategies,and Applications.Westport:Praeger Publisher,1995:185–205.

[35]RossSA.Hedging long run commitments:Exercises in incompletemarketpricing.Econom ic Notesby BancaMonte deiPaschidi Siena SpA,1997,26(2):385–420.

[36]Schwartz E S.The Stochastic behavior of commodity prices:Implications for valuation and hedging.Journal of Finance,1997, 52(3):923–973.

[37]Cortazar G,Schwartz E S.Implementing a real option model for valuing an undeveloped oil field.International Transactions in OperationalResearch,1997,4(2):125–137.

[38]Lautier D,Galli A.A term structuremodel of commodity priceswith asymmetrical behaviour of the convenience yield.Finéco, 2001,(11):73–95.

[39]Schwartz E,Sm ith JE.Short-term variationsand long-term dynam ics in commodity prices.Management Science,2000,46(7): 893–911.

[40]Cortazar G,Schwartz ES.Implementing a stochasticmodel foroil futuresprices.Energy Econom ics,2003,25(3):215–238.

[41]Casassus J,Collin D P.Stochastic convenience yield imp lied from commodity futuresand interest rates.Journalof Finance,2005, 60(5):2283–2331.

[42]Liu P,Tang K.The stochastic behaviorof commodity priceswith heteroskedasticity in the convenience yield.Journalof Empirical Finance,2011,18(2):211–224.

[43]Jamshidian F,Fein M.Closed form Solutions forOil Futuresand European Options in theGibson Schwartz Model:A Comment. Zurich:Merrill Lynch CapitalMarkets,1990.

[44]Bjerksund P.ContingentClaims Evaluationwhen the Convenience Yield isStochastic:AnalyticalResults.Sandviken:Institute for Foretaks?konomi,Institute of Financeand ManagementScience,1991.

Study on backwardation and term structure of futures prices in Chinese copper futuresmarket

Bu Hui
(Schoolof Econom icsand Management,Beihang University,Beijing 100191,China)

Thispaperanalyzes thebackwardation characterof futurespricesin Chinesecopper futuresmarket. According to Kolb,the relationship between forward pricesand futures pricesatexpiration isexamined,and theexistenceof thebackwardation characterof copper futuresis tested.Using seemingly unrelated regression (SUR)analysis according to Gibson and Schwartz,the property of spot price and convenience yield based on the proxy variables is tested.It is found that both spot price and convenience yield are the processes with mean reverting.This illustrates that two-factor dynamic model of stochastic behavior of futures put forward by Schwartz is suitable for analyzing Chinese copper futures.Finally,a dynam icmodel is set up, which isestimated by thestate spacemodeland Kalman filtermethod.Theempirical results reveal thatnormal backwardationexistsinChinesecopper futuresbeforetheglobalfinancialcrisis,especiallybefore2006;and the characteronce reversed into contangoduring theperiodof financialcrisis.After financialcrisis,Chinesecopper futuresmarkethasno clearbackwardation or contango character fora long time;until recently,backwardation character recovergradually,but itis stillweak.

futuresmarket;backwardation;theory of storage;term structure dynam icmodel

F832.5

A

1000-5781(2016)02-0192-10

10.13383/j.cnki.jse.2016.02.005

2014-12-18;

2015-12-08.

國家自然科學基金資助項目(71003004;71373001);北京航空航天大學基本科研業務費資助項目(501000020-14108019;50100002015108001).

部慧(1981—),女,河北唐山人,博士,副教授,研究方向:期貨市場,資產定價,風險管理等.Email:buhui@buaa.edu.cn.

猜你喜歡
模型
一半模型
一種去中心化的域名服務本地化模型
適用于BDS-3 PPP的隨機模型
提煉模型 突破難點
函數模型及應用
p150Glued在帕金森病模型中的表達及分布
函數模型及應用
重要模型『一線三等角』
重尾非線性自回歸模型自加權M-估計的漸近分布
3D打印中的模型分割與打包
主站蜘蛛池模板: 综合色在线| 在线五月婷婷| 在线观看91精品国产剧情免费| 国产流白浆视频| 国产乱人免费视频| 黄片一区二区三区| 欧美国产另类| 欧美三级日韩三级| aⅴ免费在线观看| 尤物国产在线| 亚洲IV视频免费在线光看| 亚洲无限乱码| 99久久国产综合精品2023| 亚洲黄网在线| 激情网址在线观看| 亚洲黄网在线| 亚洲日韩AV无码精品| 久热中文字幕在线| 69综合网| 亚洲成aⅴ人在线观看| 波多野结衣在线se| 萌白酱国产一区二区| 国产精品久久精品| 国产成人免费手机在线观看视频| hezyo加勒比一区二区三区| 国产精品视频系列专区| 热re99久久精品国99热| 欧美三级视频网站| 久久福利片| 日本少妇又色又爽又高潮| 99re视频在线| 最新无码专区超级碰碰碰| 国产综合欧美| 波多野结衣爽到高潮漏水大喷| 欧美在线黄| 色天堂无毒不卡| 亚洲一区二区三区国产精品| 久久精品最新免费国产成人| 欧美丝袜高跟鞋一区二区| 日韩无码黄色| 亚洲视频免费播放| 亚洲天堂福利视频| 亚洲最大福利视频网| 欧美精品伊人久久| 亚洲成人黄色在线观看| 国产一区二区免费播放| 激情爆乳一区二区| 成人看片欧美一区二区| 亚洲精品动漫| 亚洲无码视频一区二区三区 | 日本不卡在线视频| 国产精品短篇二区| 欧美一级高清视频在线播放| 青青草原国产| 国产一级裸网站| 免费播放毛片| 亚洲国产亚洲综合在线尤物| a级毛片免费播放| 亚洲无码37.| 青青草a国产免费观看| 五月激情婷婷综合| 国产视频资源在线观看| 精品人妻系列无码专区久久| 国产成人一区免费观看| 国产精品亚洲精品爽爽| 国产情侣一区| 亚洲成AV人手机在线观看网站| 一级毛片无毒不卡直接观看| 国产亚洲精品va在线| 国产精品亚洲天堂| 伊人AV天堂| 国产精品免费入口视频| 国产精品视频a| 中日韩一区二区三区中文免费视频| 免费国产小视频在线观看| 高清色本在线www| 亚洲黄色视频在线观看一区| 蝌蚪国产精品视频第一页| 精品视频第一页| 国产精品亚欧美一区二区| 自慰网址在线观看| 亚洲色欲色欲www在线观看|