趙桂英
(1.福建師范大學 物理與能源學院,福建 福州 350117;2.福建省量子調控與新能源材料重點實驗室,福建 福州 350117)
?
基于正極材料LiNi0.5Mn1.5O4表面包裹的La0.7Ca0.3MnO3及其電化學性能研究
趙桂英1,2
(1.福建師范大學 物理與能源學院,福建 福州 350117;2.福建省量子調控與新能源材料重點實驗室,福建 福州 350117)
采用溶膠凝膠法制備了La0.7Ca0.3MnO3包裹LiNi0.5Mn1.5O4正極材料。通過X射線衍射(XRD)、掃描電子顯微鏡(SEM)、充放電測試、循環伏安以及交流阻抗測試研究了表面修飾對LiNi0.5Mn1.5O4材料的電化學性能的影響。研究結果表明:所制備的材料是純相的尖晶石LiNi0.5Mn1.5O4,La0.7Ca0.3MnO3顆粒均勻包裹在LiNi0.5Mn1.5O4表面。包裹的材料以2C倍率循環200次后容量保持110mAh/g,容量保持率達到93.2%。La0.7Ca0.3MnO3包裹層有效保護電極材料,抑制了Mn的溶解,提高了材料的電子導電性,降低了電荷傳遞電阻,減小極化,顯著提高了材料的循環性能。
鋰離子電池; 正極;表面修飾;La0.7Ca0.3MnO3
自商業化以來,鋰離子電池因其具有能量密度大、自放電率低、循環性能好、無記憶效應和安全無污染等優點迅速成為可充型電池主力軍。鋰離子電池已被廣泛應用于移動電話、數碼相機、筆記本電腦等便攜式電子設備,在航天航空、國防軍事、醫學和動力汽車和混合動力汽車領域也有廣闊的應用前景[1~3]。正極材料的性能改善是鋰離子電池性能提高的關鍵,其成本直接決定著鋰離子電池的成本,研究和開發高性能鋰離子電池正極材料成為國內外許多研究人員關注的焦點[4,5]。5V正極材料 LiNi0.5Mn1.5O4具有與市場上商業化的鈷酸鋰相近的實際放電比容量,成本低廉,能量密度較高和放電平臺高(約為4.7V)等諸多優勢,是動力汽車和混合動力汽車鋰離子電池正極材料首選材料之一[6~8]。
因為在5V左右的高壓下,電解液會氧化分解,產物與電極材料反應,電解液分解產物HF會使Mn溶解,產物附在電極表面,使得有些鋰離子無法正常脫嵌造成容量損失,所以循環過程容量衰減較快[9,10]。摻雜和表面修飾是改善LiNi0.5Mn1.5O4材料的電化學性能的有效途徑。Wang等[11]研究發現Na離子的摻雜可提高Ni和Mn離子的無序性,提高鋰離子的電荷傳遞能力,降低極化電阻,提高鋰離子的擴散系數。Wu等[12]報道了通過化學沉積法在LiNi0.5Mn1.5O4表面修飾AlF3可以抑制材料的溶解,顯著提高材料的循環穩定性和熱穩定性。Wang[13]等在LiNi0.5Mn1.5O4表面修飾Fe2O3,研究表明Fe2O3修飾可以顯著改善材料的循環穩定性,抑制材料在高溫下阻抗的增加。相比這些材料,La0.7Ca0.3MnO3具有較高的電子電導率,是極具前景的包裹材料。因為導電性的包裹層可以增強鋰離子表面嵌入反應,降低電池極化電阻和顆粒間接觸電阻,在活性材料的電解液間起到連接橋梁作用[14,15]。
筆者的實驗通過溶膠凝膠法制備La0.7Ca0.3MnO3修飾LiNi0.5Mn1.5O4復合材料,系統地研究了其在室溫下電化學性能。
2.1樣品制備
實驗通過傳統溶膠凝膠法制備LiNi0.5Mn1.5O4正極材料。稱取化學計量比的LiCH3COO·2H2O、Mn(CH3COO)2·6H2O和Ni(CH3COO)2·4H2O溶于去離子水,組成溶液A,取金屬離子物質量兩倍的檸檬酸溶于去離子水形成溶液B,將溶液A逐滴滴入溶液B,用氨水將混合溶液pH值調節到5~6之間。將混合溶液移到80 ℃水浴24h形成凝膠,將膠體放置于鼓風干燥箱120 ℃烘烤得到前驅物,將前驅物500 ℃焙燒12h,900 ℃燒結12 h得到LiNi0.5Mn1.5O4粉體。
制備La0.7Ca0.3MnO3包裹LiNi0.5Mn1.5O4粉末,按計量比稱取La(NO3)3·6H2O,Ca(NO3)2,Mn(CH3COO)2·6H2O溶解在乙二醇甲醚與水為9∶1的混合溶液中,磁力攪拌至完全溶解,加入稀硝酸調節溶液pH值到1-2之間。稱取與金屬離子物質的量相等的檸檬酸溶解在乙二醇甲醚并攪拌得到無色透明溶液。將溶液逐滴滴加入金屬離子混合液中。將溶液放置水浴充分攪拌,將制備好的LiNi0.5Mn1.5O4粉末加入溶液中持續攪拌5h形成膠狀,獲得的膠體在空氣中干燥12h,馬弗爐中900 ℃處理12h獲得最終產物(LiNi0.5Mn1.5O4)97/ (La0.7Ca0.3MnO3)3。利用XRD分析材料的晶體結構,以Cu-Kα為輻射源,波長λ為0.154056 nm。用掃描電鏡(SEM)觀察材料的微結構和表面形貌。
2.2電池組裝
按活性正極材料∶導電炭黑Super-P∶PVDF=8∶1∶1的比例,先將PVDF溶解在適量的NMP有機溶劑,再混合活性正極材料和活性正極材料在瑪瑙研缽中研磨成和稀泥狀并涂覆于10μm厚的鋁箔上,在真空干燥箱110 ℃下真空干燥12h后裁成極片,用粉末壓片機在3~4 MPa壓實, 80 ℃真空烘烤5h,在手套箱(水<1×10-6,氧<1×10-6)中以金屬鋰片作參考電極組裝R2025扣式電池。電解液使用1.0 MLiPF6的碳酸乙烯酯(EC)+碳酸二甲酯(EMC)+碳酸二乙(DEC)(體積比為1∶1∶1)的有機溶劑。
2.3電化學性能測試
使用藍電電池測試系統對模擬電池進行充放電性能測試,選擇2 C(1 C=140 mAh/g)的倍率,測試電壓范圍為3-4.9 V。用電化學工作站(CHI660C)完成,電壓區間:3.0~4.9 V,掃描速率為0.30 mV/s。室溫下交流阻抗性能測試振幅為5mV,頻率范圍為100kHz~10mHz。
材料LiNi0.5Mn1.5O4和(LiNi0.5Mn1.5O4)97/(La0.7Ca0.3MnO3)3標志為 Sample A 和Sample B,其圖譜以及LiNi0.5Mn1.5O4和La0.7Ca0.3MnO3標準譜圖如圖1所示。與標準譜圖比較,兩個樣品與標準的尖晶石型LiNi0.5Mn1.5O4完全吻合,樣品屬立方晶系,Fd3m空間群。衍射峰相當尖銳, 說明合成的是純相LiNi0.5Mn1.5O4,結晶度比較好。在Sample B的圖譜中發現在2θ=32.82°角度處測到La0.7Ca0.3MnO3(121)的特征峰,表明La0.7Ca0.3MnO3的成功包覆到LiNi0.5Mn1.5O4材料上。在精度范圍內沒有測到第三相的衍射峰,說明La0.7Ca0.3MnO3表面修飾過程沒有其它的雜相生成。

圖1 Sample A 和Sample B的XRD
Sample A 和Sample B的SEM如圖2所示,兩樣品結晶性良好,晶形發育完整,具有比較清晰的邊緣,顆粒分散度較好,未見明顯的團聚現象,A樣品LiNi0.5Mn1.5O4表面整潔光滑,B樣品圖中可見La0.7Ca0.3MnO3顆粒均勻分布在LiNi0.5Mn1.5O4材料表面,形成連續的電子導電層,為電子傳輸的提供通道,有利對于改善材料的電化學性能具有積極的作用。同時,包裹層可有效抑制材料和電解液的直接接觸,減少表面的副反應,降低金屬離子的溶解,保護電極材料。

圖2 Sample A 和Sample B粉末的SEM
兩樣品在室溫2 C倍率的循環性能如圖3所示。對兩樣品的在2 C倍率下循環200次測試發現,兩樣品的初始放電比容量比較接近,樣品A和樣品B分別為117 mAh/g和118 mAh/g,隨著循環次數的增加樣品A容量衰減較明顯,樣品B基本保持不變。循環200次后,樣品A的容量僅為59 mAh/g,容量保持率為50.4%,而樣品B容量還保持110 mAh/g,容量保持率為93.2%。La0.7Ca0.3MnO3包裹層可有效抑制材料和電解液的直接接觸,降低金屬離子的溶解,保護電極材料,提高材料的循環性能。

圖3 Sample A和Sample B樣品在室溫2C倍率下的循環性能
圖4是制備樣品在室溫下2 C倍率,3~4.9 V范圍內第1次、30次、50次、70次、100次及150次充放電曲線圖。從圖中可以看出,兩樣品在4.7 V左右有充放電平臺,該平臺對應的是Ni2+/Ni4+的氧化還原反應。兩樣品在4.1 V附近有個小的充放電平臺對應的是Mn3+/Mn4+的氧化還原反應,這是因為材料合成過程因高溫煅燒出現氧缺失而產生少量的Mn3+。充放電曲線可以看出,經過表面修飾,樣品B具更明顯的電壓平臺并且平臺之間的距離更短,說明材料具有更小的極化。從圖4中可以看出隨著循環次數的增加,樣品A表現出極大的容量衰減和嚴重的材料極化。說明La0.7Ca0.3MnO3包裹層對材料起到的保護作用,防止材料和電解液的直接接觸,有效抑制電極材料的溶解。
為了進一步研究La0.7Ca0.3MnO3包裹對LiNi0.5Mn1.5O4電化學行為的影響,對樣品進行循環伏安測試。如圖5所示,掃描電壓范圍是3.0-4.9 V,掃描速率是0.30 mV/s。從兩樣品的循環伏安圖譜可以觀察到4.7 V左右出現兩對氧化還原峰,這是對應Ni+2/Ni+3和Ni+3/Ni+4的氧化還原過程,在4.0V出現的一對弱的峰是由于少量Mn+3/Mn+4的氧化還原過程,這與充放電曲線的平臺是相對應的。對于樣品B兩個陰極還原峰閉合,是因為兩個峰間距太窄,所以看起來像是一個峰[16]。從圖5的插入圖可以看出,經過修飾,材料氧化還原峰距離減小,說明材料的極化減小,材料的電化學循環性能有所提高[17]。

圖4兩樣品2C倍率充放電曲線

掃描速率為0.3 mV/s,插圖為4.5-4.9V區域放大圖
圖5兩樣品的CV圖譜
圖6,7是Sample A 和Sample B在室溫下2C循環后的EIS圖譜及等效電路。阻抗譜都是由兩個半圓和一條斜線組成,高頻區的半圓反應的是鋰離子從表面膜穿過的電阻(Rs)和界面電容CPEs,中間的半圓代表電荷傳遞電阻(Rct)和雙電層電容(CPEdl),低頻區的斜線表征鋰離子在樣品中的擴散,Re代表電解液電阻, Zw是Warburg阻抗[18]。根據模擬電路,擬合出的結果如表1所示,Re基本保持不變,Sample A 在循環90次后電荷傳遞電阻是25.65Ω,150次后增加到43.87Ω,大約增大18Ω。Sample B循環90~150次,電荷傳遞電阻從10.9Ω變到19.35Ω,增大了9Ω左右。因為電解液某些成分在高壓下會被氧化沉積在電極表面形成SEI膜(RCH2OCO2Li, LiF, MnF2, Li2CO3等),SEI膜層在循環時堵塞通道減緩電極的動力學過程,同時,由于電解液分解產物HF會腐蝕電極材料,Mn會溶解,產物也會附在電極材料表面,從而增加電荷傳遞電阻[19~21]。與修飾改性后的材料相比,未修飾材料電荷傳遞電阻變化更大,說明La0.7Ca0.3MnO3包裹可以有效抑制電極材料的溶解,降低電荷傳遞電阻,極化較小。同時導電性La0.7Ca0.3MnO3包裹在顆粒間形成高導電性的網狀納米層,電荷在La0.7Ca0.3MnO3/LiNi0.5Mn1.5O4混合物傳遞的模型,可以理解為由La0.7Ca0.3MnO3電阻何電解液分解產生的表面電阻并聯的擴散路徑組成。由于La0.7Ca0.3MnO3具有較高的電子導電性,兩并聯電路的總電阻就比原來未修飾LiNi0.5Mn1.5O4的小。因此高導電性的La0.7Ca0.3MnO3包裹就有利于降低電荷傳遞電阻和總的極化電阻[22,23]。故La0.7Ca0.3MnO3包裹可提高材料的循環性能。

圖6Sample A和Sample B室溫2C循環后交流阻抗

圖7 對應的模擬等效電路

SampleRe/ΩRs/ΩRct/ΩSampleA90次5.62513.5325.65SampleA150次6.61543.0143.87SampleB90次5.2827.8510.9SampleB150次5.00718.8919.35
通過溶膠凝膠法制備純的LiNi0.5Mn1.5O4,并在其表面成功包覆La0.7Ca0.3MnO3。La0.7Ca0.3MnO3表面修飾顯著提高材料在室溫下的循環性能,以2C倍率循環200次,還保持110 mAh/g容量,容量保持率達到93.2%。La0.7Ca0.3MnO3包覆有效保護電極材料,抑制了Mn的溶解,降低極化,減小了材料的電荷傳遞電阻,改善了材料的電化學性能。
[1]Jung-Hyun K, Nicholas P W P, Yang-Kook S, et al.Improved lithium-ion battery performance of LiNi0.5Mn1.5-xTixO4 high voltage spinel in full-cells paired with graphite and Li4Ti5O12 negative electrodes [J]. Journal of Power Sources, 2014, 262:62~71.
[2]Ting-Feng Y, Zi-Kui F, Ying X, et al.Synthesis of LiNi0.5Mn1.5O4cathode with excellent fast charge discharge performance for lithium-ion battery [J]. Electrochimica Acta, 2014, 147: 250~256.
[3]Jung-Hyun K, Nicholas P W P, Zicheng L, et al. Understanding the capacity fading mechanism in LiNi0.5Mn1.5O4/graphite Li-ion batteries [J]. Electrochimica Acta, 2013, 90:556~562
[4]Lia X L, Wei G, Yunfu L, et al.Spinel LiNi0.5Mn1.5O4as superior electrode materials for lithium-ion batteries: Ionic liquid assisted synthesis and the effect of CuO coating [J]. Electrochimica Acta, 2014, 116:278~283.
[5]Yi-Jie G, Yu L, Yang F, et al.LiNi0.5Mn1.5O4synthesized through ammonia-mediated carbonate precipitation [J]. Electrochimica Acta, 2015, 176:1029~1035.
[6]So Yubuchi, Yusuke Ito, Takuya Matsuyama. 5 V class LiNi0.5Mn1.5O4positive electrode coatedwith Li3PO4 thin film for all-solid-state batteries using sulfide solid electrolyte [J]. Solid State Ionics, 2016, 285: 79~82
[7]Jia G L, Jiao C M,Xue W J, et al.Improvement in electrochemical performance of calcined LiNi0.5Mn1.5O4/GO [J]. Solid State Ionics, 2016, 292: 15~21
[8]Taejin Hwang, Joong Kee Lee, Junyoung Mun, et al.Surface-modified carbon nanotube coating on high-voltage LiNi0.5Mn1.5O4cathodes for lithium ion batteries [J]. Journal of Power Sources, 2016, 322:40~48.
[9]Sun Y K, Yoon C S, I. H. Oh. Surface structural change of ZnO-coated LiNi0.5Mn1.5O4?spinel as 5 V cathode materials at elevated temperatures [J]. Electrochimica. Acta, 2003, 48: 503~506
[10]Arrebola J C, Caballero A, Hernán L, et al. Re-examining the effect of ZnO on nanosized 5V LiNi0.5Mn1.5O4spinel: An effective procedure for enhancing its rate capability at room and high temperatures [J]. Journal of Power Sources, 2010, 195:4278~4284
[11]Wang J, Lin W Q, Wu B H, et al.Syntheses and electrochemical properties of the Na-doped LiNi0.5Mn1.5O4cathode materials for lithium-ionbatteries [J]. Electrochimica Acta, 2014, 145:245~253.
[12]Wu Q, Yin Y F, Sun S W, et al. Novel AlF3 surface modified spinel LiNi0.5Mn1.5O4for lithium-ion batteries: performance characterization and mechanism exploration [J]. Electrochimica Acta, 2015, 158:73~80.
[13]Wang G, Wen W C, Chen S H, et al. Improving the electrochemical performances of spherical LiNi0.5Mn1.5O4by Fe2O3 surface coating for lithium-ion batteries [J]. Electrochimica Acta, 2016, 212:791~799.
[14]Yang T Y, Zhang N Q,Lang Y, et al. Enhanced rate performance of carbon-coated LiMn1.5Ni0.5O4 cathode material for lithium ion batteries[J]. Electrochimica Acta, 2011,56: 4058~4064
[15]Li, Zhang H P, Fu L J, et al. Cathode materials modified by surface coating for lithium ion batteries[J]. Electrochimica Acta, 2006,51: 3872~3883
[16]Yi T F, Zhu Y R. Synthesis and electrochemistry of 5V LiNi0.4Mn1.6O4 cathode materials synthesized by different methods [J]. Electrochimica Acta, 2008, 53:3120~3126.
[17]Chang Z R, Dai D M, Tang H W, et al. Effects of precursor treatment with reductant or oxidant on the structure and electrochemical properties of LiNi0.5Mn1.5O4[J]. Electrochimica Acta, 2010, 55:5506~5510.
[18]Alcantara R, Jaraba M, Lavela P, et al. X-ray diffraction and electrochemical impedance spectroscopy study of zinc coated LiNi0.5Mn1.5O4electrodes [J]. Journal of Electroanalytical Chemistry, 2004, 566:187~192.
[19]Hwanga B J, Wu Y W, Venkateswarlu M, et al. Influence of synthesis conditions on electrochemical properties of high-voltage Li1.02Ni0.5Mn1.5O4?spinel cathode material [J]. Journal of Power Sources, 2009, 193: 828.
[20]Markovsky B, Talyossef Y, Salitra G, et al. Cycling and storage performance at elevated temperatures of LiNi0.5Mn1.5O4?positive electrodes for advanced 5 V Li-ion batteries [J]. Electrochemistry Communications, 2004, 6: 821~826.
[21]Xu K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries [J]. Chemical reviews, 2004, 104:4303~4417.
[22]Zhao G Y, Lin Y B, Zhou T, et al. Enhanced rate and high-temperature performance of?La0.7Sr0.3MnO3-coated LiNi0.5Mn1.5O4?cathode materials for lithium ion battery [J]. Journal of Power Sources, 2012, 215: 63~68.
[23]Lin Y B, Yang Y M, Yu R B, et al. Enhanced electrochemical performances of LiNi0.5Mn1.5O4?by surface modification with superconducting YBa2Cu3O7 [J]. Journal of Power Sources, 2014, 259: 188~194.
[24]Kedi Yang,Jing Su,Li Zhang,Yunfei Long,Xiaoyan Lv,Yanxuan Wen. Urea combustion synthesis of LiNi 0.5 Mn 1.5 O 4 as a cathode material for lithium ion batteries[J]. Particuology,2012 (6).
[25]Jinhan Yao,Shuoshuo Wei,Pinjie Zhang,Chaoqi Shen,Kondo-Francois Aguey-Zinsou,Lianbang Wang. Synthesis and properties of Li 3 V 2? x Ce x (PO 4 ) 3 /C cathode materials for Li-ion batteries[J]. Journal of Alloys and Compounds . 2012.
[26]Minghao Zhang,Jun Wang,Yonggao Xia,Zhaoping Liu. Microwave synthesis of spherical spinel LiNi 0.5 Mn 1.5 O 4 as cathode material for lithium-ion batteries[J]. Journal of Alloys and Compounds ,2012.
[27]Ugo Lafont,Anca Anastasopol,Esteban Garcia-Tamayo,Erik Kelder. Electrostatic spray pyrolysis of LiNi 0.5 Mn 1.5 O 4 films for 3D Li-ion microbatteries[J]. Thin Solid Films ,2011 (9).
[28]Won-Keun Kim,Dong-Wook Han,Won-Hee Ryu,Sung-Jin Lim,Hyuk-Sang Kwon. Al 2 O 3 coating on LiMn 2 O 4 by electrostatic attraction forces and its effects on the high temperature cyclic performance[J]. Electrochimica Acta ,2012.
[29]Yi-Chun Jin,Chih-Yuan Lin,Jenq-Gong Duh. Improving rate capability of high potential LiNi 0.5 Mn 1.5 O 4? x cathode materials via increasing oxygen non-stoichiometries[J]. Electrochimica Acta ,2012.
[30]Jing Mao,Kehua Dai,Yuchun Zhai. Electrochemical studies of spinel LiNi 0.5 Mn 1.5 O 4 cathodes with different particle morphologies[J]. Electrochimica Acta,2012.
[31]M.V. Reddy,H.Y. Cheng,J.H. Tham,C.Y. Yuan,H.L. Goh,B.V.R. Chowdari. Preparation of Li(Ni 0.5 Mn 1.5 )O 4 by polymer precursor method and its electrochemical properties[J]. Electrochimica Acta ,2012.
Investigation on the Electrochemical Performances of La0.7Ca0.3MnO3Surface-modified with LiNi0.5Mn1.5O4Cathode Materials
Zhao Guiying
(1.CollegeofPhysicsandEnergy,FujianNormalUniversity,Fuzhou350117,China;2.FujianProvincialKeyLaboratoryofQuantumManipulationandNewEnergyMaterials,Fuzhou350117,China)
La0.7Ca0.3MnO3-coated 5V spinel LiNi0.5Mn1.5O4as cathode was prepared by mixing LiNi0.5Mn1.5O4powders and the sol-gel-drived La0.7Ca0.3MnO3matrix, followed by high-temperature calcinations. The effects of La0.7Ca0.3MnO3-coating on the electrochemical performances of LiNi0.5Mn1.5O4were investigated systematically by the charge/discharge testing, cyclic voltammograms and AC impedance spectroscopy, respectively. The obtained results showed that the La0.7Ca0.3MnO3particles were uniformly deposited on the pure LiNi0.5Mn1.5O4surface.Compared with pristine LiNi0.5Mn1.5O4, La0.7Ca0.3MnO3-coated material had much lower charge-transfer resistances. The results of electrochemical experiments demonstrated that the modified material exhibits remarkably enhanced electrochemical reversibility and stability. The discharge capacities remained 110mAh/g with capacity retention of 93.2% after 200 cycles at 2C.The La0.7Ca0.3MnO3coating layer protected the surface of the active materials from HF in the electrolyte during electrochemical cycling. As a result, the electrochemical cycling stability was improved.
lithium-ion battery; cathode; surface modification; La0.7Ca0.3MnO3
2016-08-10
福建省教育廳科技項目(編號:JA15119)
趙桂英(1987—),女,助理實驗師,碩士,主要從事鋰離子電池方向的研究工作。
TM911
A
1674-9944(2016)16-0216-05