999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Bergman-Sobolev空間上Toeplitz算子的本性范數

2016-10-20 03:40:48曹廣福
廣州大學學報(自然科學版) 2016年4期
關鍵詞:數學

何 莉, 曹廣福

(廣州大學 數學與信息科學學院, 廣東 廣州 510006)

?

Bergman-Sobolev空間上Toeplitz算子的本性范數

何莉, 曹廣福

(廣州大學 數學與信息科學學院, 廣東 廣州510006)

文章研究了Bergman-Sobolev上Toeplitz算子的某些性質,主要通過該類算子的符號函數在邊界處的行為計算了它們的本性范數.

Bergman-Sobolev空間; Toeplitz算子; 本性范數

0 Introduction

Denote by R the real number set, N the natural number set and N*the positive integer set.

Forβ∈R and 1≤p<+∞, the Sobolev space Lβ,pis the completion of all functionsf∈() for which

Forp=2, the space Lβ,2is a Hilbert space with the inner product

?f∈Lβ,2,g∈Lβ,2.

Here,L2denotes the usual Lebesgue spaceL2(,dA) and the notation·,·L2denotes the standard inner product inL2.

Whenp=+∞, the corresponding Sobolev space is written as

Lβ,∞={f:→

with ‖f‖Lβ,∞=‖βf‖L∞+‖f‖L∞.SinceeachfunctioninLβ,∞can be extended to a continuous function on the closed unit disc} by Sobolev’s embedding theorem (see Theorem 5.4 of Ref.[1]), we will use the same notation between a function in Lβ,∞and its continuous extension onin this paper.

Tuf=P(uf)

In this paper, we calculate the essential norm of Toeplitz operators on Bergman-Sobolev space with positive integer derivative in terms of the boundary value of the corresponding symbol.

1 Essential norm of Toeplitz operators

Lemma 1For eachλ∈

Proof. See Proposition 3.2 of the paper given in footnote*HE L, CAO G F. Toeplitz operators on Bergman-Sobolev space with positive integer derivative[J]. Sci China Math Ser A, 2016, preprint..

Proof. See Lemma 3.3 of the paper given in footnote①.

Proof. See Lemma 3.4 of the paper given in footnote①.

Lemma 4Letu,v∈Lβ,∞andζ∈. Then, limλ→ζ).

Proof. See Lemma 3.5 of the paper given in footnote①.

Theorem 1Letu∈Lβ,∞,β∈N*. Then, ‖Tu‖e=maxζ∈}|u(ζ)|.

Proof. Setρ=maxζ∈|u(ζ)| for simplicity. Choose some pointη∈so thatu(η)=ρ. For anyK∈,

byLemma4withv=1, this indicates ‖Tu‖e≥maxζ∈|u(ζ)|.

②LEE Y J. Compact sums of Toeplitz products and Toeplitz algebra on the Dirichlet space[J]. Tohoku Math J, preprint,2016.

for everyj>j0.

Moreover, sinceuis continuous on, we can choose somer∈(0,1) such that |u(z)|≤ρ+εfor everyr<|z|<1.

asj→∞. Since

for eachj∈N*, it is not difficult to get that

∫|z|≤r|βfj|2dA<ε

for everyj>jβ. Notice that

for eachj∈N*, where

asj→∞, we have

Direct calculation follows that

(1)

by Minkowski inequality. Since

by Cauchy-Schwarz inequality, where

is a positive number, there exists an integerj*≥0 such that

(2)

whenj>j*because ‖kfj‖A2→0 for each integer 0≤k≤β-1 asj→∞ by Lemma 3. Furthermore, for everyj>jβ,

(3)

Then, by combining the inequalities (1), (2) and (3), we have

‖β(ufj)‖L2≤‖

asj>max{jβ,j*}. This implies that

2 Main result

The main result is the calculation of the essential norm of the Toeplitz operators in terms of the boundary value of their corresponding symbols. That is

Theorem 2Letu∈Lβ,∞,β∈N*. Then,

‖Tu‖e=maxζ∈|u(ζ)|.

AcknowledgmentsThe authors would like to thank professor YOUNG J L in Korea for helpful discussions.

[1]ADAMS R A. Sobolev spaces[M]∥A subsidiary of Harcourt Brace Jovanovich, Pure and applied mathematics. New York-London: Academic Press, 1975:65.

[2]COHN W S, VERBITSKY I E. On the trace inequalities for Hardy-Sobolev functions in the unit ball ofn[J]. Indian Univ Math J, 1994, 43(4): 1079-1097.

[3]BRUNA J, ORTEGA J M. Interpolation along manifolds in Hardy-Sobolev spaces[J]. J Geom Anal, 1997, 7(1): 17-45.

[5]CASCANTE C, ORTEGA J M. Carleson measures for weighted Hardy-Sobolev spaces[J]. Nagoya Math J, 2007, 186: 29-68.

[6]TCHOUNDJA E. Carleson measures for the generalized Bergman spaces via aT(1)-type theorem[J]. Ark Mat, 2008, 46(2): 377-406.

[7]CHO H R, ZHU K H. Holomorphic mean Lipschitz spaces and Hardy-Sobolev spaces on the unit ball[J]. Complex Var Elliptic Equ, 2012, 57(9): 995-1024.

[8]CAO G F, HE L. Fredholmness of Multipliers on Hardy-Sobolev spaces[J]. J Math Anal Appl, 2014, 418(1): 1-10.

[9]CAO G F, HE L. Hardy-Sobolev spaces and their multipliers[J]. Sci China Math Ser A, 2014, 57(11): 2361-2368.

[10]HE L, CAO G F. Composition operators on Hardy-sobolev spaces[J]. Indian J Pure Appl Math, 2015, 46(3): 255-267.

[11]HE L, CAO G F. Toeplitz operators with unbounded symbols on Segal-Bargmann space[J]. J Math Res Appl, 2015, 35(3): 237-255.

[12]HONG C K. On the essential maximal numerical range[J]. Acta Sci Math, 1979, 41: 307-315.

【責任編輯: 周全】

date: 2016-01-05;Revised date: 2016-04-18

s: National Natural Science Foundation of China (11501136); The key discipline construction project of subject groups focus on Mathematics and information science in the construction project of the high-level university of Guangdong Province (4601-2015); Guangzhou University (HL02-1517) and (HL02-2001)

Essential norm of Toeplitz operators on Bergman-Sobolev space

HE Li, CAO Guang-fu

(School of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China)

In this paper, we study some properties of Toeplitz operators on the Bergman-Sobolev space. Mainly, we calculate the essential norm of these operators in terms of the boundary value of their corresponding symbols.

Bergman-Sobolev space; Toeplitz operator; essential norm

O 177.1Document code: A

1671- 4229(2016)04-0018-04

O 177.1

A

Biography: HE Li(1986-), female, Doctor of science. E-mail: helichangsha1986@163.com.

猜你喜歡
數學
中等數學
中等數學(2021年4期)2021-12-04 13:57:52
中等數學
中等數學(2021年7期)2021-12-03 04:01:41
中等數學
中等數學(2021年1期)2021-12-02 03:08:08
中等數學
中等數學(2021年3期)2021-12-02 00:28:14
中等數學
中等數學(2020年11期)2020-12-18 01:23:21
我們愛數學
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
我難過,因為我看到數學就難過
數學也瘋狂
主站蜘蛛池模板: 国产欧美日韩另类| 国产在线精彩视频二区| 国产精品爆乳99久久| 欧美亚洲欧美| 欧美区一区| 99久久国产精品无码| 全部免费特黄特色大片视频| 亚洲丝袜中文字幕| 国产噜噜噜视频在线观看| 欧美视频在线第一页| 香蕉久久国产超碰青草| 伊人激情综合网| 日韩国产一区二区三区无码| 国产AV毛片| av在线5g无码天天| 无码aaa视频| 综合色亚洲| 久久国语对白| 国产网友愉拍精品| 久久国产精品电影| 亚洲无码高清免费视频亚洲| 国产亚洲第一页| 亚洲美女视频一区| a毛片免费观看| 67194亚洲无码| 日本成人福利视频| 国产噜噜噜| 好吊日免费视频| 国产精品九九视频| 国产一区二区三区免费| 四虎影视无码永久免费观看| 91黄色在线观看| 亚洲bt欧美bt精品| 久久毛片基地| 亚洲无码精品在线播放 | 日本免费a视频| 亚洲国产理论片在线播放| 最新痴汉在线无码AV| 国产手机在线小视频免费观看 | 性色在线视频精品| 成人免费视频一区| 四虎AV麻豆| 亚洲国产高清精品线久久| 一本大道视频精品人妻| 色婷婷国产精品视频| 亚洲日本www| 国国产a国产片免费麻豆| 国产成人精品男人的天堂下载| 91系列在线观看| 日韩成人免费网站| 92精品国产自产在线观看| 久久国产乱子伦视频无卡顿| 无码精品国产VA在线观看DVD| 2020亚洲精品无码| 欧美日韩精品一区二区在线线| 日韩二区三区| 99精品高清在线播放| 精品色综合| 亚洲无码高清免费视频亚洲 | 日韩精品一区二区三区swag| 国产精品成| 99一级毛片| 在线无码私拍| 国产AV无码专区亚洲精品网站| 国产18页| 国产无码精品在线| 40岁成熟女人牲交片免费| 国产丰满大乳无码免费播放| 欧美三级自拍| 国产区成人精品视频| 国产欧美视频综合二区| 美女裸体18禁网站| 免费国产一级 片内射老| 日韩 欧美 小说 综合网 另类| 亚洲色大成网站www国产| 91毛片网| 国产黄色片在线看| 亚洲三级电影在线播放| 国产00高中生在线播放| 中文字幕精品一区二区三区视频 | 超清人妻系列无码专区| 成年免费在线观看|