999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

線狀李超代數Ln,m上的Yang-Baxter方程

2016-11-11 02:04:40楊勇劉文德
純粹數學與應用數學 2016年5期
關鍵詞:數學

楊勇,劉文德

(哈爾濱師范大學數學科學學院,黑龍江 哈爾濱 150025)

線狀李超代數Ln,m上的Yang-Baxter方程

楊勇,劉文德

(哈爾濱師范大學數學科學學院,黑龍江 哈爾濱150025)

在特征零的代數閉域上,首先做出Ln,m的一個空間的直和分解,從而將Ln,m上的Yang-Baxter方程的解分為若干情形.然后分別在每種情形下對Yang-Baxter方程進行求解,進而得到了Ln,m上的所有的Yang-Baxter方程的解的矩陣形式.

Yang-Baxter方程;冪零李超代數;線狀李超代數

1 引言

1960年,Baxter在研究波動理論的積分方程時,提出了Rota-Baxter代數的概念[1].這一理論在數學與物理的許多領域得到了廣泛的應用.在李代數與李超代數上,權0的Rota-Baxter算子即為經典的Yang-Baxter方程的解,權1的Rota-Baxter算子即為變形的Yang-Baxter方程的解.近年來,許多學者刻畫了低維代數上的Rota-Baxter算子.例如,文獻[2]證明了有限維實可除代數上的Rota-Baxter算子都是平凡的,文獻[3]計算了線狀李超代數L1,2上的Yang-Baxter方程的解,文獻[4]刻畫了有限維Hamilton代數上的Rota-Baxter算子.由于其豐富的應用價值,Yang-Baxter方程的研究成為了一個重要的研究課題.

1970年,Vergne在研究冪零李代數簇的可約性時,提出了線狀李代數的概念并且指出任何一個線狀李代數都可由線狀李代數Ln的形變得到[5].類似于李代數的情形,任何一個線狀李超代數都可由線狀李超代數Ln,m的形變得到.線狀李超代數作為一類特殊的冪零李代數,其研究成為了許多學者關注的重要課題.例如,文獻[6]對低維的線狀李超代數進行了分類,文獻[7]計算了線狀李超代數Ln,m的導子及保積Hom-結構,文獻[8]刻畫了線狀李超代數Ln,m的極小忠實表示,文獻[9]給出了線狀李超代數Ln,m的無窮小形變.本文在特征零的代數閉域上,首先做出Ln,m的一個空間的直和分解,從而將Ln,m上的Yang-Baxter方程的解分為若干情形.然后分別在每種情形下對Yang-Baxter方程進行求解,進而得到了Ln,m上的所有的Yang-Baxter方程的解的矩陣形式.

2 基本概念和引理

定義2.1[9]設G是一個冪零李超代數,若存在正整數p,q,使得

其中

則稱(p,q)為李超代數G的超冪零指數.

定義2.2[9]設是一個冪零李超代數,其中dim G0=n,dim G1=m,如果G的超冪零指數為(n-1,m),則稱G為線狀李超代數.

定義2.3設R是李超代數G上的一個齊次的線性算子,如果對任意的x,y∈G,有

則稱R是李超代數G上的Yang-Baxter方程的解.

3 主要結果及證明

本文約定F為特征零的代數閉域,設{X0,X1,···,Xn|Xn+1,···,Xn+m}是線狀李超代數F=Ln,m的標準基,其非零乘法為:[X0,Xi]=Xi+1,i∈{1,···,n-1,n+1,···,n+m-1}.

設F上的Yang-Baxter方程的解R在該組基下的矩陣是(aij),則有

令V0=span{X1,···,Xn},V1=span{Xn+1,···,Xn+m}.

引理3.1設R是F上的線性算子,則對于任意的x,y∈F,有

引理3.2設R是F上的齊次的線性算子,則有以下兩個結論成立:

(1)若R是F上的偶的Yang-Baxter方程的解,則R(X2),···,R(Xn)∈V0.

(2)若R是F上的奇的Yang-Baxter方程的解,則R(Xn+2),···,R(Xn+m)∈V0.

引理3.3設R是F上的偶的線性算子,則有以下兩個結論成立:

引理3.4設R是F上的奇的線性算子,則有以下兩個結論成立:

證明此定理的證明,可仿照引理3.3的證明得到.

以下表達式中的x,y,αi,βj表示F上的任意元素,α表示F上的任意非零元素,?表示F上的任意元素或相應階數的任意矩陣.

定理3.1設R是F上的偶的線性算子,則R是Yang-Baxter方程的解當且僅當R在標準基下的矩陣為以下兩類矩陣之一:

定理3.2設R是F上的奇的線性算子,若R(Xn+1)∈V0,則R是F上的Yang-Baxter方程的解當且僅當R在標準基下的矩陣為以下矩陣:

定理3.3設R是F上的奇的線性算子,若R(Xn+1)/∈V0,則R是F上的Yang-Baxter方程的解當且僅當R在標準基下的矩陣為以下五類矩陣之一:

[1]Baxter G.An analytic problem whose solution follows from a simple algebraic identity[J].Pacific J.Math.,1960(10):731-742.

[2]陳美微,劉文德.有限維實可除代數的Rota-Baxter算子[J].數學的實踐與認識,2013,43(16):243-247.

[3]焦陽,劉文德.Filiform李超代數L1,2上的Yang-Baxter方程[J].數學的實踐與認識,2014,44(17):283-287.

[4]溫雅慧,劉文德.有限維Hamilton代數上的Rota-Baxter算子[J].數學的實踐與認識,2013,43(23):262-267.

[5]Vergne M.Cohomologie des algèbres de Lie nilpotentes.Apllicationà l'étude de la variété des algèbres de Lie nilpotentes[J].(French)Bull.Soc.Math.France 1970(98):81-116.

[6]Gilg M.Low-dimensional filiform Lie superalgebras[J].Rev.Mat.Complut.,2001(14):463-478.

[7]焦陽,劉文德.Filiform李超代數Ln,m的導子和保積Hom-結構[J].純粹數學與應用數學,2014,30(5):534-543.

[8]Wang Q.Chen H,Liu W.On representations of the Filiform Lie superalgebras Ln,m[J].J.Geom.Phys.,2015(97):93-104.

[9]Khakimdjanov Y,Navarro R M.A complete description of all the infinitesimal deformations of the Lie superalgebras Ln,m[J].J.Geom.Phys.,2010(60):131-141.

2010 MSC:16T25

The Yang-Baxter equation of the filiform Lie superalgebras Ln,m

Yang Yong,Liu Wende
(School of Mathematical Sciences,Harbin Normal University,Harbin150025)

At first,we make a space direct sum decomposition of Ln,mover an algebraically closed field of characteristic zero,so the solutions of the Yang-Baxter equation of the filiform Lie superalgebras Ln,mwere divided into several situations.We solve the Yang-Baxter equation in each case,then we obtain all the solutions of the Yang-Baxter equation of the filiform Lie superalgebras Ln,min terms of the matrix form.

Yang-Baxter equation,nilpotent Lie superalgebra,filiform Lie superalgebra

O152.5

A

1008-5513(2016)05-0536-10

10.3969/j.issn.1008-5513.2016.05.010

2016-04-05.

國家自然科學基金(11471090,11501151);省自然科學基金(A2015003).

楊勇(1992-),碩士生,研究方向:李代數與李超代數.

劉文德(1965-),博士,教授,研究方向:李代數與李超代數.

猜你喜歡
數學
中等數學
中等數學(2021年4期)2021-12-04 13:57:52
中等數學
中等數學(2021年7期)2021-12-03 04:01:41
中等數學
中等數學(2021年1期)2021-12-02 03:08:08
中等數學
中等數學(2021年3期)2021-12-02 00:28:14
中等數學
中等數學(2020年11期)2020-12-18 01:23:21
我們愛數學
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
我難過,因為我看到數學就難過
數學也瘋狂
主站蜘蛛池模板: 亚洲成人高清无码| 亚洲精品无码日韩国产不卡| 国产乱子伦无码精品小说| 毛片网站在线播放| 亚洲成人网在线播放| 亚洲欧美日韩另类在线一| 国产一区二区三区在线观看免费| 亚洲国产清纯| 亚洲国产欧美目韩成人综合| 久操线在视频在线观看| 日韩人妻少妇一区二区| 国内毛片视频| 真人免费一级毛片一区二区| 国产精品一区在线麻豆| 青青草原国产av福利网站| 国产成人精品一区二区三在线观看| 三上悠亚一区二区| 国产成年女人特黄特色毛片免| 永久免费av网站可以直接看的| 在线免费亚洲无码视频| av性天堂网| 国产黄色免费看| 亚洲精品天堂在线观看| 亚洲aaa视频| 国产精品.com| 色综合网址| 免费一级毛片在线观看| 亚洲午夜福利在线| 91毛片网| 欧美国产中文| 99久久精品国产综合婷婷| 伊人久久大线影院首页| 欧美成人免费午夜全| 国产一区二区网站| 国产成人三级| 国产精品第页| 国产一级毛片在线| 国内99精品激情视频精品| 久久先锋资源| 不卡无码网| 国产精品太粉嫩高中在线观看| 亚洲自拍另类| 99热这里只有免费国产精品| 无码aⅴ精品一区二区三区| 在线观看国产精美视频| 麻豆国产精品| 亚洲精品无码AⅤ片青青在线观看| 毛片在线播放a| 成人亚洲国产| 中文字幕无码av专区久久| 青青操视频免费观看| 四虎永久免费地址在线网站| 亚洲视频无码| 欧美亚洲中文精品三区| 免费观看男人免费桶女人视频| 免费女人18毛片a级毛片视频| 国产精品永久免费嫩草研究院 | 亚洲一区二区三区国产精华液| 国产精品永久不卡免费视频| 婷婷丁香在线观看| 中文字幕精品一区二区三区视频| av免费在线观看美女叉开腿| 日本道综合一本久久久88| 91成人在线观看视频| 国产经典免费播放视频| 亚洲av日韩av制服丝袜| 国产精品大尺度尺度视频| 性69交片免费看| 凹凸国产熟女精品视频| 99伊人精品| 久久久久国产精品熟女影院| 人妻一区二区三区无码精品一区| 久久亚洲美女精品国产精品| a网站在线观看| 91网站国产| 色综合激情网| 国产一区二区三区视频| 中文字幕在线不卡视频| 欧美日韩第二页| 在线中文字幕网| 嫩草影院在线观看精品视频| 色哟哟国产精品一区二区|