卞勉勵,陳星燃,張晨曦,金歡歡,趙士峰,張 峰,3,鄭仕中, 3
(1. 南京中醫藥大學藥學院,2. 南京中醫藥大學中藥學一級學科,3. 江蘇省中藥藥效與安全性評價重點實驗室,江蘇 南京 210023)
?
NOXs在肝纖維化中的作用機制研究
卞勉勵1, 2,陳星燃1, 2,張晨曦1, 2,金歡歡1, 2,趙士峰1, 2,張 峰1, 2,3,鄭仕中1, 2, 3
(1. 南京中醫藥大學藥學院,2. 南京中醫藥大學中藥學一級學科,3. 江蘇省中藥藥效與安全性評價重點實驗室,江蘇 南京 210023)

肝纖維化;NOXs;肝細胞凋亡;炎癥反應;氧化應激;內質網應激;IRE1α-XBP1信號通路
在肝纖維化發生發展過程中常伴有繼發性的炎癥反應,而作為肝臟中的固有免疫細胞,肝臟炎癥反應過程中,枯否細胞(Kupfer cell, KC)大量活化并釋放多種促炎因子,同時還可分泌趨化因子,募集其他炎性細胞聚集于損傷部位,從而進一步加重炎癥損傷[1]。其釋放的細胞因子如活性氧簇(reactive oxygen species, ROS),能直接刺激靜息態肝星狀細胞(hepatic stellate cells, HSC)活化并轉化為肌成纖維細胞(myofibroblast, MFB),后者大量增殖并合成胞外基質(extracellular matrix, ECM),從而導致肝纖維化的形成[2]。此外,ROS還能使促纖維化因子大量合成,如轉化生長因子-β(transforming growth factor-beta, TGF-β)、腫瘤壞死因子-α(tumor necrosis factor -α, TNF-α)等,并刺激HSC發生表型轉化,ECM進一步合成增多,炎癥因子表達增加[3]。
新近研究發現,還原型煙酰胺腺嘌呤二核苷酸磷酸氧化酶(nicotinamide adenine dinucleotide phosphate oxidase, NOXs)產生的ROS能夠介導細胞內多種信號通路的激活,進而調控肝細胞的生長、增殖、分化、遷移、衰老及凋亡等生理活動[4-5]。
NOXs參與調控HSC的活化和肝細胞的凋亡,在不同種類的細胞中特異性表達NOXs的催化亞基,分別為NOX1、NOX2、NOX3、NOX4、NOX5、DUOX1、DUOX2,后統稱為NOX蛋白家族[5]。NOX蛋白家族廣泛表達于各種哺乳動物細胞中,且其活性普遍受到還原型煙酰胺腺嘌呤二核苷酸磷酸(nicotinamide adenine dinucleotide phosphate, NADPH)膜結合酶類的調節。其中,肝細胞和HSC表達NOX1、NOX2、NOX4、DUOX1和DUOX2;血管內皮細胞主要表達NOX1、NOX2和NOX4;KC主要表達NOX2[6]。
NOXs是調節機體產生ROS的重要酶類,主要分布于內皮、血管平滑肌等非吞噬細胞中。在TGF-β、TNF-α、炎癥介質、鈣離子、重金屬、部分藥物等刺激時,通過激活NOXs進一步誘導ROS的大量產生,參與多種疾病的發生和發展[7-8]。此外,NOXs極易受細胞外環境變化刺激,Paik等[9]研究表明,高氧、缺氧、高溫、高糖及胞外酸性環境變化等能夠使胞質內p47phox磷酸化,與細胞色素b558結合,進而激活NOXs,導致一系列疾病的發生。
Piskounova等[5]研究發現,NOXs在肝纖維化的發生發展中扮演重要角色。在丙型肝炎病毒和非酒精性脂肪肝病(nonalcoholic fatty liver disease, NAFLD)患者中,NOX4的水平明顯升高,而NOX4 的升高又進一步依賴性上調TGF-β/Smad3下游調節因子,促進HSC活化及膠原的形成,進而加重肝纖維化[10-11]。NOX1主要介導內源性肝細胞的促纖維化作用,通過抑癌基因(phosphatase and tensin homolog deleted on chromosome ten, PTEN)的失活及上調Akt/FOXO4/p27信號傳導途徑,進一步引發炎癥反應,從而促進環氧合酶-2表達和前列腺素的合成[12]。
各種NOXs激動劑能夠刺激HSC和MFB中促纖維化因子的釋放,從而誘發肝纖維化反應,在細胞內直接對細胞膜、蛋白質等進行攻擊,造成氧化損傷或間接激活氧化還原信號途徑,進而誘導肝細胞的凋亡[13]。NOXs作為ROS 的主要供體,介導氧化應激和內質網損傷,分泌細胞因子、趨化因子和微粒,觸發KC和HSC的活化[14]。HSC在轉變成MFB的同時,激活NOX2,誘發肝細胞凋亡小體發揮吞噬作用,從而加重肝纖維化[15-16]。
基于NOXs在肝纖維化發生發展中的重要作用,進一步證實NOXs在肝臟疾病演變過程中存在多種致病機制。本文接下來將對其進行重點闡述。
2.1 NOXs與炎癥反應 研究發現[17],NOXs介導的炎癥反應參與多種疾病的發生發展。肝纖維化是肝臟遭遇損傷后,通過許多細胞因子的釋放誘發的一種慢性炎癥反應,并伴有大量炎癥細胞的滲入。巨噬細胞、淋巴細胞和嗜酸性細胞等廣泛參與肝纖維化的炎癥反應過程。其中,淋巴細胞可通過釋放淋巴因子激活巨噬細胞,反過來,巨噬細胞又能夠分泌TNF-α進一步刺激淋巴細胞、MFB和其他炎癥細胞,從而加劇炎癥反應[18]。有研究表明,NOXs在肝臟缺血/再灌注、過度飲酒、異源物質或重金屬中毒、細菌、病毒及寄生蟲感染誘發的肝臟炎癥反應過程中發揮了重要作用[13, 19]。
Foo等[20]研究表明,不同細胞內NOXs的激活主要由肝纖維化炎性因子TGF-β所誘導,進一步通過ROS的大量產生介導胞內不同信號傳導途徑的激活。TGF-β促進HSC轉化為MFB的過程也依賴于NOXs誘導ROS的產生、基質金屬蛋白酶(matrix metalloproteinases, MMPs)和基質金屬蛋白酶抑制劑(matrix metalloproteinase inhibitors, TIMPs)的平衡來調節ECM大量沉積[21]。在膽管結扎(bile duct ligation, BDL)和CCl4誘導的肝纖維化模型中,運用NOX4/NOX1抑制劑GKT137831處理后,肝纖維化標志物表達明顯降低、肝細胞炎癥反應也明顯減輕[22]。此外,NOX4抑制劑也能夠明顯抑制肝細胞中TGF-β信號的表達,降低ROS產生,進一步使纖維黏連蛋白和膠原產生降低[23]。因此,抑制NOXs功能的發揮,能夠有效緩解肝纖維化過程中的炎癥反應。
2.2 NOXs與氧化應激 Altenh?fer 等[24]研究發現,ROS與促炎癥介質的過度表達有著密切的聯系,主要表現在其可以激活多種炎癥轉錄因子,進一步導致ROS 過量產生和堆積。而細胞內ROS的產生又主要依賴于NOXs的介導[25-26]。這提示,NOXs可通過促進ROS的產生誘發機體內環境失衡,導致細胞器功能失調,如內質網鈣穩態遭到破壞、蛋白質的加工轉運能力及生理狀態發生紊亂,進而參與宿主細胞生長發育、死亡和衰老等生命過程中的氧化應激反應[27]。
2.2.1 NOXs調控ROS產生介導內質網應激的發生 肝纖維化形成過程中,活化型HSC產生大量的ECM,蛋白質的大量合成增加了對內質網折疊能力的需求,擾亂內質網功能,ROS可以改變內質網的穩態激活細胞未折疊蛋白響應(unfolded protein response, UPR)機制[28]。肝細胞具有豐富的內質網結構,是蛋白質折疊加工與質量監控的重要細胞器,其穩態平衡對于維持肝細胞功能至關重要。當肝細胞受到各種化學、物理等刺激時,極易誘發蛋白質代謝障礙,進而引起內質網應激(endoplasmic reticulum stress, ERS)[29]。研究發現,當內質網不能承擔蛋白折疊的高負荷時,HSC中NOXs所介導ROS產生,將引發ERS,從而啟動細胞UPR信號,激活抗氧化應答基因NOXs的表達,進一步增強內質網在蛋白質折疊、組裝和運輸方面的功能[30]。
當肝細胞受到外源性刺激時,細胞作為一個整體對外界各種刺激發生反應,在細胞內部,細胞器也會發生相應的應激反應,進而影響蛋白的正常表達和修飾,導致蛋白的錯誤折疊以及未折疊蛋白在內質網腔內的異常聚集[31]。肝纖維化過程中伴有ROS的大量生成,影響核氧化還原狀態并誘導核蛋白修飾[32]。其中,UPR相關激酶c-Jun氨基端激酶(c-Jun-NH2-terminal kinase, JNK)的活化,JNK 的活化通過參與ERS的激活,進而促進MFB的活化[33]。
新近研究強調內質網谷胱甘肽超氧化物清除劑在ERS中發揮關鍵作用,并表明在其與谷胱甘肽共同作用下可以在脂肪性肝炎和肝臟纖維化中抑制氯離子通道中超氧陰離子自由基對HSC活化的刺激[34]。此外,天然抗氧化劑,如千層紙素,可通過調控ROS產生,影響細胞內Ca2+穩態,調節蛋白質磷酸化以及影響信號通路的級聯傳遞及轉錄因子的表達,從而有效逆轉肝纖維化[35-36]。
2.2.2 NOXs 調控 ROS 產生介導 IRE1α-XBP1信號通路的激活 在肝纖維化發展過程中,HSC大量活化與增殖的同時,NOXs的表達也明顯增加,抗氧化防御系統逐漸被破壞,使ROS產生增加,進而激活特定的信號傳導通路,如IRE1α-XBP1(inositol-requiring enzyme 1 alpha, IRE1α; X-box binding protein 1, XBP1)信號通路[37]。縱觀UPR的3條通路中,IRE1α-XBP1通路發揮作用的時間最短、啟動時間最晚,這充分表明了機體對其調節最為敏感[30]。此外,IRE1α以單體的形式表達于內質網膜上,同時具備蛋白激酶和RNA內切酶雙重活性。當內質網受到壓力刺激時,其單體發生二聚化,通過自體磷酸化方式被激活,繼而激活其核酸酶活性,對其下游的底物進行剪切,翻譯成有活性的轉錄因子入核,并激活下游轉錄因子,行使其緩解內質網壓力的功能[38-39]。目前,最為明確的IRE1α核酸酶底物是XBP1 mRNA;另有研究表明,IRE1α的核酸酶活性能夠介導某些特定mRNA的降解[37]。IRE1α自體磷酸化誘導RNA酶的活性增加,是HSC/ MFB以及間質干細胞(mesenchymal stem cells, MSC)定向遷移的一個重要因素[40]。
抑制IRE1α-XBP1信號通路及p38蛋白激酶活性能夠降低HSC活化及自噬的產生,從而有效逆轉肝纖維化[41]。IRE1α-XBP1信號通路的活化可誘導ERS,進而導致細胞凋亡[42]。另有文獻報道,IRE1α-XBP1抑制劑MKC-3946通過作用于核糖核酸內切酶結構域,有效抑制ERS的發生[43-45]。
在疾病的發生和發展過程中,關于肝纖維化病理機制的研究多與炎癥反應及氧化應激相關。不同藥物誘發的慢性肝損傷中,ROS的產生機制并不相同,研究發現,NOXs廣泛參與肝纖維化的多種過程,如MFB形成、肝細胞死亡的調控等[46]。此外,預防ROS產生有助于更好地理解ERS在細胞內轉導途徑中的作用。未來有望通過使用安全有效的NOXs抑制劑來抑制HSC活化,進而發揮肝細胞保護作用。基于肝纖維化發生過程中嚴重的炎癥反應,通過調控NOXs在炎癥反應中的生物學作用,可為未來發展預防或治療肝纖維化提供新的途徑。
[1] Page A, Paoli P, Moran S, et al. Hepatic stellate cell transdifferentiation involves genome-wide remodeling of the DNA methylation landscape [J].JHepatol, 2016, 64(3): 661-73.
[2] Bhowmick N A, Neilson E G, Moses H L. Stromal fibroblasts in cancer initiation and progression [J].Nature, 2004, 432(7015):332-7.
[3] 張自力,趙士峰,許文萱,等. 細胞因子信號轉導抑制分子-3在肝纖維化中的作用及研究進展[J]. 中國藥理學通報, 2015,31(12):1646-51.
[3] Zhang Z L, Zhao S F, Xu W X, et al. The role of cytokine signal transduction inhibitor-3 in hepatic fibrosis and its research progress [J].ChinPharmacolBull, 2015, 31(12): 1646-51.
[4] Crosas-Molist E, Bertran E, Fabregat I. Cross-talk between TGF-beta and NADPH oxidases during liver fibrosis and hepatocarcinogenesis [J].CurrPharmDes, 2015, 21(41): 5964-76.
[5] Piskounova E. Oxidative stress inhibits distant metastasis by human melanoma cells [J].Nature, 2015, 527(7577):186-91.
[6] Cui W, Matsuno K, Iwata K, et al. NOX1/ nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) oxidase promotes proliferation of stellate cells and aggravates liver fibrosis induced by bile duct ligation [J].Hepatology, 2011, 54(3):949-58.
[7] Samarakoon R, Dobberfuhl A D, Cooley C, et al. EGFR activation, p53 and reactive oxygen species [J].CellSignal, 2013, 25(11): 2198-209.
[8] Abhilash P A, Harikrishnan R, Indira M. Ascorbic acid supplementation downregulates the alcohol induced oxidative stress, hepatic stellate cell activation, cytotoxicity and mRNA levels of selected fibrotic genes in guinea pigs [J].FreeRadic,2012, 46(2): 204-13.
[9] Paik Y H, Iwaisako K, Seki E, et al. The nicotinamide adenine dinucleotide phosphate oxidase (NOX) homologues NOX1 and NOX2/gp91(phox) mediate hepatic fibrosis in mice[J].Hepatology, 2011,53(5): 1730-41.
[10] Sancho P, Martín P, Fabregat I. Reciprocal regulation of NADPH oxidases and the cyclooxygenase-2 pathway [J].Hepatology, 2011, 51(9):1789-98.
[11] Schuppan D, Kim Y O. Evolving therapies for liver fibrosis [J].ClinInvest, 2013, 123(5):1887-901.
[12] De Minicis S, Seki E, Paik Y H, et al. Role and cellular source of nicotinamide adenine dinucleotide phosphate oxidase in hepatic fibrosis[J].Hepatology, 2010, 52(4): 1420-30.
[13] Jia D, Duan F, Peng P, et al. Pyrroloquinoline-quinone suppresses liver fibrogenesis in mice [J].PLoSOne, 2015, 10(3): e0121939.
[14] Hernández-Gea V, Hilscher M, Rozenfeld R, et al. Endoplasmic reticulum stress induces fibrogenic activity in hepatic stellate cells through autophagy [J].Hepatology, 2013, 59(1): 98-104.
[15] Von M C, Matias N, Fernandez A, et al. Mitochondrial GSH determines the toxic or therapeutic potential of superoxide scavenging in steatohepatitis [J].Hepatology, 2012, 57(4): 852-9.
[16] Sancho P, Fabregat I. The NADPH oxidase inhibitor VAS2870 impairs cell growth and enhances TGF-β-induced apoptosis of liver tumor cells [J].BiochemPharmacol, 2011, 81(7): 917-24.
[17] Jiang J X, Venugopal S, Serizawa N, et al. Reduced nicotinamide adenine dinucleotide phosphate oxidase 2 plays a key role in stellate cell activation and liver fibrogenesisinvivo[J].Gastroenterology, 2010, 139(4): 1375-84.
[18] 陳 琴,陳連云,金歡歡,等. 肝臟樹突狀細胞在肝纖維化中的作用[J]. 中國藥理學通報, 2015, 31(8):1053-6.
[18] Chen Q, Chen L Y, Jin H H, et al. Role of dendritic cells in liver fibrosis [J].ChinPharmacolBull, 2015, 31(8): 1053-6.
[19] Den H G, Qi S, Tilburg J H O, Koek A. Superoxide anion radicals activate hepatic stellate cells after entry through chloride channels: a new target in liver fibrosis [J].Gut, 2014, 724: 140- 4.
[20] Foo N P, Lin S H, Lee Y H, et al. α-Lipoic acid inhibits liver fibrosis through the attenuation of ROS-triggered signaling in hepatic stellate cells activated by PDGF and TGF-β [J].Toxicology, 2011, 282(4): 39-46.
[21] Lin W, Wu G, Li S, et al, HIV and HCV cooperatively promote hepatic fibrogenesis via induction of reactive oxygen species and NFkappaB [J].BiolChem, 2011, 286(4): 2665-74.
[22] Aoyama T, Paik Y H, Watanabe S, et al. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent [J].Hepatolology, 2012, 56(6): 2316-27.
[23] Chan E C, Peshavariya H M, Liu G S, et al. Nox4 modulates collagen production stimulated by transforming growth factor β1invivoandinvitro[J].BiochemBiophysResCommun, 2013, 430(3): 918-25.
[24] Altenh?fer S, Radermacher K A, Kleikers P W, et al. Evolution of NADPH oxidase inhibitors: selectivity and mechanisms for target engagement[J].AntioxidRedoxSignal, 2015 ,23(5):406-27.
[25] Novo E, Busletta C, Bonzo L V, et al. Intracellular reactive oxygen species are required for directional migration of resident and bone marrow-derived hepatic pro-fibrogenic cells [J].JHepatol, 2011, 54(5): 964-74.
[26] Serviddio G, Bellanti F, Stanca E, et al. Silybin exerts antioxidant effects and induces mitochondrial biogenesis in liver of rat with secondary biliary cirrhosis [J].FreeRadicBiolMed, 2014, 73: 117-26.
[27] Dunning S, Rehman A, Tiebosch M H, et al. Glutathione and antioxidant enzymes serve complementary roles in protecting activated hepatic stellate cells against hydrogen peroxide-induced cell death [J].BiochimBiophysActa, 2013, 1832(12): 2027-34.
[28] Han X, Busletta C, Rehman A, et al. IRE1alpha dissociates with BiP and inhibits ER stress-mediated apoptosis in cartilage development[J].CellSignal, 2013, 25(11): 2136-46.
[29] Pina F J. Reticulons regulate the ER inheritance block during ER stress [J].DevCell, 2016, 37(3): 279-88.
[30] Chen W. Targeted deletion of ER chaperone GRP94 in the liver results in injury, repopulation of GRP94-positive hepatocytes, and spontaneous hepatocellular carcinoma development in aged mice [J].Neoplasia, 2014, 16(8): 617-26.
[31] Park H W, Yang Z, Kamata H, et al. Hepatoprotective role of Sestrin2 against chronic ER stress [J].NatCommun, 2014, 5: e4233.
[32] Yang Y, Zhao Z, Liu Y, et al. Suppression of oxidative stress and improvement of liver functions in mice by ursolic acid via LKB1- AMP-activated protein kinase signaling [J].JGastroenterolHepatol, 2015, 30(3): 609-18.
[33] Chang L, Kamata H, Solinas G, et al. The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-induced cell death by inducing c-FLIP(L) turnover [J].Cell, 2006, 124(3): 601-13.
[34] Anavi S, Ni Z, Tirosh O, et al. Steatosis-induced proteins adducts with lipid peroxidation products and nuclear electrophilic stress in hepatocytes [J].RedoxBiol, 2015, 4: 158-68.
[35] Bettaieb A, Jiang J X, Sasaki Y, et al. Hepatocyte NADPH oxidase 4 regulates stress signaling, fibrosis, and insulin sensitivity during development of steatohepatitis in mice [J].Gastroenterology, 2015, 149(2): 468-80.
[36] 許文萱,張自力,趙士峰,等. 法尼酯衍生物X受體在慢性肝病中的作用及機制研究進展[J]. 中國藥理學通報, 2016, 32(3):314-9.
[36] Xu W X, Zhang Z L, Zhao S F, et al. Research progress in chronic liver disease the effect and mechanism of farnesoid X receptor [J].ChinPharmacolBull, 2016, 32(3): 314-9.
[37] Senturk S, Mumcuoglu M, Gursoy O, et al. Transforming growth factor-beta induces senescence in hepatocellular carcinoma cells and inhibits tumor growth [J].Hepatology, 2010, 52(3): 966-74.
[38] Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond [J].MolCell, 2012, 13(2):89-102.
[39] Kim Y S, Morgan M J, Choksi S, et al. TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death [J].MolCell, 2007, 26(5):675-87.
[40] Jiang F, Liu G S, Dusting G J, et al. NADPH oxidase-dependent redox signaling in TGF-β-mediated fibrotic responses [J].RedoxBiol, 2014, 2: 267-72.
[41] Crosas E, Molist E, Bertran P, et al. The NADPH oxidase NOX4 inhibits hepatocyte proliferation and liver cancer progression [J].JHepatol, 2014, 69: 338-47.
[42] Mimura N. Blockade of XBP1 splicing by inhibition of IRE1alpha is a promising therapeutic option in multiple myeloma [J].Blood, 2012, 119(24): 5772-81.
[43] Davenport E L, Moore H E, Dunlop A S, et al. Heat shock protein inhibition is associated with activation of the unfolded protein response pathway in myeloma plasma cells [J].Blood, 2007, 110(7):2641-9.
[44] Brenner C, Galluzzi L, Kepp O, et al. Decoding cell death signals in liver inflammation [J].JHepatol, 2013, 59(3): 583-94.
[45] Ding B S, Cao Z, Lis R, et al. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis [J].Nature, 2014, 505(7481):97-102.
[46] Birkenfeld A L, Shulman G I. Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes [J].Hepatology,2014, 59(2):713-23.
Study on mechanism of NOXs in liver fibrosis
BIAN Mian-li1, 2, CHEN Xing-ran1, 2, ZHANG Chen-xi1, 2, JIN Huan-huan1, 2,ZHAO Shi-feng1, 2, ZHANG Feng1, 2,3, ZHENG Shi-zhong1, 2,3
(1.CollegeofPharmacy,NanjingUniversityofChineseMedicine,Nanjing210023,China; 2.NationalFirst-ClassKeyDisciplineforTraditionalChineseMedicine,NanjingUniversityofChineseMedicine,Nanjing210023,China;3.JiangsuKeyLaboratoryforPharmacologyandSafetyEvaluationofChineseMateriaMedica,NanjingUniversityofChineseMedicine,Nanjing210023,China)

liver fibrosis; NOXs; hepatocyte apoptosis; inflammation; oxidative stress; endoplasmic reticulum stress; IRE1α-XBP1 signaling pathway
2016-06-23,
2016-07-29
國家自然科學基金資助項目(No 81270514,31401210,31571455);江蘇省自然科學基金青年基金資助項目(No BK20140955);江蘇省高校自然科學研究面上項目(No 14KJB310011);2013年江蘇高校優秀科技創新團隊計劃;江蘇高校優勢學科建設工程資助項目(No ysxk-2010);南京市醫學科技發展項目(No YKK14143)
卞勉勵(1992- ),女,碩士生,研究方向: 天然藥物預防和治療腫瘤與肝纖維化,Tel:025-85811246,E-mail:1300506693@qq.com;
鄭仕中(1962- ),男,博士,教授,博士生導師,研究方向:天然藥物預防和治療腫瘤與肝纖維化,通訊作者,Tel/Fax:025-85811246,E-mail:nytws@163.com
時間:2016-10-20 10:29
http://www.cnki.net/kcms/detail/34.1086.R.20161020.1029.006.html
10.3969/j.issn.1001-1978.2016.11.003
A
1001-1978(2016)11-1490-04
R-05;R329.24;R329.25;R345.4;R575.2;R977.3