999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

斑馬魚幼魚運動行為測試評價飲用水安全

2016-12-02 05:41:40潘睿捷黃文平張斌徐挺尹大強
生態(tài)毒理學(xué)報 2016年4期

潘睿捷,黃文平,張斌,徐挺,尹大強

長江水環(huán)境教育部重點實驗室,同濟大學(xué)環(huán)境科學(xué)與工程學(xué)院,上海 200092

?

斑馬魚幼魚運動行為測試評價飲用水安全

潘睿捷,黃文平,張斌,徐挺#,尹大強

長江水環(huán)境教育部重點實驗室,同濟大學(xué)環(huán)境科學(xué)與工程學(xué)院,上海 200092

飲用水安全直接關(guān)乎人類的健康與安全,當前迫切需要全新的毒性測試方法對飲用水的潛在人類健康風險進行全面、準確和靈敏的評估和預(yù)警。本研究以反滲透技術(shù)(RO)取代常用的固相萃取,分別濃縮飲用水廠的進廠水、出廠水和管網(wǎng)水進行毒性試驗水樣的前處理。反滲透技術(shù)前處理方法可以避免傳統(tǒng)固相萃取方法中使用的有機溶劑對行為學(xué)測試體系的干擾。RO濃縮后的飲用水對斑馬魚胚胎進行持續(xù)暴露,采用Viewpoint行為測試軟件量化分析出生后第6天(6 dpf)斑馬魚幼魚的運動行為,選擇運動距離和轉(zhuǎn)向行為作為測試終點,分析進廠水、出廠水及管網(wǎng)水的潛在毒性及可能變化。結(jié)果表明,暴露在進廠水的幼魚出現(xiàn)了明顯的行為變化,尤其在較高濃度(20倍濃縮)暴露時,運動距離相比對照組顯著減少,同時伴有劇烈的轉(zhuǎn)向等異常行為;管網(wǎng)水對斑馬魚幼魚行為存在一定程度的影響,而出廠水對幼魚的運動行為沒有顯著影響。研究結(jié)果反映出當前飲用水廠深度處理工藝可以有效降低進廠水的潛在毒性和健康風險,但是經(jīng)供水管網(wǎng)輸送后,其水質(zhì)可能發(fā)生了改變,導(dǎo)致管網(wǎng)水可能存在潛在的毒性。本研究所采用的反滲透技術(shù)前處理技術(shù)及斑馬魚幼魚的運動行為學(xué)測試方法,可用于未來建立評估飲用水水質(zhì)安全的早期預(yù)警系統(tǒng)。

飲用水安全;斑馬魚;行為學(xué)測試;反滲透

淡水資源是關(guān)乎人類生存和經(jīng)濟社會發(fā)展的重要資源,水質(zhì)的安全與否直接影響生態(tài)系統(tǒng)安全和人類健康[1-2]。我國長期存在飲用水水質(zhì)安全問題[3],傳統(tǒng)以理化分析為基礎(chǔ)的水質(zhì)檢測方法已無法直接、全面地反映水中各種有毒物質(zhì)的生態(tài)和人類健康風險,生物毒性測試在水質(zhì)檢測中的意義得到越來越多的關(guān)注。然而飲用水不同于一般地表水,具有污染物含量低但暴露量大、周期長的特點,迫切需要靈敏快速的新型毒理學(xué)指標對于水體的潛在毒性和健康影響加以準確表征和預(yù)警。行為學(xué)效應(yīng)被認為是生物個體表觀效應(yīng)中最敏感的一類指標[4-10],也是研究環(huán)境污染物暴露所導(dǎo)致神經(jīng)毒性的表觀效應(yīng)的有效工具。隨著基于視頻追蹤技術(shù)的商業(yè)化系統(tǒng)的普及,魚類運動行為的定量化測試近年來已得到藥理學(xué)、毒理學(xué)等領(lǐng)域的普遍認可和快速發(fā)展[4,11-12]。目前對行為學(xué)的研究以運動行為為主[13-14],例如,典型中樞神經(jīng)抑制劑乙醇的高劑量暴露會導(dǎo)致斑馬魚幼魚呈現(xiàn)運動行為減退的現(xiàn)象[4]等。而對于幼魚轉(zhuǎn)動行為等其他類型行為學(xué)指標的研究仍然較少。

反滲透(reverse osmosis,RO)是一種以壓力差為推動力,從溶液中分離出溶劑的膜分離操作,常作為水質(zhì)凈化技術(shù)用于凈化海水和苦咸水[15]。在20世紀90年代,有學(xué)者提出采用RO技術(shù)進行水中天然有機質(zhì)的富集,RO是唯一能夠以最少損失快速富集大量水中可溶性有機物的方法[16-17]。且研究表明絕大多數(shù)重金屬和無機鹽無法通過RO膜[15-16,18-19]。對于飲用水這種本底效應(yīng)可能極低的待測物,RO比目前常用的固相萃取技術(shù)更加合適用于水樣的前處理。

本研究以斑馬魚幼魚為受試生物,利用反滲透技術(shù)濃縮飲用水,通過量化分析不同濃縮倍數(shù)飲用水處理下幼魚的行為學(xué)效應(yīng),測定飲用水廠進廠水、出廠水和管網(wǎng)水的潛在毒性。研究表明行為學(xué)指標在指示飲用水安全性上具備足夠的靈敏度,并有助于篩選水中未確定的具有生態(tài)或健康風險的污染物。

1 材料與方法(Materials and methods)

1.1 飲用水采樣和暴露液配制

飲用水樣本取自以太湖為水源的某中型水廠,該水廠的處理工藝為取水-預(yù)加氯處理-預(yù)臭氧接觸池+生物氧化池-平流沉淀池-V型砂濾池-深度處理-水庫-二級泵房-出廠。水樣包括2015年7月至8月的進廠水、出廠水和管網(wǎng)水,其中進廠水來自預(yù)加氯處理前,出廠水為水廠深度處理后出水,管網(wǎng)水來自距離水廠下游3 km處某小區(qū)。水樣的濃縮方法為反滲透,原始濃縮倍數(shù)為100倍。如圖1所示,整個采樣裝置由蠕動泵、過濾罐、反滲透裝置與數(shù)跟軟管組成。將進水端與蠕動泵的一端相連接,蠕動泵與前置過濾罐相連接,過濾罐與反滲透裝置相接連。濃縮水管置于進水端,使?jié)饪s水回流。滲透水作為廢水流出。

圖1 反滲透濃縮水樣方法示意圖Fig. 1 The scheme of reverse osmosis for concentrating water samples

在反滲透之前,先將前置過濾罐注滿水,將濃縮水閥門開至最大,開動蠕動泵,清洗裝置30 min。調(diào)節(jié)閥門使系統(tǒng)產(chǎn)生壓力,開始反滲透。當閥門調(diào)節(jié)到壓力最適宜時,開始反滲透濃縮水樣。濃縮過程中始終保持壓力恒定,滲透水流出速率恒定。

進廠水濃縮液、出廠水濃縮液、管網(wǎng)水濃縮液均分別用滅菌純凈水稀釋至1%、5%和20%,對應(yīng)濃縮倍數(shù)為1倍(1×)、5倍(5×)和20倍(20×)的水廠進廠水、出廠水及管網(wǎng)水。空白對照為滅菌純凈水。

1.2 斑馬魚胚胎暴露

野生型Tuebingen斑馬魚(Danio rerio)飼養(yǎng)在封閉的循環(huán)系統(tǒng)中,飼養(yǎng)條件為28.5 °C,光照時間:黑暗時間為14 h:10 h。每日早晚各喂食豐年蝦1次。收集斑馬魚胚胎時,將斑馬魚以雌雄比1:2置于孵育盒中,待次日收集斑馬魚胚胎。收集的斑馬魚胚胎立即以滅菌水沖洗,并利用SZX-16型立體顯微鏡(Olympus,Japan)挑選發(fā)育正常且到囊胚期的胚胎進行暴露實驗。

將挑選好的胚胎置于含有6 mL暴露液6孔板中,每個孔30枚胚胎,并將6孔板置于MGC-100P型恒溫光照培養(yǎng)箱(一恒,中國)中培養(yǎng),培養(yǎng)條件同斑馬魚飼養(yǎng)條件。暴露24 h后,從每個暴露液各挑選24枚胚胎轉(zhuǎn)移至含有該暴露液2 mL的96孔板中,每個孔1枚胚胎。每天更換一半暴露液,并挑出死亡的胚胎或幼魚。總暴露時間為6 d。暴露過程中胚胎和幼魚存活率均達90%以上。

1.3 斑馬魚幼魚行為學(xué)試驗

行為學(xué)試驗包括運動行為測試和轉(zhuǎn)動行為測試,前者主要分析幼魚運動總量和軌跡,后者則分析幼魚在游動時的轉(zhuǎn)動角度及次數(shù)。出生后第6天(6 dpf)幼魚的運動行為均通過Zebrabox觀察箱(Viewpoint,F(xiàn)rance)檢測,采用Viewpoint Application Manager軟件記錄和量化運動數(shù)據(jù)。斑馬魚行為學(xué)的測試時長為70 min。起始10 min為光照適應(yīng),隨后10 min的黑暗和光照等時長交替刺激,共3個周期[20]。斑馬魚運動數(shù)據(jù)的原始最小記錄間隔為1 s。

斑馬魚幼魚在正常行進時,尾部擺動頻率較低,身體角度變化幅度不大[21-22];只有當幼魚遇到外源性刺激等異常情況時才會出現(xiàn)大幅轉(zhuǎn)向[23]。基于上述原因,本研究將斑馬魚行進角度-10°~10°之間定義為無轉(zhuǎn)向,±10°~±90°定義為一般型轉(zhuǎn)向,±90°~±180°定義為刺激型轉(zhuǎn)向。

1.4 數(shù)據(jù)統(tǒng)計分析

以每10 min的運動距離總和(cm)和每2 min的運動距離總和(cm)等2項指標來表示斑馬魚幼魚的運動行為。試驗結(jié)果以平均值(mean)±標準誤(standard error of mean, SEM)來表示。轉(zhuǎn)動行為試驗則統(tǒng)計斑馬魚幼魚在不同角度范圍內(nèi)的轉(zhuǎn)動次數(shù),單位為千次。

數(shù)據(jù)的統(tǒng)計分析和作圖采用Mocrosoft Excel和Graphpad Prism軟件進行,統(tǒng)計方法上采用雙因素方差分析(two-way ANOVA)檢驗不同處理組與對照組之間的差異。若P<0.05,則認為具有顯著性差異。

2 結(jié)果(Results)

2.1 進廠水對斑馬魚幼魚運動行為的影響

進廠水對斑馬魚幼魚第6天運動行為的影響見圖3。測試的結(jié)果顯示出,3種濃縮液均造成斑馬魚幼魚一定程度的運動減退,且影響主要發(fā)生在光照周期內(nèi)。但是,幼魚的運動減退程度并未呈現(xiàn)出濃度依賴性,特別是在最后2個光照周期內(nèi)5×組的幼魚發(fā)生了顯著的運動減退(P<0.05)。黑暗周期內(nèi)僅有1×組的幼魚發(fā)生了顯著的運動減退(P<0.05),其余組別均未出現(xiàn)顯著性影響。

進廠水對斑馬魚幼魚第6天轉(zhuǎn)動行為的影響見圖4。相比于對照組,3個暴露組中斑馬魚幼魚的總轉(zhuǎn)動次數(shù)均明顯增加。在1×組中,幼魚的轉(zhuǎn)動次數(shù)雖然明顯增多,但行進角度的分布仍基本與對照組保持一致。隨著暴露濃度上升,斑馬魚幼魚在-10°~10°的轉(zhuǎn)動次數(shù)不斷減少,在±90°~180°的轉(zhuǎn)動次數(shù)不斷增加,在角度分布中所占的比例也不斷升高。20×組的斑馬魚在±90°~180°的轉(zhuǎn)動次數(shù)甚至遠高于在±90°之間的轉(zhuǎn)動次數(shù),與其他組別斑馬魚幼魚的轉(zhuǎn)動行為截然相反。

圖2 斑馬魚幼魚行為學(xué)檢測示意圖Fig. 2 The scheme of behavior experiment on zebrafish larvae

圖3 進廠水對斑馬魚幼魚運動行為的影響注:A圖,每10 min運動距離總和;B圖,每2 min運動距離總和。C,對照組;1×,原水樣;5×,5倍濃縮水樣;20×,20倍濃縮水樣。下同。Fig. 3 The locomotion of zebrafish larvae exposed to inlet waterNote: A, total distance in 10 min; B, total distance in 2 min. C, control; 1×, original water sample; 5×, 5 times concentrated; 20×, 20 times concentrated. The same below.

圖4 進廠水對斑馬魚幼魚轉(zhuǎn)動行為的影響(單位:千次)Fig. 4 The path angle and the turning frequency (×103 times) of zebrafish larvae exposed to inlet water

圖5 出廠水對斑馬魚幼魚運動行為的影響Fig. 5 The locomotion of zebrafish larvae exposed to output water

2.2 出廠水對斑馬魚幼魚運動行為的影響

出廠水對斑馬魚幼魚第6天運動行為的影響見圖5。出廠水暴露基本未對幼魚的運動能力造成顯著性影響。僅僅在50 min這個光照周期內(nèi),幼魚的運動量與對照組相比出現(xiàn)了顯著減少(P<0.05)。

出廠水對斑馬魚幼魚第6天轉(zhuǎn)動行為的影響見圖6。所有組別在測試周期內(nèi)斑馬魚幼魚行進角度的分布高度相似。對照組與1×組和5×組的斑馬魚幼魚總轉(zhuǎn)動次數(shù)無明顯差別,20×組的斑馬魚幼魚總轉(zhuǎn)動次數(shù)則最少,這種減少主要發(fā)生在-90°~90°區(qū)段內(nèi)。所有組別的幼魚均極少發(fā)生轉(zhuǎn)角大于±90°的變向。

2.3 管網(wǎng)水對斑馬魚幼魚運動行為的影響

管網(wǎng)水對斑馬魚幼魚第6天運動行為的影響見圖7。測試的結(jié)果與進廠水對斑馬魚幼魚的結(jié)果相似。3種濃縮液均造成斑馬魚幼魚一定程度的運動減退,且影響主要發(fā)生在光照周期內(nèi),且幼魚的運動減退程度并未呈現(xiàn)出濃度依賴性。黑暗周期下的所有暴露組的幼魚均未出現(xiàn)顯著性影響。

圖6 出廠水對斑馬魚幼魚轉(zhuǎn)動行為的影響(單位:千次)Fig. 6 The path angle and the turning frequency (×103 times) of zebrafish larvae exposed to output water

圖7 管網(wǎng)水對斑馬魚幼魚運動行為的影響Fig. 7 The locomotion of zebrafish larvae exposed to tap water

圖8 管網(wǎng)水對斑馬魚幼魚轉(zhuǎn)動行為的影響(單位:千次)Fig. 8 The path angle and the turning frequency (×103 times) of zebrafish larvae exposed to tap water

管網(wǎng)水對斑馬魚幼魚第6天轉(zhuǎn)動行為的影響見圖8。所有組別在測試周期內(nèi)斑馬魚幼魚行進角度的分布高度相似。暴露組幼魚的行進轉(zhuǎn)角次數(shù)均高于對照組,且呈現(xiàn)出濃度依賴性,1×組的斑馬魚總轉(zhuǎn)動次數(shù)最多。這種增加主要發(fā)生在-90°~90°區(qū)段內(nèi)。所有組別的幼魚均極少發(fā)生轉(zhuǎn)角大于±90°的變向。

3 討論(Discussion)

固相萃取是地表水水檢測預(yù)處理的常用方法[24-25],其雖能有效地對水樣進行高倍數(shù)的濃縮,但由于需要引入甲醇、乙腈等毒性有機溶劑,對毒性測試產(chǎn)生了一定干擾。此外,固相萃取中的填料對物質(zhì)具有選擇性,容易造成物質(zhì)損失[26-27]。飲用水作為一個混合體系,使用RO不僅可以避免毒性有機溶劑的添加,也能夠盡可能富集水樣中存在的各類物質(zhì),避免富集時所產(chǎn)生的物質(zhì)損失,保證水樣盡可能接近真實。盡管RO的濃縮倍數(shù)相對固相萃取法較低,但通過不斷循環(huán)回流濃縮水的方式,可明顯提高RO的濃縮倍數(shù)。Pressan等[28]在一項檢測飲用水廠沉砂池出水中天然有機物的研究中,使用的RO富集倍數(shù)為165倍,本試驗中的濃縮倍數(shù)也達到100倍。在采樣量充足的情況下,不會影響后續(xù)分析和毒性測試。

通過3種水樣測試結(jié)果的對比,我們發(fā)現(xiàn)出廠水無論在運動行為還是轉(zhuǎn)動行為測試中均未對斑馬魚幼魚的行為造成顯著性影響。進廠水暴露對幼魚行為產(chǎn)生了最為顯著的影響,其具體表現(xiàn)為運動距離減少,轉(zhuǎn)動次數(shù)增加;而且在轉(zhuǎn)向行為的分布上,出現(xiàn)了一定的濃度依賴性。對比進出廠水幼魚運動行為測試結(jié)果,太湖微污染原水經(jīng)過水廠深度處理后,其潛在毒性有效降低,健康安全得到保障,該水廠監(jiān)測數(shù)據(jù)顯示出水達到國家《生活飲用水衛(wèi)生標準》(GB 5749—2006)。現(xiàn)行的魚類運動為毒性測試常以運動距離為測試終點,本研究提出以轉(zhuǎn)動次數(shù)結(jié)合運動距離共同作為測試終點。Van Leeuwen等[21-22]發(fā)現(xiàn),斑馬魚幼魚在無外界干擾時轉(zhuǎn)向幅度較小,行徑近似于直線;而當受到外源性刺激時則可能出現(xiàn)大幅轉(zhuǎn)向的回避行為[23],表現(xiàn)為一種“C”型運動[29]。本次研究中,幼魚在濃縮進廠水暴露時頻繁出現(xiàn)大角度的轉(zhuǎn)體,意味著可能存在因水體污染而產(chǎn)生的典型回避反應(yīng)。

特別值得注意的是管網(wǎng)水暴露時,可觀察到在一些濃縮水樣處理組幼魚運動距離的降低和轉(zhuǎn)動次數(shù)增多,即出廠水經(jīng)過管網(wǎng)輸送后改變了幼魚的行為模式。近些年,供水管網(wǎng)水質(zhì)污染的問題逐步得到重視,一些研究表明供水管網(wǎng)會在飲用水流經(jīng)過程中向水體釋放重金屬、微生物、有機污染物等,由飲用水廠帶出的部分消毒副產(chǎn)物也會出現(xiàn)含量升高的現(xiàn)象,從而對飲用水水質(zhì)造成管網(wǎng)二次污染[30-33]。本研究中幼魚在管網(wǎng)水暴露時的行為變化則切實反映出水體成分的改變可能帶來潛在的健康和安全風險。

綜上所述,本研究采用反滲透濃縮水樣,避免了有機溶劑對測試系統(tǒng)的干擾,采用斑馬魚幼魚運動距離和轉(zhuǎn)向行為為行為學(xué)指標,具有較高的靈敏度,是一種比較合適的新型飲用水毒性測試方法。研究表明,當前飲用水廠深度處理工藝可以有效降低進廠水的潛在毒性和健康風險,保證飲用水安全。同時,供水管網(wǎng)系統(tǒng)對飲用水水質(zhì)和安全可能存在的負面影響不可忽視,亟待進行深入研究。

[1] 朱黨生, 張建永, 程紅光, 等. 城市飲用水水源地安全評價(I): 評價指標和方法[J]. 水利學(xué)報, 2010, 41(7): 778-785

Zhu D S, Zhang J Y, Cheng H G, et al. Security assessment of urban drinking water sources I: Indicator system and assessment method [J]. Journal of Hydraulic Engineering, 2010, 41(7): 778-785 (in Chinese)

[2] 徐建英, 趙春桃, 魏東斌. 生物毒性檢測在水質(zhì)安全評價中的應(yīng)用[J]. 環(huán)境科學(xué), 2014, 35(10): 3991-3997

Xu J Y, Zhao C T, Wei D B. Toxicity tests and their application in safety assessment of water quality [J]. Chinese Journal of Environmental Science, 2014, 35(10): 3991-3997 (in Chinese)

[3] 冀海峰, 楊江, 侯迪波, 等. 城市飲用水水質(zhì)安全評價與預(yù)警方法的研究[J]. 建設(shè)科技, 2012(5): 88-90

Ji H F, Yang J, Hou D B, et al. The study of urban drinking water quality safety assessment and early-warning [J]. Construction Science and Technology, 2012(5): 88-90 (in Chinese)

[4] Irons T D, MacPhail R C, Hunter D L, et al. Acute neuroactive drug exposures alter locomotor activity in larval zebrafish [J]. Neurotoxicology and Teratology, 2010, 32(1): 84-90

[5] 趙靜, 朱祥偉, 徐挺, 等. BDE17及OH-BDE17暴露對斑馬魚幼魚的運動行為效應(yīng)[J]. 環(huán)境化學(xué), 2015, 34(7): 1239-1245

Zhao J, Zhu X W, Xu T, et al. Locomotor behavior effect in zebrafish larvae after exposure to BDE17 and OH-BDE17 [J]. Environmental Chemistry, 2015, 34(7): 1239-1245 (in Chinese)

[6] 倪芳, 周斯蕓, 張瑛, 等. 不同濃度的五氯酚對斑馬魚運動行為的影響[J]. 生態(tài)毒理學(xué)報, 2013, 8(5): 763-771

Ni F, Zhou S Y, Zhang Y, et al. Concentration-dependent effect of PCP on swimming behavior of zebrafish [J]. Asian Journal of Ecotoxicology, 2013, 8(5): 763-771 (in Chinese)

[7] Sinhorin V D G, Sinhorin A P, Teixeira J M S, et al. Metabolic and behavior changes in surubim acutely exposed to a glyphosate-based herbicide [J]. Archives of Environmental Contamination and Toxicology, 2014, 67(4): 659-667

[8] Eissa B L, Ossana N A, Ferrari L, et al. Quantitative behavioral parameters as toxicity biomarkers: Fish responses to waterborne cadmium [J]. Archives of Environmental Contamination and Toxicology, 2010, 58(4): 1032-1039

[9] Charoy C P, Janssenb C R, Persooneb G, et al. The swimming behaviour of Brachionus calyciflorus (rotifer) under toxic stress. I. The use of automated trajectometry for determining sublethal effects of chemicals [J]. Aquatic Toxicology, 1995, 32(4): 271-282

[10] 黃毅, 張金松, 韓小波, 等. 氯化鎘和敵敵畏突發(fā)脅迫下斑馬魚的行為差異[J]. 生態(tài)毒理學(xué)報, 2012, 7(6): 671-676

Huang Y, Zhang J S, Han X B, et al. Behavioral differences of zebrafish under sudden stress of dichlorvos and cadmium chloride [J]. Asian Journal of Ecotoxicology, 2012, 7(6): 671-676 (in Chinese)

[11] Jin M Q, Zhang Y, Ye J, et al. Dual enantioselective effect of the insecticide bifenthrin on locomotor behavior and development in embryonic-larval zebrafish [J]. Environmental Toxicology and Chemistry, 2010, 29: 1561 -1567

[12] Chen T H, Wang Y H, Wu Y H. Developmental exposures to ethanol or dimethylsulfoxide at low concentrations alter locomotor activity in larval zebrafish: Implications for behavioral toxicity bioassays [J]. Aquatic Toxicology, 2011, 102(3-4): 162-166

[13] 史慧勤, 張利軍, 苑曉燕, 等. 氯化鎘暴露對斑馬魚幼魚神經(jīng)行為毒性作用[J]. 生態(tài)毒理學(xué)報, 2013, 8(3): 374-380

Shi H Q, Zhang L J, Yuan X Y, et al. Toxic effects of cadmium chloride exposure on neurobehavior of zebrafish larvae [J]. Asian Journal of Ecotoxicology, 2013, 8(3): 374-380 (in Chinese)

[14] Martínez-Sales M, García-Ximénez F, Espinós F J. Zebrafish as a possible bioindicator of organic pollutants with effects on reproduction in drinking waters [J]. Journal of Environmental Sciences, 2015, 33: 254-260

[15] 郭瑞麗, 石玉, 王增長. 反滲透濃水中有機物去除的研究進展[J]. 水處理技術(shù), 2013, 39(4): 1-5

Guo R L, Shi Y, Wang Z Z. Research development on organics removal in reverse osmosis concentrates [J]. Technology of Water Treatment, 2013, 39(4): 1-5 (in Chinese)

[16] Serkiz S M, Perdue E M. Isolation of dissolved organic matter from Suwannee River using reverse osmosis [J]. Water Research, 1990, 24(7): 911-916

[17] Ouellet A, Catana D, Plouhinec J B, et al. Elemental, isotopic, and spectroscopic assessment of chemical fractionation of dissolved organic matter sampled with a portable reverse osmosis system [J]. Environmental Science & Technology, 2008, 42(7): 2490-2495

[18] 戴玉玲, 張建國, 賈銘椿. 反滲透技術(shù)的研究進展及應(yīng)用[J]. 廣州化工, 2012, 40(10): 24-26

Dai Y L, Zhang J G, Jia M C. Research progress and application of reverse osmosis technology [J]. Guangzhou Chemical Industry and Technology, 2012, 40(10): 24-26 (in Chinese)

[19] 吳昊, 張盼月, 蔣劍虹, 等. 反滲透技術(shù)在重金屬廢水處理與回用中的應(yīng)用[J]. 工業(yè)水處理, 2007, 27(6): 6-9

Wu H, Zhang P Y, Jiang J H, et al. Application of reverse osmosis technology to the treatment and recycling of heavy metal wastewater [J]. Industrial Water Treatment, 2007, 27(6): 6-9 (in Chinese)

[20] Yin X, Wang H, Zhang Y, et al. Toxicological assessment of trace beta-diketone antibiotic mixtures on zebrafish (Danio rerio) by proteomic analysis [J]. PLos ONE, 2014, 9(7): 1-12

[21] Van Leeuwen J L, Voesenek C J, Muller U K. How body torque and strouhal number change with swimming speed and developmental stage in larval zebrafish [J]. Journal of the Royal Society Interface, 2015, 12(110): 20150479

[22] Muller U K, van Leeuwen J L. Swimming of larval zebrafish ontogeny of body waves and implications for locomotory development [J]. Journal of Experimental Biology, 2004, 207(5): 853-868

[23] Budick S A, O'Malley D M. Locomotor repertoire of the larval zebrafish swimming, turning and prey capture [J]. Journal of Experimental Biology, 2000, 203(17): 2565-2579

[24] Escher B I, Allinson M, Altenburger R, et al. Benchmarking organic micropollutants in wastewater, recycled water and drinking water with in vitro bioassays [J]. Environmental Science & Technology, 2014, 48(3): 1940-1956

[25] Macova M, Toze S, Hodgers L, et al. Bioanalytical tools for the evaluation of organic micropollutants during sewage treatment, water recycling and drinking water generation [J]. Water Research, 2011, 45(14): 4238-4247

[26] 葉翠平, 馮杰, 李文英, 等. 固相萃取法富集煤抽提物中的酚類化合物[J]. 太原理工大學(xué)學(xué)報, 2010, 41(5): 661-665

Ye C P, Feng J, Li W Y, et al. Solid phase extraction for enrichment of coal extracts phenolic compounds in coal extracts [J]. Journal of Taiyuan University of Technology, 2010, 41(5): 661-665 (in Chinese)

[27] 蔣伯成, 李志軍, 史寅凡. 半揮發(fā)性有機物質(zhì)的固相萃取技術(shù)在松花江水有機毒物檢測中的應(yīng)用[J]. 齊齊哈爾大學(xué)學(xué)報, 2003, 19(1): 36-38

Jiang B C, Li Z J, Shi Y F. The application of semivolatility organic matter solid phase extraction in the organic poison detection of Songhua River water [J]. Journal of Qiqihar University: Natural Science Edition, 2003, 19(1): 36-38 (in Chinese)

[28] Pressman J G, Richardson S D, Speth T F, et al. Concentration, chlorination, and chemical analysis of drinking water for disinfection byproduct mixtures health effects research: U.S. EPA’s four lab study [J]. Environmental Science & Technology, 2010, 44(19): 7184-7192

[29] Yao Y, Li X, Zhang B, et al. Visual cue-discriminative dopaminergic control of visuomotor transformation and behavior selection [J]. Neuron, 2016, 89(3): 698-612

[30] 程明, 胡晨燕, 章靖, 等. 管網(wǎng)中的飲用水消毒副產(chǎn)物研究進展[J]. 凈水技術(shù), 2014, 33(2): 17-21

Cheng M, Hu C Y, Zhang J, et al. Advances in research of disinfection by-products in drinking water distribution system [J]. Water Purification Technology, 2014, 33(2): 17-21 (in Chinese)

[31] Peng C Y, Hill A S, Friedman M J, et al. Occurrence of trace inorganic contaminants in drinking water distribution systems [J]. Journal of American Water Works Association, 2012, 104(3): 53-54

[32] Van der kooij D, Oranje J P, Hijnen W A. Growth of Pseudomonca aeruginosa in tap water in relation to utilization of substrates at concentrations of a few micrograms per liter [J]. Applied and Environmental Microbiology, 1982, 44(5): 1086-1095

[33] 秦好麗, 程雅柔. 貴陽市西郊水廠所供管網(wǎng)末梢水重金屬污染物季節(jié)性特征及潛在健康風險評價[J]. 生態(tài)毒理學(xué)報, 2015, 10(2): 411-417

Qin H L, Cheng Y R. The seasonal characteristics and potential health risk assessment on heavy metal pollution in terminal tap water from Guiyang western suburbs water plant [J]. Asian Journal of Ecotoxicology, 2015, 10(2): 411-417 (in Chinese)

Toxicity Assessment of Drinking Water Using Zebrafish Swimming Behavior Tests

Pan Ruijie, Huang Wenping, Zhang Bin, Xu Ting#, Yin Daqiang*

Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, Shanghai 200092, China

Received 8 March 2016 accepted 26 May 2016

The safety of drinking water is a critical issue for human health and society security. To evaluate the potential health risks of drinking water, it is essential to develop novel methodologies of toxicity tests with high sensitivity and accuracy. In the present study, reverse osmosis, instead of regular used solid-phase extraction technique, was used as the pretreatment method to concentrate inlet water, output water and tap water respectively, which could avoid the potential interference (induced by organic solvent during conventional solid-phase extraction process) to behavior tests. New-born zebrafish embryos were exposed to the concentrated drinking water till they developed to 6 days post-fertilization. Swimming behavior tests (locomotion and path angles) of the zebrafish larvae were then recorded and quantified by an analysis software Viewpoint to evaluate the potential toxicity induced by water borne exposure (including inlet water, output water and tap water). Our results revealed that the inlet water exposed zebrafish exhibited significant behavioral changes. Comparing with the control group, the larvae exposed to the highly concentrated (by 20 times) inlet water significantly reduced their locomotion, accompanied with dramaticaland frequent changes of their swimming direction. Such behavioral changes were less evident for tap water exposed larvae, and not observed in outlet water exposed larvae. Our results revealed that the drinking water treatment process could effectively reduce the potential toxicity of inlet water. Nevertheless, it should be noted that the water supply network might change the water quality and induce toxicity of tap water. Moreover, swimming behavior tests of the zebrafish larvae followed by reverse osmosis technique could be applied to establish novel early-warning system for health risk assessment of drinking water.

drinking water; zebrafish; behavioral effects; reverse osmosis

國家水體污染控制與治理科技重大專項(2015ZX07406-004)

潘睿捷(1989-),男,碩士研究生,研究方向為生態(tài)毒理學(xué),E-mail: 13817843680@126.com;

*通訊作者(Corresponding author), E-mail: yindq@tongji.edu.cn

10.7524/AJE.1673-5897.20160308004

2016-03-08 錄用日期:2016-05-26

1673-5897(2016)4-018-08

X171.5

A

簡介:尹大強(1962—),男,環(huán)境科學(xué)博士,教授,主要研究方向環(huán)境污染物的生態(tài)和人體健康風險。

徐挺(1978-),男,環(huán)境科學(xué)博士,副研究員,主要研究環(huán)境污染物的發(fā)育毒性。

# 共同通訊作者(Co-corresponding author), E-mail: 412_xuting@tongji.edu.cn

潘睿捷, 黃文平, 張斌, 等. 斑馬魚幼魚運動行為測試評價飲用水安全[J]. 生態(tài)毒理學(xué)報,2016, 11(4): 18-25

Pan R J, Huang W P, Zhang B, et al. Toxicity assessment of drinking water using zebrafish swimming behavior tests [J]. Asian Journal of Ecotoxicology, 2016, 11(4): 18-25 (in Chinese)

主站蜘蛛池模板: 亚洲国产欧洲精品路线久久| 67194亚洲无码| 久久99国产精品成人欧美| 久久77777| 永久天堂网Av| 成人午夜精品一级毛片| 国产特一级毛片| 亚洲第一成人在线| 日本尹人综合香蕉在线观看| 欧洲精品视频在线观看| 国产精品伦视频观看免费| 玖玖精品在线| 色婷婷在线影院| 精品91视频| 99精品视频九九精品| 国产成人综合在线观看| 免费观看国产小粉嫩喷水| 亚洲人成在线精品| 亚洲无码高清免费视频亚洲 | 欧美成人怡春院在线激情| 亚洲欧美另类专区| 国产精品无码一二三视频| 亚洲男人在线天堂| 亚洲av色吊丝无码| 日韩精品无码免费一区二区三区 | 午夜不卡福利| 三区在线视频| 国产欧美日韩精品综合在线| 国产精品不卡片视频免费观看| 欧美全免费aaaaaa特黄在线| 中文字幕精品一区二区三区视频| 99热国产在线精品99| 国产女人18毛片水真多1| 欧美视频二区| 91国语视频| 亚洲精品在线观看91| 大香网伊人久久综合网2020| 99久久无色码中文字幕| YW尤物AV无码国产在线观看| 亚洲天堂久久久| 亚洲欧美日本国产综合在线| 激情网址在线观看| 国产成人精品亚洲77美色| 国产一二三区在线| 2020国产精品视频| 亚洲人网站| 亚洲欧美另类中文字幕| 韩国v欧美v亚洲v日本v| 美臀人妻中出中文字幕在线| 五月丁香伊人啪啪手机免费观看| 亚洲va视频| 免费一级无码在线网站| 成人午夜久久| 亚洲中文字幕久久精品无码一区 | 福利在线免费视频| 国产欧美精品一区aⅴ影院| 亚洲国产成人在线| 国产99精品久久| 毛片在线播放a| 国产又粗又猛又爽| 国产xxxxx免费视频| 欧洲av毛片| 99视频精品在线观看| 91成人试看福利体验区| 啊嗯不日本网站| 久久久久亚洲AV成人人电影软件| 成人亚洲视频| 日韩美女福利视频| 亚洲娇小与黑人巨大交| 国内精品视频| 99热这里只有精品免费国产| 国产成人一区二区| 她的性爱视频| 国产不卡一级毛片视频| 亚洲精品你懂的| 国产精品国产三级国产专业不| 日韩二区三区| 91小视频在线观看免费版高清| 欧洲高清无码在线| 亚洲欧美日韩中文字幕在线一区| 国产超薄肉色丝袜网站| 强乱中文字幕在线播放不卡|