陳思,范曉季,金瑜劍,李星星,宋昊,孫立偉,錢海豐,,*
1. 浙江工業大學 海洋學院,杭州 310032 2. 浙江工業大學 生物工程學院,杭州 310032 3. 浙江工業大學 環境學院,杭州 310032
?
過氧化氫和一氧化氮在小球藻抗阿特拉津脅迫中的作用
陳思1,范曉季2,金瑜劍2,李星星1,宋昊1,孫立偉3,錢海豐1,3,*
1. 浙江工業大學 海洋學院,杭州 310032 2. 浙江工業大學 生物工程學院,杭州 310032 3. 浙江工業大學 環境學院,杭州 310032
過氧化氫(H2O2)和一氧化氮(NO)作為信號分子,可調節植物生長、發育以及應對外源性脅迫。利用過氧化氫酶(CAT)以及NO清除劑(PTIO),研究了除草劑阿特拉津(atrazine,100 μg·L-1)影響小球藻生長的機理,并分析內源性H2O2和NO在小球藻抗除草劑脅迫中的作用。研究結果表明,阿特拉津在誘發小球藻細胞死亡的過程中,不同程度促發了H2O2和NO生成;外源CAT可通過清除H2O2和誘導NO來緩解阿特拉津對小球藻的生長抑制;PTIO與阿特拉津的聯合實驗進一步證實,小球藻體內的NO誘導與H2O2的爆發無關,它們之間的合成沒有相關性。因此,除草劑阿特拉津主要通過誘導小球藻體內的H2O2爆發來破壞藻細胞,抑制其生長,與NO的信號傳遞無關。
阿特拉津;小球藻;CAT;一氧化氮;過氧化氫;PTIO
Received 14 April 2016 accepted 5 May 2016
過氧化氫(H2O2)是一種常見活性氧物質,主要由線粒體、葉綠體、過氧化物酶體等產生[1-3]。植物的外界脅迫,如病原體、金屬化合物和除草劑暴露等,常誘導H2O2的產生,造成DNA損傷甚至細胞死亡[4-8]。不僅如此,大量研究表明,H2O2作為重要的信號分子傳遞脅迫信號[9-10],并利用水調蛋白將脅迫信號傳遞至鄰近細胞[11-12]。另一個小分子一氧化氮(NO)由一氧化氮合成酶(nitric oxide synthase, NOS)合成。在哺乳動物體內,NO作為重要信號分子參與神經調節、心血管功能和免疫系統調節,但在植物中的功能尚不清楚[13-14]。近年來,NO在植物中的功能也備受關注,被認為是植物生長發育過程中傳遞應激反應的信號分子[15-16]。研究證實,NO外源性供體硝普鈉(sodium nitroprusside, SNP)促使植物具有抗外界脅迫的功能,如鹽脅迫[17]、干旱[18]、病原體[19]、金屬化合物[20]、溫度[21]、澇災[22]和除草劑脅迫[23],但過量NO也會抑制植物光合作用[23-24]。這些研究表明,NO是植物體內重要的信號分子[25]。
NO和H2O2在植物應激反應中的關系存在很多爭議。Lum等[26]發現,H2O2快速誘導綠豆細胞內NO的積累,認為氧化應激反應可誘發NO的大量產生。同樣,Lin等[27]證實,H2O2在水稻體內可作為誘導NO的上游信號分子,并且認為NO與H2O2是水稻葉片細胞致死的重要介質。然而,Neill等[21]發現,病原體入侵植物時,植物體內的NO和H2O2同時產生。這些研究說明NO和H2O2在環境脅迫中都起到信號傳遞的作用,但一些不一致的結論暗示兩者之間的復雜關系尚需進一步解析。
阿特拉津作為全球使用最廣泛的除草劑之一,在水土中常被大量檢出[28]。阿特拉津通過阻礙光合系統II的電子受體,破壞植物光合作用電子傳遞;并以脂溶性方式進入藻類葉綠體,導致活性氧ROS (reactive oxygen species, ROS)的爆發,對細胞造成氧化性損傷,進而擾亂細胞內氧化還原平衡[29-31]。過多的ROS破壞細胞膜,產生脂質過氧化產物MDA (malondialdehyde, 丙二醛),從而對細胞產生嚴重損傷[32]。本實驗以小球藻為模式生物,研究除草劑脅迫下NO與H2O2隨時間的累積情況;清除NO后,H2O2隨時間的累積情況;以及清除H2O2后,NO隨時間的累積變化,從而闡明NO和H2O2參與植物對抗除草劑脅迫中的相互關系。
1.1 實驗材料
供試藻類為普通小球藻,購自中國科學院水生物研究所,水生四號培養液,250 mL錐形瓶中培養,培養條件為(25±0.5) °C,光照強度為4 500 lux左右,光暗比為14 h:10 h。接種濃度為1% (細胞濃度約為6.5×105個·mL-1),直至培養到藻液在680 nm下吸光度(OD)值為0.08進行實驗。阿特拉津(Atr)(長興化工公司,浙江,中國)加入培養液中,單獨或與1 kU·mL-1過氧化氫酶(CAT;生物技術研究院,海門,中國)或20 μmol·L-1一氧化氮清除劑(2-phenyl-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl,2-苯基-4,4,5,5-四甲基咪唑啉-3-氧代-1-氧,PTIO,西格瑪奧德里奇,圣路易斯,美國)聯合使用最終濃度設置為100 μg·L-1[23];每組設置3個平行組。
1.2 細胞生長以及細胞內NO、H2O2含量的檢測
胞內NO含量的測定根據碧云天生物技術公司的試劑盒提供的方法:取10 mL藻液離心得沉淀,取少量石英砂研磨,使用450 mL HEPE (pH 7.2)緩沖液洗滌研磨液,11 000 r·min-1離心5 min,取200 mL上清液,具體根據試劑盒方法測定。胞內過氧化氫含量的測定根據碧云天生物技術公司的試劑盒提供的方法。使用分光光度計測定680 nm下吸收光值,通過標準曲線換算出藻細胞密度。藻密度線性回歸方程為:
Y=162.1X+1.3463 (r2=99.34%)
公式中X為OD685值;Y為105細胞數·mL-1。
阿特拉津處理6~48 h后小球藻細胞生長變化見圖1A,對照組的小球藻細胞個數在各個時間段都明顯多于Atr處理組,說明Atr對小球藻的生長有明顯的抑制作用,且隨著處理時間延續,抑制率增加,6,12,24,48 h的抑制率分別為11.8%,7.2%,20.4%和29.6%。類似現象在淡水藍藻、銅綠微囊藻、海洋硅藻以及三角褐指藻中也被證明[33-34]。但不同品種的藻類對阿特拉津敏感度不同,相對靈敏度依次為銅綠微囊藻>小球藻>三角褐指藻。
阿特拉津作為光合作用抑制劑,阻止電子向質體醌的轉移,從而阻止吸收的光能轉化為電化學能[35]。多余的電子和分子氧結合,產生ROS來破壞細胞結構,抑制藻的生長[36]。為確認ROS在阿特拉津脅迫下的作用,我們進一步檢測了H2O2和NO的表達水平。結果表明,阿特拉津明顯刺激了H2O2和NO的產生(圖1B和C)。其中H2O2的表達量在6 h達到峰值(3.78倍),且在48 h內持續保持高水平(圖1B);而NO的表達水平直到12 h處理后,才達到峰值(1.3倍),且在24 h內回落至正常水平(圖1C)。在阿特拉津抑制小球藻生長過程中,均發現H2O2和NO含量在0~12 h處理期間出現峰值,推測這2種物質都參與除草劑誘導小球藻細胞死亡過程。另外,通過觀察NO和H2O2到達峰值的時間,結合相關報道推測,NO應該位于H2O2的下游[26,37-38]。
過氧化氫酶(CAT)可將H2O2分解成氧和水,為了確認NO的產生是否依賴于H2O2,我們檢測了阿特拉津與CAT聯合暴露下小球藻的生長狀況。結果顯示,1 kU·mL-1的CAT可以完全降解細胞內的H2O2。如圖2A所示,CAT不僅能緩解阿特拉津對小球藻的抑制作用,甚至略有促進。在阿特拉津和CAT共同作用6,12,24,36和48 h后,細胞數量為對照組的1.4,1.86,1.73,1.82和1.59倍。有意思的是,CAT處理下,NO仍顯著增加,在12,24,36和48 h處理后NO表達量分別為對照組的1.75,2.07,3.22和1.6倍(圖2B)。
原研究表明,由于NO的抗氧化特性,能夠簇滅細胞內ROS,對細胞起到保護作用[39],使植物受到環境脅迫(如金屬化合物、鹽、低溫脅迫、病毒侵入)時產生耐受性[40-41,17]。本實驗證實,相比于阿特拉津單獨處理,外源CAT在完全降解H2O2的同時,同時促進NO的大量合成。該結果表明,H2O2的生成是阿特拉津抑制小球藻生長的關鍵因子,而過多的H2O2可抑制NO的產生。盡管NO也是生物活性分子,但它在植物體內的正效應與其濃度相關,而過高濃度的NO對植物起到抑制效應[22,42]。這也解釋了為什么適當的外源性NO可緩解除草劑的脅迫壓力[23],而高濃度的外源性NO也會抑制藻細胞的生長。

圖1 阿特拉津對小球藻生長(A),H2O2含量(B)以及NO含量(C)的影響Fig. 1 Effect of atrazine on algal growth (A), H2O2(B) and NO content (C)

圖2 阿特拉津和CAT共同暴露對小球藻生長(A),H2O2含量(B)以及NO含量(C)的影響Fig. 2 Effect of atrazine and CAT on algal growth (A), H2O2(B) and NO content (C)

圖3 阿特拉津和一氧化氮清除劑(PTIO)共同暴露對小球藻生長(A),H2O2含量(B)以及NO含量(C)的影響Fig. 3 Effect of atrazine and the NO scavenger (PTIO) on algal growth (A), H2O2(B) and NO (C) content

圖4 阿特拉津、CAT和PTIO共同暴露對小球藻生長(A),H2O2含量(B)以及NO含量(C)的影響Fig. 4 Effect of combined atrazine, CAT and PTIO treatment on (A) algal growth, the content of (B) H2O2 and (C) NO
利用PTIO能清除NO的特性,我們選取PTIO與阿特拉津共同處理,進一步確定NO在除草劑脅迫中的作用。如圖3A所示,PTIO雖能清除NO,但并不能緩解小球藻生長受抑制的現象。當清除NO之后,PTIO組與阿特拉津處理組小球藻生長都受到抑制,說明NO并不直接參與阿特拉津對小球藻生物的抑制效應。我們同時檢測0~48 h中藻細胞內H2O2含量變化,發現在清除NO后,H2O2的含量明顯高于對照組。在小球藻生長受抑制的情況下,H2O2的含量顯著增加,說明H2O2是直接參與阿特拉津對小球藻的致死效應。而在清除了NO之后,藻內的H2O2量并沒有明顯降低,說明NO并不指導H2O2的合成,且NO位于H2O2信號傳導的下游途徑。
對于阿特拉津抑制小球藻生長的2種機理推測,將H2O2清除劑(CAT)和NO特異性清除劑(PTIO)同時加入阿特拉津處理的小球藻中,我們發現加入CAT、PTIO和共同暴露組的細胞個數明顯多于阿特拉津單獨處理組, 說明在清除H2O2和NO的情況下,對小球藻生長具顯著緩解作用。因此,我們認為H2O2的有無,對阿特拉津的毒性有至關重要的作用,進一步證明阿特拉津的毒性是通過H2O2的增加來實現的。而NO并沒有參于此脅迫過程,內源的NO也不能緩解除草劑的脅迫。在其他外界脅迫下,H2O2和NO的關系還需要更多實驗的驗證。
[1] Jabs T. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals [J]. Biochemical Pharmacology, 1999, 57(3): 231-245
[2] Niyogi K K. Photoprotection revisited: Genetic and molecular approaches [J]. Annual Review of Plant Biology, 1999, 50(1): 333-359
[3] Xu H, Zhang J, Zeng J, et al. Inducible antisense suppression of glycolate oxidase reveals its strong regulation over photosynthesis in rice [J]. Journal of Experimental Botany, 2009, 60(6): 1799-1809
[4] Apel K, Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction [J]. Annual Review of Plant Biology, 2004, 55: 373-399
[5] Qian H F, Lu T, Peng X F, et al. Enantioselective phytotoxicity of the herbicide imazethapyr on the response of the antioxidant system and starch metabolism in Arabidopsis thaliana [J]. PLoS One, 2011, 6(5): e19451
[6] Qian H, Peng X, Han X, et al. Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana [J]. Journal of Environmental Sciences, 2013, 25(9): 1947-1956
[7] Hieno A, Naznin H A, Sawaki K, et al. Analysis of environmental stress in plants with the aid of marker genes for H2O2responses [J]. Methods in Enzymology, 2013, 527: 221-237
[8] Rejeb K B, Benzarti M, Debez A, et al. NADPH oxidase-dependent H2O2production is required for salt-induced antioxidant defense in Arabidopsis thaliana [J]. Journal of plant Physiology, 2015, 174: 5-15
[9] Dat J, Vandenabeele S, Vranová E, et al. Dual action of the active oxygen species during plant stress responses [J]. Cellular and Molecular Life Sciences, 2000, 57(5): 779-795
[10] Schippers J H M, Nguyen H M, Lu D, et al. ROS homeostasis during development: An evolutionary conserved strategy [J]. Cellular and Molecular Life Sciences, 2012, 69(19): 3245-3257
[11] Allan A C, Fluhr R. Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells [J]. The Plant Cell, 1997, 9(9): 1559-1572
[12] Schmidt S R, Caldana C, Mueller-Roeber B, et al. The contribution of SERF1 to root-to-shoot signaling during salinity stress in rice [J]. Plant Signaling and Behavior, 2014, 9(1): e27540
[13] Mayer B, Hemmens B. Biosynthesis and action of nitric oxide in mammalian cells [J]. Trends in Biochemical Sciences, 1997, 22(12): 477-481
[14] Ignarro L J. Nitric Oxide: Biology and Pathobiology [M]. San Diego, CA, 2000: 23-40
[15] Besson-Bard A, Courtois C, Gauthier A, et al. Nitric oxide in plants:Production and cross-talk with Ca2+signaling [J]. Molecular Plant, 2008, 1(2): 218-228
[16] Fr?hlich A, Durner J. The hunt for plant nitric oxide synthase (NOS):Is one really needed? [J]. Plant Science, 2011, 181(4): 401-404
[17] Uchida A, Jagendorf A T, Hibino T, et al. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice [J]. Plant Science, 2002, 163(3): 515-523
[18] García-Mata C, Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress [J]. Plant Physiology, 2001, 126(3): 1196-1204
[19] Alvarez M E, Pennell R I, Meijer P J, et al. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity [J]. Cell, 1998, 92(6): 773-784
[20] Singh H P, Kaur S, Batish D R, et al. Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice) [J]. Nitric Oxide, 2009, 20(4): 289-297
[21] Neill S J, Desikan R, Clarke A, et al. Hydrogen peroxide and nitric oxide as signalling molecules in plants [J]. Journal of Experimental Botany, 2002, 53(372): 1237-1247

[23] Qian H, Chen W, Li J, et al. The effect of exogenous nitric oxide on alleviating herbicide damage in Chlorella vulgaris [J]. Aquatic Toxicology, 2009, 92(4): 250-257
[24] Wodala B, ?rd?g A, Horváth F. The cost and risk of using sodium nitroprusside as a NO donor in chlorophyll fluorescence experiments [J]. Journal of Plant Physiology, 2010, 167(13): 1109-1111
[25] Beligni M V, Lamattina L. Nitric oxide interferes with plant photo-oxidative stress by detoxifying reactive oxygen species [J]. Plant, Cell and Environment, 2002, 25(6): 737-748
[26] Lum H K, Butt Y K C, Lo S C L. Hydrogen peroxide induces a rapid production of nitric oxide in mung bean (Phaseolus aureus) [J]. Nitric Oxide, 2002, 6(2): 205-213
[27] Lin A, Wang Y, Tang J, et al. Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice [J]. Plant Physiology, 2012, 158(1): 451-464
[28] Flynn K, Spellman T. Environmental levels of atrazine decrease spatial aggregation in the freshwater mussel, Elliptio complanata [J]. Ecotoxicology and Environmental Safety, 2009, 72(4): 1228-1233
[29] Qian H, Sheng G D, Liu W, et al. Inhibitory effects of atrazine on Chlorella vulgaris as assessed by real-time polymerase chain reaction [J]. Environmental Toxicology and Chemistry, 2008, 27(1): 182-187
[30] Qian H, Pan X, Chen J, et al. Analyses of gene expression and physiological changes in Microcystis aeruginosa reveal the phytotoxicities of three environmental pollutants [J]. Ecotoxicology, 2012, 21(3): 847-859
[31] Qian H, Tsuji T, Endo T, et al. PGR5 and NDH pathways in photosynthetic cyclic electron transfer respond differently to sublethal treatment with photosystem-interfering herbicides [J]. Journal of Agricultural and Food Chemistry, 2014, 62(18): 4083-4089
[32] Bai X, Sun C, Xie J, et al. Effects of atrazine on photosynthesis and defense response and the underlying mechanisms in Phaeodactylum tricornutum [J]. Environmental Science and Pollution Research, 2015, 22(22): 17499-17507
[33] Qian H F, Wei Y, Bao G J, et al. Atrazine affects the circadian rhythm of Microcystis aeruginosa [J]. Chronobiology International, 2014, 31(1): 17-26
[34] RebeccaJ W, Simon M M, Ben J K. Determining the relative sensitivity of benthic diatoms to atrazine using rapid toxicity testing: A novel method [J]. Science of the Total Environment, 2014, 485: 421-427
[35] Rutherford A W, Krieger-Liszkay A. Herbicide-induced oxidative stress in photosystem II [J]. Trends in Biochemical Sciences, 2001, 26(11): 648-653
[36] Miller G, Shulaev V, Mittler R. Reactive oxygen signaling and abiotic stress [J]. Physiologia Plantarum, 2008, 133(3): 481-489
[37] She X P, Song X G, He J M. Role and relationship of nitric oxide and hydrogen peroxide in light/dark-regulated stomatal movement inVicia faba [J]. Acta Botabica Sinica-English Edition, 2004, 46(11): 1292-1300
[38] Bright J, Desikan R, Hancock J T, et al. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2synthesis [J]. The Plant Journal, 2006, 45(1): 113-122
[39] Wang Y S, Yang Z M. Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L[J]. Plant and Cell Physiology, 2005, 46(12): 1915-1923
[40] Prochazkova D, Sumaira J, Wilhelmova N, et al. Reactive nitrogen species and the role of NO in abiotic stress emerging technologies and management of crop stress tolerance [J]. A Sustainable Approach, 2014, 2: 249-266
[41] Delldonne M, Xia Y, Dixon R A, et al. Nitric oxide functions as a signal in plant disease resistance [J]. Nature, 1998, 394(6693): 585-588
[42] Ahmckeness S, Surplus S L, Blake P, et al. Ultraviolet-B-induced stress and changes in gene expression in Arabidopsis thaliana: Role of signalling pathways controlled by jasmonic acid, ethylene and reactive oxygen species [J]. Plant, Cell and Environment, 1999, 22(11): 1413-1423
Effect of H2O2and NO on Atrazine Stress Resistance in Chlorella vulgaris
Chen Si1, Fan Xiaoji2, Jin Yujian2, Li Xingxing1, Song Hao1, Sun Liwei3, Qian Haifeng1,3,*
1. Ocean College, Zhejiang University of Technology, Hangzhou 310032, China 2. College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China 3. College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
Hydrogen peroxide (H2O2) and nitric oxide (NO) have been suggested to function as signaling molecules in plants to regulate growth, development and stress responses. In this study, we investigated the roles of endogenous H2O2and NO in herbicide stress of the algae, Chlorella vulgaris. We treated algae with the herbicide atrazine (100 μg·L-1) alone, in combination with the H2O2-degrading enzyme catalase (CAT; 1 kU·mL-1), or with the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl3-oxide (PTIO; 20 μmol·L-1) for 48 h and analyzed algal growth, H2O2and NO contents. Atrazine treatment strongly induced H2O2levels by 1.5 to 4.6 folds, mildly stimulated NO levels, and significantly increased the rate of algal cell death. CAT supplementation degraded all detectable H2O2, further increased NO levels and completely reversed the inhibitory effect of atrazine on algal growth while PTIO (the NO scavenger) had no effect on atrazine toxicity in Chlorella vulgaris. Therefore, the herbicidal effect of atrazine in Chlorella vulgaris is mediated mainly by overproduction of H2O2, and endogenous NO had no protective properties against this toxicity.
atrazine; Chlorella vulgaris; CAT; NO; H2O2; PTIO
國家自然科學基金(21577128);浙江省大學生科技創新活動計劃(新苗人才計劃)
陳思(1992-),女,碩士,研究方向為環境毒理學,Email: cslock@126.com
*通訊作者(Corresponding author), E-mail: hfqian@zjut.edu.cn
10.7524/AJE.1673-5897.20160414002
2016-04-14 錄用日期:2016-05-05
1673-5897(2016)4-102-06
X171.5
A
簡介:錢海豐(1973—),男,博士,教授,研究方向為環境毒理學。
陳思, 范曉季, 金瑜劍, 等. 過氧化氫和一氧化氮在小球藻抗阿特拉津脅迫中的作用[J]. 生態毒理學報,2016, 11(4): 102-107
Chen S, Fan X J, Jin Y J, et al. Effect of H2O2and NO on atrazine stress resistance in Chlorella vulgaris [J]. Asian Journal of Ecotoxicology, 2016, 11(4): 102-107 (in Chinese)