魏鳳華,張俊江,夏普,張效偉,于紅霞
南京大學環境學院污染控制與資源化研究國家重點實驗室,南京210023
類二噁英物質及芳香烴受體(AhR)介導的有害結局路徑(AOP)研究進展
魏鳳華,張俊江,夏普,張效偉*,于紅霞
南京大學環境學院污染控制與資源化研究國家重點實驗室,南京210023
二噁英及類二噁英物質(dioxin-like compounds,DLCs)是一類高毒性化合物的統稱,對其毒理學的研究一直都是備受關注的焦點。已有證據表明,高毒二噁英及DLCs主要通過激活芳香烴受體(aryl hydrocarbon receptor,AhR),進而導致一系列生物毒性。近年來越來越多的新型有機污染物被發現具有類二噁英分子結構并存在潛在生物毒性或活性。與此同時,如何評估二噁英及DLCs對本土生態生物的危害及其風險也受到更多關注。本文綜述了近幾年發現的新型二噁英物質、二噁英及DLCs的AhR致毒機制、相應的有害結局路徑(adverse outcome pathway,AOP)及AOP在指導探索新型物質及物種敏感性方面上的新觀點和發現,同時也展望了二噁英及DLCs在生態毒理及風險評估領域的未來研究方向。
類二噁英物質;多溴聯苯醚;多氯代聯苯硫醚;新型污染物;芳香烴受體;致毒機制;物種敏感性分布
二噁英及類二噁英物質(dioxin-like compounds, DLCs)通常被認為是一類具有高毒性的物質,能引起人和野生動物的生殖及發育毒性、免疫毒性、肝毒性及致癌、體重減少、胸腺萎縮、皮膚病變等[1-6]。二噁英及DLCs的致毒機理主要是通過激活芳香烴受體(aryl hydrocarbon receptor,AhR)通路來進行調控的,AhR被配體激活后進入細胞核與AhR核轉位因子(aryl hydrocarbon receptor nuclear translocator, ARNT)形成二聚體后特異性地識別結合到二噁英響應元件(dioxin response element,DRE)上,誘導下游基因的表達,從而產生相關毒性[7]。盡管一些不能激活AhR的DLCs也可能導致神經毒性和免疫毒性效應,但是這一般需要很高的暴露濃度,因此在實際的化學品管理中重要性不高[8-9]。
近年來越來越多的新型有機污染物具有類二噁英的分子結構并存在潛在的生物毒性[10-13]。當今新型有機污染物的種類和數量逐年急劇增加,其生態危害和環境風險具有很高的不確定性[14]。其中一個重要的科學問題是這些物質中是否會有類似二噁英的高毒物質。然而對這些物質開展傳統的動物測試毫無現實性。如何通過分子致毒機制和高通量測試技術來識別新型有毒污染物并預測其生態危害已成為當前國際上生態毒理學研究的熱點。
如何評估二噁英及DLCs對本土生物的危害及其生態風險也受到更多關注。以往對二噁英及DLCs毒理學的研究主要是通過模式生物來開展的,而證據顯示野生動物對二噁英及DLCs的毒性反應表現出顯著的差異[15-18]。從環境管理的角度,保護生態系統健康首先是保護敏感性的生態物種,近年來越來越多的研究開始關注于二噁英及DLCs對野生生物的毒性敏感性差異的機制[15-16,19-20]。
隨著對二噁英及DLCs分子毒理學的深入研究,其致毒機制和模式逐漸清晰。這些研究的積累勾畫出二噁英及DLCs通過激活AhR誘導毒性的有害結局路徑(adverse outcome pathway,AOP)。此AOP作為連接分子啟動事件和有害結局之間的框架[21],可為研究新型化合物的毒性及物種間敏感性提供一定指導。
二噁英及DLCs主要包括多氯二苯并對二噁英(polychlorinated dibenzo-p-dioxins,PCDDs)、多氯二苯并呋喃(polychlorinated dibenzo-furans,PCDFs)、多氯聯苯(polychorinated biphenyls,PCBs)和多環芳烴(polycyclic aromatic hydrocarbons,PAHs)等持久性有機污染物,分別有75種、135種、208種及200余種異構體[13]。由于當今新型有機污染物的種類和數量每年急速增長,并隨著相關檢測技術的發展,越來越多的化學物質被發現具有二噁英活性。最近,通過H4IIE-luc報告基因法[22]和鳥的AhR1-LRG報告基因法[23]發現了3種重要的新型二噁英物質,即甲氧基化多溴聯苯醚(methoxylated polybrominated diphenyl ethers,MeO-PBDEs)、羥基化多溴聯苯醚(hydroxylated polybrominated diphenyl ethers,OH-PBDEs)[12]和多氯代聯苯硫醚(polychlorinated diphenyl sulfides,PCDPSs)[13]。
1.1 MeO-/OH-PBDEs
MeO-PBDEs和OH-PBDEs作為最近被發現的具有二噁英類活性的化合物,是多溴聯苯醚(polybrominated diphenyl ethers,PBDEs)的甲氧基化和羥基化衍生物。它們也是一種新型的環境有機類污染物,近年來越來越受到社會各界的廣泛關注[12]。PBDEs作為常見的添加型溴代阻燃劑,在環境中被大量檢出[24-29]。因PBDEs與二噁英類化合物結構極為相似,大量的研究探索其是否為新型二噁英物質,但結果顯示這類化合物并無二噁英類活性,即使表現的微弱效應也是由其他雜質造成的[30-33]。
而后來研究發現PBDEs的衍生物MeO-PBDEs和OH-PBDEs具有二噁英類活性,并且發現它們的二噁英活性對不同鳥類具有敏感性差異。Su等[12]利用報告基因法將34種PBDEs衍生物(15種MeOPBDEs和19種OH-PBDEs)暴露于H4IIE-luc細胞,首次發現了PBDEs衍生物能夠誘導顯著的AhR活性,結果顯示:34種測試物質有19種表現出二噁英活性,其中5-C1-6-HO-BDE-47的相對毒性效力(relative potency,ReP)最大,與八氯代二苯并二噁英(OCDD)和八氯代二苯并呋喃(OCDF)的毒性當量因子(TEF)相當;并且發現OH-官能團和MeO-官能團相比,可以誘導更大的AhR活性,這和其他文獻報道的MeO-和OH-官能團的加入會大大加強化合物的AhR效應的結果相一致[34]。可見OH-和MeO-官能團的加入使得PBDEs具有了極強的二噁英活性。張睿[35]用鳥的 AhR1-LRG報告基因法對 19種MeO-/OH-PBDEs二噁英活性的鳥類種間敏感性進行了研究,結果表明:1)不同鳥對同一MeO-/OH-PBDEs的敏感性不同;2)部分MeO-/OH-PBDEs二噁英毒性的鳥類種間敏感性排序與典型二噁英化合物也不一致;3)基于H4IIE-luc試驗推導的MeO-/OH-PBDEs的毒性效力比鳥類毒理試驗得到的小1~4個數量級,這與典型二噁英化合物的情況一致。
1.2 PCDPSs
PCDPSs作為一種新型二噁英活性化合物,其結構與多氯聯苯醚和多溴聯苯醚極其相似,共有209種同素異構體。PCDPSs兩個苯環之間由硫原子連接,化學通式為C12H10-xSClx(x=1~10)。其可在冶煉廠的灰渣、垃圾焚燒爐的煙道廢氣、紙漿廢水、長江下游水和表層底泥中被檢出[36-38]。
通過研究發現部分PCDPSs具有二噁英活性,并且發現PCDPSs的二噁英活性規律與PCDD/Fs、PCBs相似。夏潔[13]使用H4IIE-luc受體報告基因法,對19種PCDPSs的毒性進行研究,發現15種PCDPSs具有二噁英類活性,8種的二噁英活性最顯著,ReP值為5.1×10-8~3.2×10-5,AhR受體活性最高的PCDPSs的ReP值(ReP=10-5)比四氯二苯并-p-二噁英(TCDD)的ReP值(ReP=l)低105倍;且除了2,4,4 ',5-TrisCDPS和2,2',3,3',4,5,6-HeptaCDPS的ReP值與WHO公布的單臨位 PCBs相當外,其他的PCDPSs的 ReP值均比 PCBs低;另外,19種PCDPSs的二噁英活性規律與PCDD/Fs、PCBs相似,低于四氯取代的PCDD/Fs、PCBs均不會激活芳香烴受體活性,這可能與AhR-LBD域氨基酸殘基通過疏水作用所形成的口袋有關。Zhang等[39]使用鳥類AhR1-LRG試驗對18種PCDPSs的二噁英活性進行分析,證實了它們能夠誘導二噁英類活性,且具有很大的種間敏感性差異。并發現PCDPSs對雞、環頸雉和日本鵪鶉的毒性效力均隨著氯代水平的提高呈現上升趨勢。部分PCDPSs類二噁英毒性的鳥類種間敏感性排序與典型二噁英的情況不同,這可能與鳥類AhR1-LBD域氨基酸序列的差異及配體化合物結構的差異有關。
1976年,Poland等[40]首次發現了TCDD的毒性主要是由于其可與AhR特異性地結合。其后大量研究表明,具有高毒性的二噁英及DLCs的作用主要是通過激活 AhR,進而引起各種相關毒性[41-43]。并且二噁英及DLCs在不同物種間和物種內的毒性存在著敏感性差異。由于AhR經過長期的復制和多樣化,產生了各種差異,雖然同一物種的AhR結構特性有著廣泛的保守性,但結構上細微的差異會導致功能上巨大的不同[44]。
2.1 AhR簡介
AhR屬于堿性螺旋-環-螺旋(basic helix loop helix,bHLH)PER-ARNT-SIM同源域(PER-ARNT-SIM, PAS)蛋白超家族[45]。AhR是一個依賴配體激活的轉錄因子,主要由DNA結合域(DNA-binding domain,DBD)、配體結合域(ligand binding domain, LBD)和反式激活域(transactivation domain,TAD)組成[46]。
AhR在無脊椎動物中并沒有結合二噁英及DLCs的能力,但在脊椎動物中能夠結合二噁英類物質,并且AhR基因經過長期的復制和多樣化,導致產生了至少3個AhR基因家族—AhR1、AhR2和芳香烴受體抑制因子(AhRR)[47-48]。AhR1最先在C57BL/6小鼠的肝中被發現,后來發現在所有的脊椎動物中都含有AhR1并具均有轉錄活性[49]。和哺乳動物(包括人類)只有AhR1不同[50],其他脊椎動物不只有AhR1,還有AhR2,只是在不同物種中兩者的表達活性不同。鳥的AhR1和AhR2雖然都具有轉錄活性,但AhR2轉錄活性低,即AhR1在鳥中占主導[51]。而對于魚來說,二噁英通過AhR介導的毒代動力學更復雜。魚至少有3個AhR(AhR1、AhR2和AhR3),并且每個 AhR又都包括多個亞型[52]。AhR1、AhR2最初在鳉魚中被確認[44,53],大多數硬骨魚類中,AhR2顯示是活化型,而AhR1不能被二噁英類化合物結合和激活[54]。后來發現AhR1的亞型AhR1B鄰近AhR2,并且在斑馬魚胚胎中可表達,而這與二噁英類化合物無關,即AhR1B在斑馬魚的胚胎發育中起著重要的生理作用[43]。另外AhR3的作用至今還沒有確認,僅僅知道在一些軟骨魚類中可以表達[47]。AhRR是AhR作用的抑制因子,AhRR本身不結合AhR受體,但AhRR和AhR在bHLH和PAS-A域有著高度的序列一致性[48,55-56]。AhRR有些功能與AhR類似,在鹵代和非鹵代芳香烴化合物激活AhR1或者AhR2后,其表達可被誘導,與AhR競爭可用的ARNT結合位點,形成沒有轉錄活性的AhRR/ARNT二聚體,并可以結合DRE來抑制DRE啟動子[48,57]。另外鳉魚的 AhRR可以抑制AhR1和AhR2的反式激活作用[48]。AhRR功能在魚類和哺乳動物的進一步表征,可有助于理解在暴露于芳香烴化合物后,引起物種間及細胞類型差異的機制。
2.2 AhR經典作用機制
AhR活性的毒性機制研究由來已久,其毒性調控過程主要包括4個步驟:胞漿復合物形成、AhR轉運、AhR異源二聚化及CYP1A的誘導表達[43]。但由于AhR基因經過長期的復制和多樣化,導致其在不同物種中的形態和功能產生一定差異,再加上AhR的作用通路與其他通路交叉的多樣和混雜性,試圖描述清楚 AhR的機制比較困難[41]。但根據AhR結構特性的廣泛保守性,仍存在著一個經典的核受體機制,具體如下:
正常情況下存在于細胞質中的AhR處于不活躍狀態,因為AhR與熱休克蛋白(Hsp90)、前列腺素E合成酶3(prostaglandin esynthase,p23)單聚體及乙型肝炎病毒X蛋白2(hepatitis B virus X-associated protein2,XAP2)形成多蛋白復合體[58-60],參與屏蔽核定位信號。當外源性配體進入細胞后,與AhR結合。接著進入細胞核,AhR從Hsp90復合體上解離下來,再與 ARNT形成異質二聚體[59-61]。而由于Hsp90復合體的解離使得AhR的DNA結合位點暴露出來,此DNA結合位點可特異性地識別結合DNA上的DRE,從而AhR/ARNT異質二聚體結合在DRE上并啟動下游靶基因,如編碼CYP1A1、醌還原酶的基因表達[43,62],由此誘導相應的生物毒性。
隨著對AhR的分子生物學機制和二噁英及DLCs的致毒模式的深入研究,通過對這些研究數據進行整合勾畫出二噁英及DLCs通過激活AhR受體誘導毒性的AOP,它是連接分子啟動事件、細胞、器官、組織、個體和最終有害結局之間的框架[21]。這種AOP框架能為預測新型污染物和物質的種間敏感性差異提供基礎,進而為生態毒理學的預測方法和生態風險評估的更廣泛使用提供保障。

圖1 AhR介導的有害結局路徑示意圖Fig.1 Adverse outcome pathway(AOP)mediated by AhR
AOP是一個概念性的框架,通過整合現有的不同生物組織水平的生態毒理信息,描述了直接分子啟動事件和有害結局直接的聯系,從而使得評估結果更加有效[21]。即AOP描述了從一個分子啟動事件開始,經過對細胞、器官、組織和個體產生的一系列效應,最終在群落水平上導致一個有害結局的過程。分子啟動事件(MIE)是在開始有害結局路徑時,化學物和機體產生生化作用的一個主錨位。而關鍵事件(KE)是連接MIE和有害結局之間的多個層次生物組織上的有因果關系或者某種相關關系的事件,這些數據的獲得可能來自體外、體內試驗或計算模擬系統。
如圖1所示,AhR-AOP框架可幫助把二噁英及DLCs通過AhR介導的分子效應和在細胞、器官、個體或者群體水平上觀察到的有害結局聯系起來。即二噁英及DLCs首先激活AhR這一分子啟動事件,導致AhR/ARNT的二聚及相關I相和II相代謝酶的誘導,接著引起細胞、器官、個體上的一連串效應,最終對整個種群產生影響。
二噁英及DLCs能夠激活AhR,并同時激活相關代謝酶,引起各種毒性[63]。直接和間接的證據表明二噁英的AOP的分子啟動事件就是激活AhR,盡管這個事件還沒有被完全確定[21],但有研究發現TCDD的毒性通過AhR啟動的直接證據是小鼠被敲除AhR后,對TCDD誘導的毒性具有抵抗力[64],并且對斑馬魚胚胎注射抑制AhR轉運蛋白的嗎啉代寡核苷酸后,減少和延遲了TCDD的毒性[65]。
二噁英及DLCs在啟動AhR關鍵分子事件后,最關鍵的一條通路是能誘導持續的AhR/ARNT二聚,從而導致細胞形態發育期間的ARNT和原來的結合對象分離,最終干擾依賴 ARNT的細胞功能[66-67]。比如,HIF-1α作為ARNT的二聚對象,在供氧不足時,與ARNT能形成一個轉錄因子復合體,來結合DNA上的缺氧反應增強子,激活相關基因的表達,如激活與血管生成有關的血管內皮生長因子,而二噁英及DLCs通過干擾ARNT和HIF-1α的二聚,從而改變心血管的發育和相關功能[68-71]。
二噁英及DLCs還和轉錄輔助因子作用,改變大量基因的轉錄,包括增加細胞色素基因(CYP1A)的轉錄[72]。雞的CYP1A有2個亞型:CYP1A4和CYP1A5[73]。其中CYP1A4具有芳香烴酶(aromatic enzyme,AE)和脫乙基酶(ethoxy-resorufin-o-deethylase,EROD)的催化特異性。而CYP1A5主要是負責內源性脂肪酸花生四烯酸代謝和特異性催化尿卟啉原的氧化。尿卟啉原氧化會帶來羧酸鹽卟啉的積累,其對肝臟、腎臟、骨骼和血液等都會帶來影響,最終導致尿卟啉癥。花生四烯酸能夠產生大量活性氧,誘導氧化應激,使得氧化系統和抗氧化系統失衡,導致組織損傷。
AhR的激活還能導致II相代謝酶的誘導,如谷胱苷肽硫轉移酶(glutathione S-transferases,GSTs)和半乳糖基轉移酶(uridine diphosphate-galactosyl transfer-ase,UDP-GT)。因羥基化多氯聯苯(OH-PCBs)與甲狀腺激素(T4)比,和甲狀腺素運載蛋白(TTR)的親和力更大,能與T4競爭結合TTR,故PCBs可取代T4,導致 T4代謝和排泄,從而使 T4的含量降低[72,74-75]。同時,PCBs可能會加速新陳代謝和在沒有AhR介導下,與一些載體作用(如維生素結合蛋白和TTR),導致維生素A的降低[76-77]。而T4和類維生素A的減少會直接導致器官、個體發育的異常。
二噁英及DLCs的的毒性效應在個體上表現為引起發育異常[78]、胚胎致死[79]、增加不孕癥及改變父母行為[80]等,進而降低繁殖率[81],引起種群下降[82]。Kim等[83]研究了TCDD、PCB77和PCB126對日本青鳉胚胎發育毒性,發現心血管發育和功能異常,并且引起幼魚顱面畸形,心包及卵黃囊水腫并抑制魚鰾的形成,并且孵化后3 d的半數致死濃度(LC50)分別是8.1 pg·mL-1、0.25 ng·mL-1和0.6μg·mL-1。黃莉等[84]研究了TCDD暴露對小鼠胚胎毒性的影響,發現其可造成著床前胚胎丟失并導致雌性生殖器官的多種生殖激素的紊亂。并且20世紀60年代,人們發現美國的一個水紹人工養殖農場里,水紹不孕,種群下降,研究發現喂食水貂的飼料里含有TCDD和PCBs[85]。Giesy等[86]研究了二噁英類物質對北美五大湖區域鳥的繁殖率的影響,發現禿鷹和污染相對較輕地區的鷹比,繁殖率要低,并且隨后在此地區發現了小鷹的畸形[87]。Henny等[88]對北美魚鷹的數量從歷史和現代的角度進行了綜述,發現在20世紀50到70年內期間,DDT及PCDD/Fs、PCB等環境持久性有機污染物極大降低了魚鷹的數量,而由于禁止和減少了此類化合物的生產和使用,目前魚鷹的數量趨于穩定。二噁英及DLCs對哺乳動物的影響也很嚴重。大量調查發現世界各大海洋哺乳動物體內,如鯨、海豚、海豹等的體內PCBs濃度比較高,都面臨著種群減少的風險[89]。
雖然從20世紀70年代末,全世界范圍內開始對二噁英及DLCs的生產和使用進行明令禁止,但由于其具有環境持久性、親脂性及高度的生物蓄積性,生態危害仍持續存在。并且在中國,PCDD/Fs的污染仍較為嚴重,并主要存在于沉積物中,其他介質中則相對較少。張烴等[90]對中國蘇南25個城市群河流沉積物樣品中的二噁英類物質進行了調查, 96%和88%的樣點總毒性當量濃度(TEQs)分別超過加拿大和美國環境保護局(EPA)沉積物質量指導值,表明蘇南城市群沉積物二噁英及DLCs具有一定生態風險。夏潔[13]對長江和太湖流域環境介質中二噁英類活性進行篩查,發現水樣在濃度設置范圍內(濃縮50倍)均無二噁英活性,而所有沉積物釆樣點均表現出顯著的二噁英活性,且高于美國沉積物的二噁英類物質的風險閾值(30 pg·g-1,干重),表明太湖和長江沉積物具有一定的生態和健康風險。Zhang等[91]對中國珠江三角地區的土壤進行二噁英類物質調查發現,62個樣品中有27.4%的樣品超過了加拿大的背景濃度。
基于AhR介導的AOP的構建為研究新型化合物的作用模式、生態毒性預測及物種間敏感性研究提供了指導性的框架。面對種類和數量急劇增長的各種新型化學物質,探索其中是否存在新AhR配體及物種敏感性是二噁英及DLCs毒理學研究的重要方向之一。而AOP正好為此提供了支撐,可以實現從作用機制到最終生態毒性的反推。我們可以設想:根據新型化合物的關鍵作用模式,即分子啟動事件,和現有已知化合物的AOP模式的進行比對,并輔以相應的細胞、器官、個體及種群水平上的比較,從而能為識別此新型化合物和推斷相應的物種敏感性提供可能。進而也許無需傳統的生態毒理學實驗即可進一步推斷此新型化合物可能導致的最終結局效應,最終可為實現此類化合物的生態毒性預測和風險評估提供一定指導。
然而要預測一個化合物是否能夠誘導類二噁英毒性,存在以下幾種假設:
(1)分子啟動事件:化合物能夠結合和激活AhR;
(2)需要有顯著的效能;
(3)分子啟動事件激活是高度專一的,且是最敏感的內源性分子事件;
(4)由于AhR蛋白(序列和構象)基因多樣性,生態物種間的對二噁英的毒性敏感性是不同的。
要實現上述假設,必須有相應的檢測方法來支撐。主要包括生物檢測方法和化學分析方法兩大類。生物檢測方法又包括報告基因法和酶活力誘導法(ethoxyresorufin-O-deethylase,EROD)、免疫法等。
目前基于細胞的的體外實驗生物測試方法,能夠為測試新型二噁英物質和物種敏感性提供有效的技術支持。而傳統上是通過大量的活體模式動物實驗發現的生態毒性類型和大小來判斷其是否為類二噁英物質,這種做法不僅違背動物保護理論,工作量巨大[35],而且對當今數量巨大并一直在增加的新型化合物來說,也是不現實的。這種利用體外實驗的動物替代性試驗技術,高效價廉,很好地減少了對活體動物長期測試的需要[40]。EROD法作為一種體外實驗生物方法,是基于二噁英與AhR結合活化后,經過一系列過程,通過測定激活7-乙氧基-異吩惡唑酮-脫乙基(7-ethoxyresorufin-O-deethylase,EROD)酶的活性,來了解二噁英激活AhR的能力。而由于EROD酶不能由肝細胞內源表達,故其表達量與二噁英的暴露量成存在定量關系。報告基因法是近年來根據AhR受體作用模式發展起來的體外細胞測試法(如H4IIE-luc報告基因法和鳥的AhR1-LRG報告基因法),與EROD法比,靈敏度更高,檢測周期更短,更適合大量樣品的篩選和半定量測定[92],能為快速發現這些新型二噁英物質提供有效的技術支撐,故目前得到了更廣泛的應用。報告基因法是應用基因重組技術,把哺乳動物細胞的細胞色素P450基因(CYP1A1)和螢火蟲熒光酶合成,作為報告基因重組到真核細胞內,當二噁英及DLCs進入細胞和AhR結合后,經過一系列過程激活下游的熒光合成酶基因表達[22]。該測定系統合成的熒光素酶表達量及熒光強度與加入的二噁英及DLCs的量成正比,最終測定結果以ReP表示。鳥的AhR1-LRG報告基因法已經在雞、環頸雉、日本鵪鶉、鸕鶿、黑足信天翁和游隼中應用,并表現出顯著的敏感性差異。報告基因法與高通量測試技術結合,為快速探索環境介質中大量存在的潛在二噁英活性物質提供了更加有效的支撐[12,93]。報告基因法還可以和化學方法聯合,構成用于識別關鍵致毒物的技術,即基于毒性測試的污染物鑒別技術(effect directed analysis,EDA)[94]。Shi等[95]和Hu等[96]用EDA的方法分別對長江水源水和中國東部不同地區的自來水廠出水、自來水、煮沸的自來水進行了篩查分析,首先用生物測試方法進行了生物活性測試,對高活性的樣品再進行進一步的分級分離,最后用化學儀器定量檢測,最終識別出有機氯農藥、鄰苯二甲酸二丁酯、鄰苯二甲酸二異辛酯、雙酚A、壬基酚、辛基酚等關鍵致毒物。細胞水平的相關指標,如T4的檢測可使用放射免疫法(RIA)和酶聯免疫法(ELISA)。傳統上,廣泛使用RIA研究鋸齒動物的內分泌和毒性,而目前,ELISA已經成為鋸齒動物研究常用的方法,對其分析測定則采用高效液相色譜(HLPC)和質譜(MS)[97]。氧化應激的測定主要通過檢測活性氧(ROS)、還原型谷胱甘肽(GSH)、脂質過氧化、過氧化物等指標,ROS主要是用熒光進行檢測,不過目前出現了基于發光進行檢測的技術。GSH水平可由HLPC、毛細管電泳(CE)檢測。另外通過熒光或吸收光檢測技術可檢測脂質過氧化反應。
由上述可知,AOP反映的是關鍵分子啟動事件及隨后產生的細胞、器官、組織、個體和種群水平上效應的框架,可為化合物的物種敏感性差異研究提供指導,進而據此或許可進行跨物種外推的生態風險評估。二噁英及DLCs化合物對大多數脊椎動物具有高毒性,但是不管在物種內還是物種間敏感性上存在很大的不同[51,98-101]。主要是由于在長期的進化過程中,生物體的遺傳變異產生了多種AhR的變形體,雖然脊椎動物的AhR結構特性有著廣泛的保守性,但結構上細微的差異會導致功能上巨大的不同[42],即導致了對二噁英及DLCs的生化和毒性效應的敏感性差異[50,102]。而這種差異是由AhR配體結合區域的氨基酸序列和構象的不同導致的。另外不同配體化合物由于不同的分子結構,導致其和AhR的結合力也不同,進而產生不同的物種敏感性。
5.1 敏感性差異
已有大量研究表明,TCDD、PCB77和PCB126等其他二噁英類物質對鳥類的毒效應存在種間敏感性差異[103-106]。對于TCDD來說,發現雞在鳥類中最敏感,日本鵪鶉的敏感性比雞低1 000倍[103]。而對于哺乳動物,大鼠對TCDD的敏感性比雞高1個數量級左右[93,107]。而TCDD對人類AhR的親和力通常比大多數標準的實驗室嚙齒類動物低,研究發現,人類細胞的CYP1A1誘導的劑量效應曲線在這些嚙齒類動物的右側,大約10倍左右[104,108]。由TCDD引起的鮭魚和斑馬魚早期階段致死率敏感性相差40倍[109]。

圖2 二噁英及DLCs對各個物種的EC50值注:1.數據來自不同文獻[35,39,23,110],2.圖2-b是圖2-a的部分物質數據圖。Fig.2 EC50value of dioxins and DLCs to different speciesNote:1.Dates are from different references[35,39,23,110], 2.Fig.2-b is a part of Fig.2-a.
圖2 是二噁英及DLCs對大鼠和3種鳥類(雞、環頸雉、日本鵪鶉)的通過報告基因法得到的半效應濃度(EC50)比較圖。顯示:
(1)對各個物種間敏感性比較,發現對大多數物質來說,4種物種的敏感性具有一定的差異,濃度相差1~2個數量級左右,特別是對TCDD來說,在4個物種的EC50值相差一個數量級左右。對于大多數物質,3種鳥類中,雞最敏感,環頸雉次之,日本鵪鶉最弱,分別相差一個數量級左右。而大鼠比雞的敏感性又高0~1個數量級左右。
(2)對于單個物種,不同二噁英及DLCs的物種敏感性也存在差異。除對 2,3,3',4,4',5,6-Hepta-CDPS、2,3,3',4,4'-PentaCB和2,3',4,4',5-PentaCB物種敏感性在一個數量級內,相差不大外,其他物質的敏感性差別最大可達一個多數量級。
(3)TCDD、2,3,4,7,8-PentaCDF和2,3,7,8-TetraCDF的毒性最強,2,4',5-TrisCDPS的毒性最弱。
通過圖2我們可推想,對于某未知新型化合物,若通過報告基因法進行毒性測試,得到的EC50值在某個區間內,我們或許可以通過此EC50的所落區間范圍來判斷其所屬物質類型,實現物質的半定性判斷,對化學分析方法起到輔助補充作用。另外,對某已知其結構的化合物,通過其結構上與其他化合物結構的類似性,可以推斷此化合物的相應二噁英毒性。并且可以據此進一步對此物質的敏感性和毒性進行跨物種外推。而要實現上述設想,最重要的前提是進行更多化合物和更多物種的二噁英類毒性測試,圖中的物質數量太少,判斷結果存在很大不確定性。只有建立大量物質和大量物種的毒性數據庫,才能為更好的物質毒性識別和判斷提供可靠的數據支撐。
5.2 敏感性差異原因
不同的二噁英及DLCs在不同物種間存在很大敏感性差異,導致這種差異的主要原因有兩點:(1)化學物質由于其分子結構不同,導致其在同一物種的活性不同;(2)不同物種由于其AhR蛋白序列和構象差異,導致同一化學物質在不同物種中的活性不同。而后者是敏感性差異研究的主要關注點。
對于生態系統,鳥類、哺乳動物及魚類通常作為主要的研究對象,對于鳥和哺乳動物的敏感性差異機制已經比較清楚,而對于魚類,由于基因經過長期的進化和多樣化,產生了多種AhR變異體,故其敏感性機制比較復雜,目前還不是很清楚。
5.2.1 鳥類
對于鳥類來說,AhR1配體LBD區域的氨基酸序列的差異是引起二噁英及DLCs效應產生鳥類種間敏感性差異的原因[103-106]。
為了進一步說明氨基酸差異在物種敏感性上所起的重要作用,研究發現,鳥AhR1的LBD域的異亮氨酸324(Ile324)位點和絲氨酸380(Ser380)位點的差異決定著二噁英及DLCs誘導的鳥種間敏感性不同[16,106,110-111]。Karchner等[111]研究發現雞對二噁英類物質的敏感性明顯大于燕鷗(約250倍),為評估雞和歐燕的AhR1-LBD域的3個氨基酸殘基(雞的丙氨酸Ala 257、異亮氨酸Ile324和絲氨酸Ser380,分別對應于歐燕的蘇氨酸Thr258、纈氨酸Val325和丙氨酸Ala381)對AhR特性的貢獻,通過嵌合AhR蛋白和定點誘變,把歐燕AhR的每個相應的殘基變為相對應的雞的殘基,來檢測其結合TCDD的能力和反式激活熒光報告基因的能力,結果顯示:野生型的歐燕結合TCDD的能力是雞的20%,歐燕AhR誘變型Thr258Ala(258位點的Thr誘變為Ala)結合TCDD的能力和野生型的相似,而歐燕的誘變型Val325Ile和Ala381Ser結合TCDD的能力趨于雞;并且反式激活熒光報告基因的能力的結果顯示, Thr258Ala誘變型不能激活熒光素酶的轉錄表達,而誘變型Val325Ile和Ala381Ser能夠激活其轉錄表達,所以雞的Ile324和Ser380兩個氨基酸位點決定此2種鳥對二噁英及DLCs的敏感性差異。Head等[106]為了進一步證明這2個關鍵氨基酸差異在鳥敏感性上所起的關鍵作用,在Karchner研究的基礎上,選取了更多的鳥類(12種)進行研究,進一步顯示了AhR1-LBD的Ile324和Ser380兩個關鍵氨基酸位點能夠預測更多鳥的敏感性差異。隨后Farmahin等[18]和 Manning等[110]對 86種鳥類對二噁英及DLCs的敏感性和AhR1-LBD域的氨基酸位點進行分析,并從256、257、297、324、337和380六個氨基酸位點中,又一次確認了氨基酸位點 Ile324和Ser380能夠影響86種鳥AhR1表達的敏感性。并據此將鳥類分為三大類:高敏感型(Ⅰ型,Ile324_ Ser380)、中敏感型(Ⅱ型,Ile324_Ala380)和低敏感型(Ⅲ型,Val324_Ala380),各個敏感型的代表物種分別為雞、環形雉、日本鵪鶉。張睿[35]采用Farmahin[23]建立的鳥類AhR1-LRG實驗對MeO-/OH-PBDEs鳥類特異的類二噁英毒性及其類二噁英毒性的鳥類種間敏感性差異進行了研究,結果表明,同一MeO-/OHPBDEs對不同鳥類的二噁英毒性存在差異;且由分子動力模擬可知,鳥類AhR1的380和324氨基酸點位會影響4號螺旋的運動和構象的變化,進而影響AhR1的激活,從而導致MeO-/OH-PBDEs在鳥類間的二噁英活性敏感性差異;且Ile324Val誘變型和Ser380Ala誘變型分別增加了雞AhR1-LBD的空腔體積[111],故二噁英及DLCs的敏感性差異可能與AhR蛋白空腔體積大小有關,另外殘基側鏈上羥基的氫鍵等也可能影響二噁英及DLCs的敏感性差異。Farmahin等[18]也研究發現,日本鵪鶉AhR1的氨基酸324位點從Val到Ile(Val324Ile)的誘變可以提高AhR的熒光素酶活性(約12倍)。通過對日本鵪鶉AhR1的氨基酸380位點從Ala到Ser的誘變可以分別提高TCDD和PeCDF的敏感性約25和3.5倍。并同時會導致AhR空腔體積的減少,引起殘基側鏈上羥基的氫鍵和雙氧橋或配體的氯原子進行相互作用,這些變化可能使得配體-受體的相互作用更穩定[18],從而導致二噁英及DLCs的種間敏感性產生差異。
5.2.2 哺乳動物
研究發現人類的AhR-LBD的苯丙氨酸318 (Phe318)位點和纈氨酸381(Val381)位點在二噁英的敏感性差異上起著關鍵作用。Goryo等[112]研究了人的AhR的5個氨基酸在敏感性差異上可能起到的作用,發現這些氨基酸通過誘變方法改變為Ala后,通過檢測它們的反激活效應發現Phe318Ala完全丟失了活性,而其他點位的活性僅稍微被損壞。并對 318鄰近位點進行誘變發現 Ile319Ala和His320Ala誘變型(小鼠的319位點和鳥的324位點是對等的)的活性也完全喪失,顯示這兩個氨基酸也在配體結合上起著重要作用[112-113]。Ema等[114]發現了人類AhR的381位點(和小鼠AhR的375位點對等)在配體結合上的重要性,由381位點的Val到天門冬氨酸(Asp)的誘變完全喪失了人類AhR的配體結合活性。故二噁英及DLCs對人類敏感性差異的原因是 AhR-LBD的2個氨基酸位點 Phe318和Val381的不同。
5.2.3 魚類
和鳥類和哺乳動物不同的是,在長期的進化和演變中,魚類的AhR產生了更多變異體,所以對魚類來說,二噁英的種間敏感性和AhR氨基酸序列的類似關系還沒有確定[52]。斑馬魚是已知的最不敏感的魚類,和已知的最敏感的魚類虹鱒魚比,斑馬魚的胚胎對TCDD的敏感性低40倍[109,115]。在鳥類中, AhR配體結合域的關鍵氨基酸殘基能預測二噁英類化合物的物種敏感性,但不清楚是否類似的預測關系存在于魚類中[106]。因為雖然二噁英效應在魚類中也是通過AhR介導,但對于魚類來說動力學更復雜。魚至少有3個AhR(AhR1、AhR2和AhR3),并且每個AhR又都包括多個亞型[52]。在大西洋鮭魚中,共有6種不同的AhR亞型被發現,包括2個AhR1s(α、β)和4個AhR2s(α、β、γ、ζ)[116]。目前主要推測脊椎動物,如一些魚,包括大馬哈魚,經歷了古老基因復制,并且經歷了二次復制,從而導致了魚類的多種AhR分支和多種AhR亞型[117]。且基因復制后的完整冗余功能是不穩定的,隨著時間推移會導致復制的基因的失活或功能差異[118]。另外魚類間的AhR序列和鳥相比,保守性更低,保守性的缺乏使得識別結合配體的關鍵氨基酸更加困難[52]。
AhR表達的自動調節和AhR蛋白的穩定性已經被證實和魚類的敏感性有關。然而,目前還不清楚AhR2的上調是否對物種間的AhR激動劑的效應差異存在影響[119]。Wirgin等[120]推測了AhR蛋白構象的不同是大西洋小鱈對二噁英及DLCs產生種間敏感性差異的決定因素。但研究中沒有發現大西洋小鱈的LBD氨基酸序列的不同和配體結合的親和力有關,然而,LBD以外的氨基酸的檢測顯示影響蛋白的穩定性,因此導致親和力的降低。
另外關于AhRR、ARNT和Hsp蛋白的表達和功能在決定魚類對二噁英及DLCs的敏感性差異方面的信息還不完善[120-121]。而魚類鐘間還有AhR動力學的其他未知差異,致使得魚種間對二噁英及DLCs敏感性差異的原因更加復雜。
(1)雖然目前對二噁英及DLCs的毒理學的研究由來已久,包括一個經典的核受體機制。但由于在物種漫長的進化過程中,AhR經過了各種變異,雖然AhR結構特性有著廣泛的保守性,但是將其具體致毒機制試圖描述清楚還比較困難,并且二噁英及DLCs的各種毒性數據還不齊全,故基于此建立的AOP還需要進一步完善,從而為更好的風險評估提供有效的支持。
(2)二噁英及DLCs在不同的物種間存在顯著的敏感性差異,找到最敏感性物種是生態毒理的一個重要任務,而要在我國進行二噁英及DLCs對環境污染物的生態評估,必須加強本土物種的研究,建立基于本土物種的二噁英及DLCs毒性數據,從而為風險評價及基準和標準的制定提供更加有效的數據支持。
(3)本文介紹了最近幾年所發現的環境中的新型二噁英物質。而目前環境中的污染物數量巨大,并且一小部分物質具有相關的毒性數據,而大部分物質的毒性數據非常缺乏。故應該進一步開展新型物質的毒性篩查工作,探索新型二噁英物質。
(4)環境中有大量的有機污染具有潛在二噁英類毒性和生態風險。基于物種特異性的報告基因技術,不僅可以用于檢測復合暴露條件下有機污染物的二噁英類物質的TEQs,并以EDA方法來鑒別關鍵有毒物質;此外,采用本土敏感性物種的報告基因法的檢測策略,還可以預測二噁英類毒性物質的生態風險。
[1]Burleson G R,Lebrec H,Yang Y G,et al.Effect of 2,3, 7,8-tetrachlorodibenzo-p-dioxin(TCDD)on influenza virus host resistance in mice[J].Toxicological Sciences, 1996,29(1):40-47
[2]Safe S.Polychlorinated biphenyls(PCBs),dibenzo-pdioxins(PCDDs),dibenzofurans(PCDFs),and related compounds:Environmental and mechanistic considerations which support the development of toxic equivalency factors(TEFs)[J].CRC Critical Reviews in Toxicology, 1990,21(1):51-88
[3]楊永濱,鄭明輝,劉征濤.二惡英類毒理學研究新進展[J].生態毒理學報,2006,1(2):105-115 Yang Y B,Zheng M H,Liu Z T.Researching advancement of the dioxins toxicology[J].Asian Journal of Ecotoxicology,2006,1(2):105-115(in Chinese)
[4]Moura-Alves P,Faé K,Houthuys E,et al.AhR sensing of bacterial pigments regulates antibacterial defence[J].Nature,2014,512(7515):387-392
[5]許振成,許虹,張素坤,等.2,3,7,8-四氯二苯并對二噁英對大鼠卵巢顆粒細胞雌二醇和孕酮分泌的影響[J].生態毒理學報,2009,4(1):131-135 Xu Z C,Xu H,Zhang S K,et al.Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on estradiol and progesterone secretion of ovarian granulosa cells in rats in vitro[J].A-sian Journal of Ecotoxicology,2009,4(1):131-135(in Chinese)
[6]Kennedy G D,Nukaya M,Moran S M,et al.Liver tumor promotion by 2,3,7,8-tetrachlorodibenzo-p-dioxin is dependent on the aryl hydrocarbon receptor and TNF/IL-1 receptors[J].Toxicological Sciences,2014,140(1):135-143
[7]Mandavia C.TCDD-induced activation of aryl hydrocarbon receptor regulates the skin stem cell population[J]. Medical Hypotheses,2015,84(3):204-208
[8]Connor K T,Harris M A,Edwards M R,et al.AH receptor agonist activity in human blood measured with a cellbased bioassay:Evidence for naturally occurring AH receptor ligands in vivo[J].Journal of Exposure Science and Environmental Epidemiology,2008,18(4):369-380
[9]de Waard P W J,Peijnenburg A A C M,Baykus H,et al. A human intervention study with foods containing natural Ah-receptor agonists does not significantly show AhR-mediated effects as measured in blood cells and urine[J]. Chemico-Biological Interactions,2008,176(1):19-29
[10]Bittner M,Hilscherová K,Giesy J P.In vitro assessment of AhR-mediated activities of TCDD in mixture with humic substances[J].Chemosphere,2009,76(11):1505-1508
[11]Bittner M,Macikova P,Giesy J P,et al.Enhancement of AhR-mediated activity of selected pollutants and their mixtures after interaction with dissolved organic matter [J].Environment International,2011,37(5):960-964
[12]Su G,Xia J,Liu H,et al.Dioxin-like potency of HO-and MeO-analogues of PBDEs’the potential risk through consumption of fish from Eastern China[J].Environmental Science&Technology,2012,46(19):10781-10788
[13]夏潔.二惡英類污染物的高通量生物檢測技術研究及其在在環境監測中的應用[D].南京:南京大學,2013: 21-31 Xia J.Development of a high throughput bio-analytical method of dioxin-like compounds and its application in environmental monitoring[D].Nanjing:Nanjing University,2013:21-31(in Chinese)
[14]Gavrilescu M,Demnerová K,Aamand J,et al.Emerging pollutants in the environment:Present and future challenges in biomonitoring,ecological risks and bioremediation [J].New Biotechnology,2015,32(1):147-156
[15]Shoots J,Fraccalvieri D,Franks D G,et al.An aryl hydrocarbon receptor from the salamanderAmbystoma mexicanumexhibits low sensitivity to 2,3,7,8-tetrachlorodibenzo-p-dioxin[J].Environmental Science&Technology,2015,49(11):6993–7001
[16]Doering J A,Farmahin R,Wiseman S,et al.Functionality of aryl hydrocarbon receptors(AhR1 and AhR2)of white sturgeon(Acipenser transmontanus)and implications for the risk assessment of dioxin-like compounds[J].Environmental Science&Technology,2014,48(14):8219-8226
[17]Doering J A,Wiseman S,Beitel S C,et al.Identification and expression of aryl hydrocarbon receptors(AhR1 and AhR2)provide insight in an evolutionary context regarding sensitivity of white sturgeon(Acipenser transmontanus)to dioxin-like compounds[J].Aquatic Toxicology, 2014,150:27-35
[18]Farmahin R,Manning G,Crump D,et al.Amino acid sequence of the ligand binding domain of the aryl hydrocarbon receptor 1(AHR1)predicts sensitivity of wild birds to effects of dioxin-like compounds[J].Toxicological Sciences,2013,131(1):139-152
[19]Doering J A,Farmahin R,Wiseman S,et al.Differences inactivation of aryl hydrocarbon receptors of white sturgeon relative to lake sturgeon are predicted by identities of key amino acids in the ligand binding domain[J].Environmental Science&Technology,2015,49(7):4681-4689
[20]Hirano M,Hwang J H,Park H J,et al.Insilico analysis of the interaction of avian aryl hydrocarbon receptors and dioxins to decipher isoform-,ligand-,and species-specific activations[J].Environmental Science&Technology, 2015,49(6):3795-3804
[21]Ankley G T,Bennett R S,Erickson R J,et al.Adverse outcome pathways:A conceptual framework to support ecotoxicology research and risk assessment[J].Environmental Toxicology and Chemistry,2010,29(3):730-741
[22]張諾,孫韶華,王明泉,等.熒光素酶表達基因法(CALUX)用于二噁英檢測的研究進展[J].生態毒理學報,2014,9(3):391-397 Zhang N,Sun S H,Wang M Q,et al.Research progress of dioxins'detection using chemical-luciferase gene expression(CALUX)[J].Asian Journal of Ecotoxicology, 2014,9(3):391-397(in Chinese)
[23]Farmahin R,Wu D,Crump D,et al.Sequence and in vitro function of chicken,ring-necked pheasant,and Japanese quail AHR1 predict in vivo sensitivity to dioxins[J].Environmental Science&Technology,2012,46(5):2967-2975
[24]Sinkkonen S,Rantalainen A L,Paasivirta J,et al.Polybrominated methoxy diphenyl ethers(MeO-PBDEs)in fish and guillemot of Baltic,Atlantic and Arctic environments[J].Chemosphere,2004,56(8):767-775
[25]Haglund P S,Zook D R,Buser H R,et al.Identification and quantification of polybrominated diphenyl ethers and methoxy-polybrominated diphenyl ethers in Baltic biota [J].Environmental Science&Technology,1997,31(11): 3281-3287
[26]Verreault J,Gabrielsen G W,Chu S,et al.Flame retardants and methoxylated and hydroxylated polybrominated diphenyl ethers in two Norwegian Arctic top predators: Glaucous gulls and polar bears[J].Environmental Science &Technology,2005,39(16):6021-6028
[27]Olsson A,Ceder K,Bergman ?,et al.Nestling blood of the white-tailed sea eagle(Haliaeetus albicilla)as an indicator of territorial exposure to organohalogen compounds-An evaluation[J].Environmental Science&Technology, 2000,34(13):2733-2740
[28]Jaspers V L B,Sonne C,Soler-Rodriguez F,et al.Persistent organic pollutants and methoxylated polybrominated diphenyl ethers in different tissues of white-tailed eagles (Haliaeetus albicilla)from West Greenland[J].Environmental Pollution,2013,175:137-146
[29]Nordl?f U,Helander B,Bignert A,et al.Levels of brominated flame retardants and methoxylated polybrominated diphenyl ethers in eggs of white-tailed sea eagles breeding in different regions of Sweden[J].Science of the Total Environment,2010,409(1):238-246
[30]Kuiper R V,Murk A J,Leonards P E G,et al.In vivo and in vitro Ah-receptor activation by commercial and fractionated pentabromodiphenylether using zebrafish(Danio rerio)and the DR-CALUX assay[J].Aquatic Toxicology, 2006,79(4):366-375
[31]Luthe G,Jacobus J A,Robertson L W.Receptor interactions by polybrominated diphenyl ethers versus polychlorinated biphenyls:A theoretical structure– activity assessment[J].Environmental Toxicology and Pharmacology,2008,25(2):202-210
[32]Peters A K,Sanderson J T,Bergman A,et al.Antagonism of TCDD-induced ethoxyresorufin-o-deethylation activity by polybrominated diphenyl ethers(PBDEs)in primary cynomolgus monkey(Macaca fascicularis)hepatocytes [J].Toxicology Letters,2006,164(2):123-132
[33]Peters A K,Van Londen K,Bergman A,et al.Effects of polybrominated diphenyl ethers on basal and TCDD-induced ethoxyresorufin activity and cytochrome P450-1A1 expression in MCF-7,HepG2,and H4IIE cells[J].Toxicological Sciences,2004,82(2):488-496
[34]Cantón R F,Sanderson J T,Letcher R J,et al.Inhibition and induction of aromatase(CYP19)activity by brominated flame retardants in H295R human adrenocortical carcinoma cells[J].Toxicological Sciences,2005,88(2):447-455
[35]張睿.類二噁英有機污染物毒性的鳥類種間敏感性差異研究[D].南京:南京大學,2014:120-149 Zhang R.The sensitivity difference of avian species to the toxicity of dioxin-like organic pollutants[D].Nanjing: Nanjing University,2014:120-149(in Chinese)
[36]Sinkkonen S,Vattulainen A,Aittola J P,et al.Metal reclamation produces sulphur analogues of toxic dioxins and furans[J].Chemosphere,1994,28(7):1279-1288
[37]Sinkkonen S,Kolehmalnen E,Laihia K,et al.Polychlorinated diphenyl sulfides:Preparation of model compounds, chromatography,mass spectrometry,NMR,and environmental analysis[J].Environmental Science&Technology, 1993,27(7):1319-1326
[38]Schwarzbauer J,Littke R,Weigelt V.Identification of specific organic contaminants for estimating the contributionof the Elbe river to the pollution of the German Bight[J]. Organic Geochemistry,2000,31(12):1713-1731
[39]Zhang R,Zhang X,Zhang J,et al.Activation of avian aryl hydrocarbon receptor and inter-species sensitivity variations by polychlorinated diphenylsulfides[J].Environmental Science&Technology,2014,48(18):10948-10956
[40]Poland A,Glover E,Kende A S.Stereospecific,high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol.Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase[J]. Journal of Biological Chemistry,1976,251(16):4936-4946
[41]Denison M S,Soshilov A A,He G,et al.Exactly the same but different:Promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin)receptor[J].Toxicological Sciences,2011,124 (1):1-22
[42]Schmidt J V,Bradfield C A.Ah receptor signaling pathways[J].Annual Review of Cell and Developmental Biology,1996,12(1):55-89
[43]周海龍,張林寶,廖春陽,等.持久性有機污染物對水生動物芳香烴受體通道的毒理機制及其早期監測(英文)[J].生態毒理學報,2010,5(1):9-17 Zhou H L,Zhang L B,Liao C Y,et al.Advances on toxicological mechanism of AHR pathway and early biomonitoring of persistent organic pollutants(POPs)in aquatic animals[J].Asian Journal of Ecotoxicology,2010,5(1): 9-17
[44]Hahn M E,Karchner S I,Shapiro M A,et al.Molecular evolution of two vertebrate aryl hydrocarbon(dioxin)receptors(AHR1 and AHR2)and the PAS family[J].Proceedings of the National Academy of Sciences,1997,94 (25):13743-13748
[45]Furness S G B,Whelan F.The pleiotropy of dioxin toxicity—Xenobiotic misappropriation of the aryl hydrocarbon receptor's alternative physiological roles[J].Pharmacology&Therapeutics,2009,124(3):336-353
[46]Okey A B.An aryl hydrocarbon receptor odyssey to the shores of toxicology:the Deichmann Lecture,International Congress of Toxicology-XI[J].Toxicological Sciences, 2007,98(1):5-38
[47]Hahn M E.Aryl hydrocarbon receptors:Diversity and evolution[J].Chemico-biological Interactions,2002,141 (1):131-160
[48]Karchner S I,Franks D G,Powell W H,et al.Regulatory interactions among three members of the vertebrate aryl hydrocarbon receptor family:AHR repressor,AHR1,and AHR2[J].Journal of Biological Chemistry,2002,277(9): 6949-6959
[49]龐朋沙,過倩萍,伍會健.細胞內AhR信號轉導通路的機制研究[J].現代生物醫學進展,2010(13):2567-2570 Pang P S,Guo Q P,Wu H J.Biological role of AhR signaling pathway[J].Progress in Modern Biomedicine, 2010(13):2567-2570(in Chinese)
[50]Harper P A,Wong J M Y,Lam M S M,et al.Polymorphisms in the human AH receptor[J].Chemico-biological Interactions,2002,141(1):161-187
[51]Yasui T,Kim E Y,Iwata H,et al.Functional characterization and evolutionary history of two aryl hydrocarbon receptor isoforms(AhR1 and AhR2)from avian species[J]. Toxicological Sciences,2007,99(1):101-117
[52]Doering J A,Giesy J P,Wiseman S,et al.Predicting the sensitivity of fishes to dioxin-like compounds:Possible role of the aryl hydrocarbon receptor(AhR)ligand binding domain[J].Environmental Science and Pollution Research,2013,20(3):1219-1224
[53]Karchner S I,Powell W H,Hahn M E.Identification and functional characterization of two highly divergent aryl hydrocarbon receptors(AHR1 and AHR2)in the teleost Fundulus heteroclitusevidence for a novel subfamily of ligand-binding basichelix loop helix-Per-ARNT-Sim (bHLH-PAS)factors[J].Journal of Biological Chemistry, 1999,274(47):33814-33824
[54]Andreasen E A,Hahn M E,Heideman W,et al.The zebrafish(Danio rerio)aryl hydrocarbon receptor type 1 is a novel vertebrate receptor[J].Molecular Pharmacology, 2002,62(2):234-249
[55]Dolwick K M,Swanson H I,Bradfield C A.In vitro analysis of Ah receptor domains involved in ligand-activated DNA recognition[J].Proceedings of the National Academy of Sciences,1993,90(18):8566-8570
[56]Fukunaga B N,Probst M R,Reisz-Porszasz S,et al.Identification of functional domains of the aryl hydrocarbon receptor[J].Journal of Biological Chemistry,1995,270 (49):29270-29278
[57]Mimura J,Ema M,Sogawa K,et al.Identification of a novel mechanism of regulation of Ah(dioxin)receptor function[J].Genes&Development,1999,13(1):20-25
[58]Pollenz R S.The mechanism of AH receptor protein down-regulation(degradation)and its impact on AH receptor-mediated gene regulation[J].Chemico-biological Interactions,2002,141(1):41-61
[59]Hankinson O.The aryl hydrocarbon receptor complex[J]. Annual Review of Pharmacology and Toxicology,1995, 35(1):307-340
[60]Fujii-Kuriyama Y,Kawajiri K.Molecular mechanisms ofthe physiological functions of the aryl hydrocarbon(dioxin)receptor,a multifunctional regulator that senses and responds to environmental stimuli[J].Proceedings of the Japan Academy.Series B,Physical and Biological Sciences,2010,86(1):40-53
[61]Henklová P,Vrzal R,Ulrichová J,et al.Role of mitogenactivated protein kinases in aryl hydrocarbon receptor signaling[J].Chemico-biological Interactions,2008,172(2): 93-104
[62]Pavek P,Dvorak Z.Xenobiotic-induced transcriptional regulation of xenobiotic metabolizing enzymes of the cytochrome P450 superfamily in human extrahepatic tissues [J].Current Drug Metabolism,2008,9(2):129-143
[63]Poland A,Knutson J C.2,3,7,8-Tetrachlorodibenzo-thorndioxin and related halogenated aromatic hydrocarbons: Examination of the mechanism of toxicity[J].Annual Review of Pharmacology and Toxicology,1982,22(1):517-554
[64]Fernandez-Salguero P M,Hilbert D M,Rudikoff S,et al. Aryl-hydrocarbon receptor-deficient mice are resistant to 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced toxicity[J]. Toxicology and Applied Pharmacology,1996,140(1): 173-179
[65]Prasch A L,Teraoka H,Carney S A,et al.Aryl hydrocarbon receptor 2 mediates 2,3,7,8-tetrachlorodibenzo-pdioxin developmental toxicity in zebrafish[J].Toxicological Sciences,2003,76(1):138-150
[66]Heid S E,Walker M K,Swanson H I.Correlation of cardiotoxicity mediated by halogenated aromatic hydrocarbons to aryl hydrocarbon receptor activation[J].Toxicological Sciences,2001,61(1):187-196
[67]Walker M K,Pollenz R S,Smith S M.Expression of the aryl hydrocarbon receptor(AhR)and AhR nuclear translocator during chick cardiogenesis is consistent with 2,3,7, 8-tetrachlorodibenzo-p-dioxin-induced heart defects[J]. Toxicology and Applied Pharmacology,1997,143(2): 407-419
[68]Jiang B H,Rue E,Wang G L,et al.Dimerization,DNA binding,and transactivation properties of hypoxia-inducible factor 1[J].Journal of Biological Chemistry,1996, 271(30):17771-17778
[69]Goldberg M A,Schneider T J.Similarities between the oxygen-sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin[J]. Journal of Biological Chemistry,1994,269(6):4355-4359
[70]Forsythe J A,Jiang B H,Iyer N V,et al.Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1[J].Molecular and Cellular Biology,1996,16(9):4604-4613
[71]Maxwell P H,Dachs G U,Gleadle J M,et al.Hypoxiainducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth[J].Proceedings of the National Academy of Sciences,1997,94(15):8104-8109
[72]Mimura J,Fujii-Kuriyama Y.Functional role of AhR in the expression of toxic effects by TCDD[J].Biochimica et Biophysica Acta(BBA)-General Subjects,2003,1619 (3):263-268
[73]Gilday D,Gannon M,Yutzey K,et al.Molecular cloning and expression of two novel avian cytochrome P450 1A enzymes induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin [J].Journal of Biological Chemistry,1996,271(51): 33054-33059
[74]Ucán-Marín F,Arukwe A,Mortensen A,et al.Recombinant transthyretin purification and competitive binding with organohalogen compounds in two gull species(Larus argentatusandLarus hyperboreus)[J].Toxicological Sciences,2009,107(2):440-450
[75]McNabb F M,Fox G A.Avian thyroid development in chemically contaminated environments:Is there evidence of alterations in thyroid function and development?[J].E-volution&Development,2003,5(1):76-82
[76]Murvoll K M,Skaare J U,Anderssen E,et al.Exposure and effects of persistent organic pollutants in European shag(Phalacrocorax aristotelis)hatchlings from the coast of Norway[J].Environmental Toxicology and Chemistry, 2006,25(1):190-198
[77]Thackaberry E A,Gabaldon D M,Walker M K,et al.Aryl hydrocarbon receptor null mice develop cardiac hypertrophy and increased hypoxia-inducible factor-1α in the absence of cardiac hypoxia[J].Cardiovascular Toxicology,2002,2(4):263-273
[78]Gilbertson M,Kubiak T,Ludwig J,et al.Great lakes embryo mortality, edema, and deformities syndrome (GLEMEDS)in colonial fish‐eating birds:Similarity to chick‐edema disease[J].Journal of Toxicology and Environmental Health,Part A Current Issues,1991,33(4): 455-520
[79]Handel C M,Van Hemert C.Environmental contaminants and chromosomal damage associated with beak deformities in a resident North American passerine[J].Environmental Toxicology and Chemistry,2015,34(2):314-327
[80]Fernie K J,Smits J E,Bortolotti G R,et al.Reproduction success of American kestrels exposed to dietary polychlorinated biphenyls[J].Environmental Toxicology and Chemistry,2001,20(4):776-781
[81]Kubiak T J,Harris H J,Smith L M,et al.Microcontaminants and reproductive impairment of the Forster's tern on Green Bay,Lake Michigan-1983[J].Archives of Environmental Contamination and Toxicology,1989,18(5): 706-727
[82]Peakall D B,Fox G A.Toxicological investigations of pollutant-related effects in Great Lakes gulls[J].Environmental Health Perspectives,1987,71:187-193
[83]Kim Y,Cooper K R.Toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD)and polychlorinated biphenyls (PCBs)in the embryos and newly hatched larvae of the Japanese medaka(Oryzias latipes)[J].Chemosphere, 1999,39(3):527-538
[84]黃莉,黃韌,馮媛瑜,等.2,3,7,8-四氯苯并二噁英(TCDD)短期染毒可造成著床前胚胎丟失并伴隨雌性生殖器官中毒物相關蛋白的誘導表達[J].生態毒理學報, 2010,5(3):334-342 Huang L,Huang R,Feng Y Y,et al.Shorttime exposure of TCDD causing loss of implantation failure of embryos and its associated with induced expression of relevant proteins[J].Asian Journal of Ecotoxicology,2010,5(3): 334-342(in Chinese)
[85]Stone R.Environmental estrogens stir debate[J].Science, 1994,265(5170):308-310
[86]Giesy J P,Ludwig J P,Tillitt D E.Dioxins,Dibenzofurans, PCBs and Colonial,Fish-Eating Water Birds[M]//Dioxins and Health.USA:Springer,1994:249-307
[87]Giesy J P,Ludwig J P,Tillitt D E.Deformities in birds of the Great Lakes region[J].Environmental Science& Technology,1994,28(3):128A-135A
[88]Henny C J,Grove R A,Kaiser J L,et al.North American osprey populations and contaminants:Historic and contemporary perspectives[J].Journal of Toxicology and Environmental Health,Part B,2010,13(7-8):579-603
[89]Bowerman W W,Best D A,Grubb T G,et al.Assessment of environmental endocrine disruptors in bald eagles of the Great Lakes[J].Chemosphere,2000,41(10):1569-1574
[90]張烴,陳社軍,李楠,等.蘇南城市群河流表層沉積物中二噁英和共平面多氯聯苯的濃度水平、來源和生態風險[J].環境化學,2014,33(9):1445-1455 Zhang T,Chen S J,Li N,et al.Occurrence,sources and ecological risks of PCDD/Fs and dl-PCBs in surface sediments from rivers in city cluster in South Jiangsu Province,China[J].Environmental Chemistry,2014,33(9): 1445-1455(in Chinese)
[91]Zhang S,Peng P,Huang W,et al.PCDD/PCDF pollution in soils and sediments from the Pearl River Delta of China[J].Chemosphere,2009,75(9):1186-1195
[92]Qiu X,Bigsby R M,Hites R A.Hydroxylated metabolites of polybrominated diphenyl ethers in human blood samples from the United States[J].Environmental Health Perspectives,2009,117(1):93-98
[93]Xia J,Su G Y,Zhang X W,et al.Dioxin-like activity in sediments from Tai Lake,China determined by use of the H4IIE-luc bioassay and quantification of individual AhR agonists[J].Environmental Science and Pollution Research,2014,21(2):1480-1488
[94]Brack W.Effect-directed analysis:A promising tool for the identification of organic toxicants in complex mixtures?[J].Analytical and Bioanalytical Chemistry,2003, 377(3):397-407
[95]Shi W,Wang X,Hu G,et al.Bioanalytical and instrumental analysis of thyroid hormone disrupting compounds in water sources along the Yangtze River[J].Environmental Pollution,2011,159(2):441-448
[96]Hu X,Shi W,Wei S,et al.Occurrence and potential causes of androgenic activities in source and drinking water in China[J].Environmental Science&Technology,2013, 47(18):10591-10600
[97]DeVito M,Biegel L,Brouwer A,et al.Screening methods for thyroid hormone disruptors[J].Environmental Health Perspectives,1999,107(5):407-415
[98]USEPA.Critical review and assessment of published research on dioxins and related compounds in avian wildlife-field studies.External review draft[R].Cincinnati, OH:National Center for Environmental Assessment,Office of Research and Development,2001
[99]USEPA.Dose-response assessment from published research of the toxicity of 2,3,7,8-tetrachlorodibenzo-pdioxin and related compounds to aquatic wildlife–laboratory studies.EPA/600/R-02/095.2002.[R].Cincinnati, OH:National Center for Environmental Assessment,Office of Research and Development,2000
[100]Karchner S I,Kennedy S W,Trudeau S,et al.Towards molecular understanding of species differences in dioxin sensitivity:Initial characterization of Ah receptor cDNAs in birds and an amphibian[J].Marine Environmental Research,2000,50(1):51-56
[101]Sand S,Fletcher N,von Rosen D,et al.Quantitative and statistical analysis of differences in sensitivity between Long–Evans and Han/Wistar rats following long-term exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin[J].Regulatory Toxicology and Pharmacology,2010,57(2):136-145
[102]Thomas R S,Penn S G,Holden K,et al.Sequence varia-tion and phylogenetic history of the mouse Ahr gene[J]. Pharmacogenetics and Genomics,2002,12(2):151-163
[103]Hoffman D J,Melancon M J,Klein P N,et al.Comparative developmental toxicity of planar polychlorinated biphenyl congeners in chickens,American kestrels,and common terns[J].Environmental Toxicology and Chemistry,1998,17(4):747-757
[104]Powell D C,Aulerich R J,Meadows J C,et al.Effects of 3,3′,4,4′,5-pentachlorobiphenyl(PCB 126)and 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD)injected into the yolks of chicken(Gallus domesticus)eggs prior to incubation [J].Archives of Environmental Contamination and Toxicology,1996,31(3):404-409
[105] Brunstr?m B,Andersson L.Toxicity and 7-ethoxyresorufin O-deethylase-inducing potency of coplanar polychlorinated biphenyls(PCBs)in chick embryos [J].Archives of Toxicology,1988,62(4):263-266
[106]Head J A,Hahn M E,Kennedy S W.Key amino acids in the aryl hydrocarbon receptor predict dioxin sensitivity in avian species[J].Environmental Science&Technology,2008,42(19):7535-7541
[107]Zhang R,Manning G E,Farmahin R,et al.Relative potencies of aroclor mixtures derived from avian in vitro bioassays:Comparisons with calculated toxic equivalents [J].Environmental Science&Technology,2013,47(15): 8852-8861
[108]Zeiger M,Haag R,H?ckel J,et al.Inducing effects of dioxin-like polychlorinated biphenyls on CYP1A in the human hepatoblastoma cell line HepG2,the rat hepatoma cell line H4IIE,and rat primary hepatocytes:Comparison of relative potencies[J].Toxicological Sciences,2001,63 (1):65-73
[109]Elonen G E,Spehar R L,Holcombe G W,et al.Comparative toxicity of 2,3,7,8‐ tetrachlorodibenzo‐ p‐dioxin to seven freshwater fish species during early life‐stage development[J].Environmental Toxicology and Chemistry,1998,17(3):472-483
[110]Manning G E,Farmahin R,Crump D,et al.A luciferase reporter gene assay and aryl hydrocarbon receptor 1 genotype predict the LD50 of polychlorinated biphenyls in avian species[J].Toxicology and Applied Pharmacology, 2012,263(3):390-401
[111]Karchner S I,Franks D G,Kennedy S W,et al.The molecular basis for differential dioxin sensitivity in birds: Role of the aryl hydrocarbon receptor[J].Proceedings of the National Academy of Sciences of the United States of America,2006,103(16):6252-6257
[112]Goryo K,Suzuki A,Del Carpio C A,et al.Identification of amino acid residues in the Ah receptor involved in ligand binding[J].Biochemical and Biophysical Research Communications,2007,354(2):396-402
[113]Pandini A,Denison M S,Song Y,et al.Structural and functional characterization of the aryl hydrocarbon receptor ligand binding domain by homology modeling and mutational analysis[J].Biochemistry,2007,46(3):696-708
[114]Ema M,Ohe N,Suzuki M,et al.Dioxin binding activities of polymorphic forms of mouse and human arylhydrocarbon receptors[J].Journal of Biological Chemistry,1994,269(44):27337-27343
[115]Walker M K,Spitsbergen J M,Olson J R,et al.2,3,7,8-Tetrachlorodibenzo-p-dioxin(TCDD)toxicity during early life stage development of lake trout(Salvelinus namaycush)[J].Canadian Journal of Fisheries and Aquatic Sciences,1991,48(5):875-883
[116]Hansson M C,Hahn M E.Functional properties of the four Atlantic salmon(Salmo salar)aryl hydrocarbon receptor type 2(AHR2)isoforms[J].Aquatic Toxicology, 2008,86(2):121-130
[117]Hahn M E.Dioxin toxicology and the aryl hydrocarbon receptor:Insights from fish and other non-traditional models[J].Marine Biotechnology,2001,3(1):S224-S238
[118]Abnet C C,Tanguay R L,Hahn M E,et al.Two forms of aryl hydrocarbon receptor type 2 in rainbow trout(Oncorhynchus mykiss)evidence for differential expression and enhancer specificity[J].Journal of Biological Chemistry,1999,274(21):15159-15166
[119]Doering J A,Wiseman S,Beitel S C,et al.Tissue specificity of aryl hydrocarbon receptor(AhR)mediated responses and relative sensitivity of white sturgeon(Acipenser transmontanus)to an AhR agonist[J].Aquatic Toxicology,2012,114:125-133
[120]Wirgin I,Roy N K,Loftus M,et al.Mechanistic basis of resistance to PCBs in Atlantic tomcod from the Hudson River[J].Science,2011,331(6022):1322-1325
[121]Wang L,Liang X F,Zhang W B,et al.Amnesic shellfish poisoning toxin stimulates the transcription of CYP1A possibly through AHR and ARNT in the liver of red sea breamPagrus major[J].Marine Pollution Bulletin,2009, 58(11):1643-1648
Research Progress on Dioxin-like Compounds and AhR-Mediated Adverse Outcome Pathway(AOP)
Wei Fenghua,Zhang Junjiang,Xia Pu,Zhang Xiaowei*,Yu Hongxia
State Key Laboratory of Pollution Control and Resource Reuse,School of the Environment,Nanjing University,Nanjing 210023,China
12 April 2015 accepted 6 July 2015
Dioxins and DLCs(dioxin-like compounds,DLCs)are normally considered as a class of highly toxic compounds and their toxicological mechanisms have been extensively studied in the past decades.It is well accepted that all highly toxic dioxins and DLCs exert their toxic and biological interference effects through the binding and activation of Aryl hydrocarbon receptor(AhR).Recently increasing evidences showed that many emerging environmental pollutants had similar structure as dioxins and could potentially induce high toxicity.There is widely regulatory concern that how to efficiently and effectively evaluate the hazard and ecological risk to local species by this large amount of untested chemicals.Here this paper reviewed 1)discovery of emerging dioxin-like pollutants, 2)recent development on the understanding of AhR related toxicological mechanism,3)development of AhR-mediated adverse outcome pathway(AOP),4)development of predictive method to assess the AhR mediated toxicity in local species.A perspective was provided on future research direction in the ecotoxicological and risk assessment of dioxins and DLCs.
DLCs;emerging pollutants;PBDEs;PCDPSs;AhR;toxicological mechanism;species sensitivity distribution
2015-04-12 錄用日期:2015-07-06
1673-5897(2016)1-037-15
X171.5
A
10.7524/AJE.1673-5897.20150412001
魏鳳華,張俊江,夏普,等.類二噁英物質及芳香烴受體(AhR)介導的有害結局路徑(AOP)研究進展[J].生態毒理學報,2016,11(1):37-51
Wei F H,Zhang J J,Xia P,et al.Research progress on dioxin-like compounds and AhR-mediated adverse outcome pathway(AOP)[J].Asian Journal of Ecotoxicology,2016,11(1):37-51(in Chinese)
國家重大“水專項”(2012ZX07506);環保公益性行業科研專項經費項目(201209016);高校博士學科點專項科研基金(20120091110034)
魏鳳華(1986-),女,碩士,研究方向為生態毒理及風險評價研究,E-mail:fenghua0722@163.com;
),E-mail:zhangxw@nju.edu.cn
簡介:張效偉(1978—),男,動物學和環境毒理學博士、教授、博士生導師,主要從事生態毒理學和健康風險評估方面的研究,發表英文SCI論文80多篇,包括以一作或通訊作者在環境領域高影響刊物Environmental Science& Technology和Toxicological Science等上發表論文20多篇。