肖 鋒
(廣州地鐵設計研究院有限公司,510010,廣州∥高級工程師)
?
地鐵車輛基地庫房設計高度及其經濟效益分析
肖 鋒
(廣州地鐵設計研究院有限公司,510010,廣州∥高級工程師)
通過對現行地鐵車輛基地庫房設計高度的調查和研究,結合地鐵車輛檢修不同于鐵路的特點,分析車輛工藝、接觸網、建筑、結構、通風空調等專業所需高度要求,提出科學、經濟、合理的庫房和上蓋設計高度標準,并進行工程造價的對比分析。
地鐵; 車輛基地; 檢修庫; 運用庫; 工程造價
Author′s address Guangzhou Metro Design & Research Instinte Co.,Ltd.,510010,Gungzhou,China
車輛基地作為城市軌道交通線路的綜合檢修基地,其建設對軌道交通具有重要意義和影響。由于車輛基地占地面積大,少則十幾hm2,多則五、六十hm2,導致近年來車輛基地的選址越來越困難。為發揮最大效益,繼新加坡、香港等城市對車輛基地進行上蓋物業開發后,國內城市也有開始大規模進行車輛基地上蓋物業開發的趨勢,有的車輛基地為進行上蓋物業開發或者考慮周邊環境的需要,甚至需設計為地下式。車輛基地的檢修、運用庫房面積大,特別是進行上蓋物業開發的車輛基地和地下式車輛基地,庫房的設計高度合理與否,對工程造價的影響相當大。因此,在滿足檢修工藝要求的前提下,研究能否降低車輛基地庫房設計高度,不僅具有顯著的經濟效益,也具有十分重要的現實意義。
根據功能的不同,地鐵車輛基地主要有停車列檢庫、雙周/三月檢庫等運用設施建筑和大架修庫、定臨修庫、轉向架檢修間等檢修設施建筑。各庫房的設計高度主要取決于地鐵車輛高度、車輛檢修工藝、庫內管線安裝、上蓋開發業態、結構部件尺寸等。
GB 50157—2013《地鐵設計規范》對車輛基地的庫房設計高度沒有明確要求,只是提出“定修庫、臨修庫、架修庫和大修庫均應設電動橋式或梁式起重機,起重機走行軌的高度應根據車輛高度、架車方式、架車高度、車頂作業要求和起重機的結構尺寸計算確定。”
目前,對于國內地鐵車輛基地各種庫房的設計高度,設計人員基本沿襲了鐵路機務段、車輛基地的設計標準,即:運用庫(含停車列檢庫、雙周/三月檢庫)設計高度為7.2 m(地面至屋架下弦),大架修庫、定臨修庫、轉向架檢修間起重機走行軌頂面至庫內地面的設計高度為8.4 m,缺乏認真細致的檢算。
鐵路機車車輛與地鐵車輛的車體高度及限界不同,車輛部件組成不同,同時檢修工藝也有別。目前,地鐵車輛基地的庫房設計高度沿用鐵路的設計標準,主要存在以下問題:
(1) 庫房高度增加,導致土建、通風空調、電氣照明、安全防護等投資增加,提高了工程造價,造成投資的較大浪費。特別是對于進行上蓋開發的車輛基地和地下式車輛基地,造成的投資浪費更大。
(2) 庫房高度過高,造成車輛基地投入使用后庫房內通風空調、電氣照明、消防等設備的運營維護非常困難,同時也增加了運營成本。
2.1 大架修庫(含臨修庫)
大架修庫的設計高度主要由檢修工藝確定,要考慮的因素包括地鐵車輛高度、架車方式、檢修時吊出的部件尺寸、庫房跨度、起重機規格等。大架修庫高度示意圖如圖1所示。

圖1 大架修庫高度示意圖
根據設計規范,庫內設3條檢修線的大架修庫其跨度為27 m,庫內設2條檢修線的大架修庫其跨度為20 m,本文按照最大跨度27 m考慮。另外,大架修庫內設10 t電動雙梁橋式起重機,采用固定式作業時完全可以滿足工藝和檢修作業的要求。
大架修庫起重機走行軌頂面至庫內地面的計算高度H1為:
H1=h1+h2+h3+h4+h5
式中:
h1——車輛高度,地鐵A型車、B型車最大高度為3 810 mm;
h2——吊出工件(空調機組)和車輛頂部的間距,取200 mm;
h3——空調機組高度,目前國內地鐵車輛空調機組高度為455~575 mm,取最大高度575 mm;
h4——起重機吊鉤的工作高度,與空調機組的尺寸和吊索長度有關,根據計算及現場實際測量,地鐵車輛空調機組的吊出工作高度1 000 mm;
h5——起重機走行軌頂面至吊鉤的距離,10 t電動雙梁起重機的為335 mm。
根據上述計算公式,當大架修庫采用10 t電動雙梁起重機時,H1為5 920 mm;
設計時H1可按建筑模數取整,即大架修庫起重機走行軌頂面至庫內地面的高度按6 000 mm設計可以滿足檢修要求。
大架修庫屋架下弦至庫內地面的計算高度H2為:
H2=H1+h6+h7
式中:
h6——起重機走行軌頂面至起重機梁頂高度,10 t電動雙梁起重機的為1 830 mm;
h7——起重機梁頂至屋架下弦的安全距離,10 t電動雙梁起重機的為300 mm。
根據上述計算公式,當采用10 t電動雙梁起重機時,H2為8 130 mm;
根據上述計算和分析,大架修庫屋架下弦至庫內地面的高度按8 200 mm設計即可滿足大架修的工藝要求。
如果車輛基地進行上蓋物業開發或者是采用地下式,則庫內需進行機械通風和防排煙,需另外考慮風管等各種管線的安裝。根據通風空調專業的計算和分析,風管的最大高度為800 mm,另外考慮安裝支架50 mm,風管計算高度按900 mm完全可以滿足要求。此時大架修庫屋架下弦(即梁底)至庫內地面的高度H3為9 030 mm。
即車輛基地進行上蓋物業開發或者是采用地下式車輛基地時,大架修庫梁底至庫內地面的高度按9 100 mm設計即可滿足檢修工藝要求。
考慮結構梁高度1 600 mm,此時建筑層高為10 700 mm,按照建筑模數取整,即大架修庫層高按照10.8 m設計即可。
2.2 運用庫(含停車列檢庫和雙周/三月檢庫)
運用庫的高度(見圖2)需考慮接觸網的安裝要求和檢修工藝需求。檢修工藝主要考慮檢修人員在車頂上進行檢查和臨修作業時的高度要求。
根據《地鐵設計規范》,地上線路接觸線距離軌面的高度宜為4 600 mm,車輛基地的地上線路接觸線距軌面高度宜為5 000 mm。因此,運用庫接觸線的架設高度按5 000 mm考慮。
另外,接觸線距屋架下弦的高度需按1 500 mm考慮,因此,運用庫內軌面距屋架下弦高度按6 500 mm設計可滿足接觸網的安裝要求。此高度也滿足檢修人員在車頂上進行檢修作業的要求。
如果車輛基地進行上蓋物業開發或者是采用地下式,此時機械通風和防排煙的風管安裝可以避開接觸網安裝支架,因此不需要考慮其附加的安裝高度。
考慮到結構梁的高度為1 600 mm,因此建筑層高按8 100 mm設計,即運用庫層高按照8.1 m設計即可。

圖2 運用庫高度示意圖
2.3 上蓋物業蓋板高度
在進行車輛基地上蓋物業開發設計時,一般在運用庫上面另外設置一層,作為上蓋物業的汽車停車庫,同時兼作結構和設備轉換層。
一般住宅小區汽車庫按停放小型車考慮,按照《汽車庫建筑設計規范》,其最小凈空高度為2 200 mm;由于需進行結構轉換,結構轉換梁高度按2 000 mm考慮;通風空調風管計算高度最大按500 mm考慮;另外,考慮噴淋安裝高度150 mm、電纜橋架安裝高度150 mm,以及預留100 mm的富余量,汽車庫層高為5 100 mm。即車輛基地上蓋物業二層汽車庫的層高按照5.1 m設計可以滿足規范和使用要求。
圖3為車輛基地上蓋開發剖面示意圖。上蓋物業開發蓋板的總高度為13 200 mm,大于大架修庫所需層高10 800 mm。即上蓋物業二層蓋板高度按照13.2 m設計,既可以滿足大架修庫檢修工藝要求,也可以滿足物業開發所需的汽車庫層高要求。

圖3 車輛基地上蓋開發剖面示意圖
經測算,地面普通車輛基地(網架結構)、地面進行上蓋物業開發的車輛基地和地下式車輛基地,其庫房高度每降低1 m可節省的土建工程量和造價如表1所示。

表1 車輛基地庫房高度每降低1 m可節省的工程量和工程造價表
3.1 地面普通車輛基地(網架結構)
某大架修車輛基地,檢修庫面積為36 963 m2,屋架下弦設計高度為11.5 m;運用庫面積為37 316 m2,屋架下弦設計高度為7.2 m。優化設計后,檢修庫高度可以降低3.3 m,運用庫高度可以降低0.7 m,根據上述分析,可節省的投資為89萬元。
3.2 上蓋物業開發車輛基地
某車輛基地,進行上蓋物業開發,目前,首層設計高度是9 m,二層設計高度是6 m,蓋板設計高度為15 m,蓋板總面積為282 688 m2。優化設計后,首層可以降低高度0.9 m,二層也可以降低高度0.9 m,合計可降低高度1.8 m,按照上述分析,可節省投資6 411萬元
3.3 地下式車輛基地
某停車場,為全地下式停車場,地下室面積為65 800 m2,現設計高度為9 m,梁底設計凈高為7.5 m。優化設計后,該地下式停車場可以降低高度1 m,按照上述分析,可節省投資2 277萬元。
某停車場,為另一全地下式停車場,地下建筑面積為121 600 m2,現設計梁底凈高為7.2 m。優化設計后,該地下停車場可以降低高度0.7 m,按照上述分析,可節省投資2 945萬元
上述投資均只考慮了土建造價,尚不包括層高降低后節省的通風空調、電氣照明、安全防護等機電設備的投資。
綜合上述分析,對車輛基地的庫房設計,可以得出如下結論:
(1) 對于不進行上蓋開發的地面普通車輛基地,其大架修庫起重機走行軌頂面至庫內地面的高度按6 000 mm設計,屋架下弦距庫內地面高度按8 200 mm設計可以滿足車輛檢修工藝要求。
(2) 對于進行上蓋物業開發的車輛基地或者地下式車輛基地,其大架修庫起重機走行軌頂面至庫內地面的高度按6 000 mm設計,梁底距庫內地面高度按9 100 mm設計可以滿足檢修工藝要求。
(3) 對于車輛基地(不論是否進行上蓋開發)或是地下式車輛基地的運用庫(含雙周檢、三月檢庫),其屋架下弦(或梁底)距庫內地面高度按6 500 mm、層高按8 100 mm設計可以滿足檢修和運營要求;上蓋物業二層蓋板高度按照13.2 m設計,既可以滿足檢修工藝要求,也可以滿足物業開發層高要求。
(4) 庫房設計高度經優化而降低后,對上蓋開發車輛基地和地下式車輛基地,可以大大降低工程造價,具有非常顯著的經濟效益;同時也便于運營后各庫房內設備設施的保養和維護。而這些效益的取得并不會犧牲相關庫房檢修和運營及維護作業的環境。
當然,地鐵車輛基地庫房設計高度涉及專業和因素較多,本文的優化分析重在方法和思路,提出的設計標準僅供參考,具體設計中應根據工程的實際情況因地制宜地進行全面分析。
[1] 中華人民共和國住房和域鄉建設部.地鐵設計規范:GBJ 017—2013[S].北京:中國建筑工業出版社,2013.
[2] 中華人民共和國鐵道部.鐵路客車車輛設備設計規范:GB 10029—2009[S].北京:中國鐵道出版社,2002.
(Continued from Special Commentary)
Enhancing the awareness of the threat to national security and being prepared for dangers in times of peace are the important principle that we must always adhere to in governing the country and administering the Party.The same is true for the constructions and operation safety of the rail transport. For the urban rail transport, especially for the rapid rail transit with independent right of way, its main characteristic is large transport volumes and very fast speeds. Once an accident happens, it will cause mass deaths and mass wounds, resulting in the very serious consequences. Therefore, the safety management should be the most important in the rail transport constructions and operation management.
Since the “9·11” terrorist attacks in 2001, the world has not become peaceful although all the countries around the world continued to step up the anti-terrorism strength. The rail transport still faces the serious threat of the non-traditional security represented by the terrorism. On February 18, 2003, less than a year and a half after the "9·11" accident, the subway arson case happened in the third largest city Daegu in South Korea (the criminal's bringing the petrol into the subway). The fire burned for 3 hours before being extinguished. 198 people were killed, 146 people were injured, and 289 people were missing. All 12 cars of the two trains were burned down. A few months later the normal traffic was restored. On March 22, 2016, a series of bombs exploded at the airport of Belgium's capital Brussels. Shortly afterwards, the explosions took place in the metro station located nearby at the EU headquarters in Brussels. The two terrorist attacks were associated with each other. At least 34 people were killed and 202 people were injured. Therefore, rail transit safety education for the general public must emphasize the necessity of strictly implementing that dangerous goods are not allowed to be carried into stations when passengers enter stations to ride and passengers should be asked to accept the security check, so as not to let the criminals get their chances.
At present, our country faces the complex and volatile environment of security and development. All kinds of foreseeable and unforeseeable risk factors have been increasing markedly. Transportation risks are everywhere, and the key lies in prevention and control. The risk sources of rail transport are mainly from natural disasters, man-made destructions, equipment failures, staffing irregularities, and vulnerability in the management system etc. Professor James Reason of Manchester University in the United Kingdom put forward a "Swiss Cheese Model” theory. Every layer of defense has a lot of loopholes, just like Swiss cheese slices, which have many holes. Holes will not necessarily cause serious results on a slice. But once these holes connect a strung, they will lead to serious accidents. The key to the safety assessment of rail transportation is to rank the sequence of priority control from all kinds of risk points coming from all kinds of risk sources according to their high or low level of risk rating, to develop corresponding preventive measures and emergency plans and to take some walkthroughs. Combining the third party's security evaluation with the self-inspection of rail transport enterprises could greatly improve the safety management level and control the risk at an acceptable level. The main bases for the safety assessment of third parties are related regulations, the national standards and industry standards, so as to ensure reliability, availability, maintainability and safety of large-scale transport systems, as well as rail transit system, and its subsystems.
The security management includes the two parts of the risk control and the emergency management. And the emergency management can also be divided into two parts: emergency preparedness and emergency treatment. The author believes that in the interior of rail transport enterprises, safety education should focus on the universal education of safety management, and helping employees understand the new concept of security management and its basic technology course, so as to enable them to improve the security conscious of "defending the territory with a high degree of responsibility”, and “being strictly on guard and defending to the last" in their respective positions.
(Translated by SUN Zheng)
Economic Benefit Analysis of Warehouse Height Desig in Metro Vehicle Base XIAO Feng
Through investigation and research of the warehouse height design in existing metro vehicle bases, and combined with the characteristics of metro vehicle maintenance that is different from normal railway maintenance, the vehicle technology, catenary, construction, structure, ventilation and air conditioning, as well as other professional warehouse height requirements are analyzed, scientific, economic and reasonable design standards forthe height of warehouse and the upper cover are put forward, the engineering costs are also compared and analyzed.
metro; vehicle base; maintenance warehouse; operating warehouse; engineering cost
TU 248; F 530.7
10.16037/j.1007-869x.2016.05.032
2014-11-19)