王 娟,王建林,劉家斌,姜永超,王國(guó)棟
(1. 西北農(nóng)林科技大學(xué)理學(xué)院,楊凌 712100; 2. 青島農(nóng)業(yè)大學(xué)理學(xué)與信息科學(xué)學(xué)院,青島 266109;3. 青島農(nóng)業(yè)大學(xué)農(nóng)學(xué)與植物保護(hù)學(xué)院,青島 266109; 4. 青島農(nóng)業(yè)大學(xué)現(xiàn)代農(nóng)業(yè)科技示范園管理處,青島 266109)
R-K蒸散模型用于華北平原冬小麥農(nóng)田的參數(shù)校正與評(píng)價(jià)
王 娟1,2,王建林3,劉家斌4,姜永超2,王國(guó)棟1※
(1. 西北農(nóng)林科技大學(xué)理學(xué)院,楊凌 712100; 2. 青島農(nóng)業(yè)大學(xué)理學(xué)與信息科學(xué)學(xué)院,青島 266109;3. 青島農(nóng)業(yè)大學(xué)農(nóng)學(xué)與植物保護(hù)學(xué)院,青島 266109; 4. 青島農(nóng)業(yè)大學(xué)現(xiàn)代農(nóng)業(yè)科技示范園管理處,青島 266109)
為了解華北平原冬小麥田蒸散特征,并對(duì)蒸散估算模型在冬小麥田的適用性和穩(wěn)定性進(jìn)行分析,該文利用渦度相關(guān)系統(tǒng)對(duì)2013-2015年冬小麥田的蒸散量進(jìn)行觀測(cè),以氣象數(shù)據(jù)為基礎(chǔ)對(duì)估算模型Rana和Katerji模型(簡(jiǎn)稱(chēng)R-K模型)進(jìn)行修正;利用修正后模型對(duì)日蒸散量進(jìn)行預(yù)測(cè);并與FAO-PM模型的預(yù)測(cè)值及渦度相關(guān)系統(tǒng)的測(cè)量值進(jìn)行對(duì)比,來(lái)說(shuō)明R-K模型在冬小麥田的適用性。結(jié)果表明冬小麥田蒸散量有明顯的季節(jié)變化,日蒸散量在1月底最小,返青期開(kāi)始逐漸增大,于4、5月份達(dá)到最大值;2個(gè)冬小麥生長(zhǎng)季總蒸散量分別為436.3和334.8 mm。統(tǒng)計(jì)參數(shù)的對(duì)比說(shuō)明修正后R-K模型對(duì)冬小麥田日蒸散量的預(yù)測(cè)效果優(yōu)于FAO-PM模型。敏感性分析說(shuō)明R-K模型對(duì)氣象因素不敏感,穩(wěn)定性良好。R-K模型對(duì)冬小麥不同生長(zhǎng)階段的蒸散量預(yù)測(cè)效果在后期表現(xiàn)最佳,其次為發(fā)育期、中期和初期,越冬期表現(xiàn)最差。該研究可為利用模型估算蒸散量及指導(dǎo)農(nóng)田精確灌溉提供參考。
蒸散;作物;模型;渦度相關(guān)法;氣象因子
蒸散(evapotranspiration,ET)是水文循環(huán)的重要環(huán)節(jié),并與水循環(huán)的其他方面緊密聯(lián)系[1]。農(nóng)田生態(tài)系統(tǒng)在全球能量、水和碳平衡的研究中具有重要地位,因此對(duì)農(nóng)田蒸散量的研究一直受到國(guó)內(nèi)外學(xué)者關(guān)注。中國(guó)正面臨著水資源短缺的嚴(yán)峻形勢(shì),特別是在中國(guó)北部地區(qū),農(nóng)業(yè)用水大約占中國(guó)總用水量的60%[2],而水分利用效率僅有45%,遠(yuǎn)遠(yuǎn)低于發(fā)達(dá)國(guó)家的70%~80%[3]。因此發(fā)展節(jié)水農(nóng)業(yè),保證水資源可持續(xù)發(fā)展是非常緊迫的[4]。準(zhǔn)確地確定農(nóng)田蒸散量可為制定更合理的灌溉計(jì)劃和提高水分利用效率提供科學(xué)的指導(dǎo)[5-7]。
作物的蒸散量可以利用儀器直接測(cè)量,也可以利用模型進(jìn)行估算[8]。渦度相關(guān)系統(tǒng)(eddy covariance system, EC)作為一種直接測(cè)量作物蒸散量的手段,由于其不影響作物生長(zhǎng)、可長(zhǎng)期不間斷測(cè)量的優(yōu)點(diǎn)被廣泛的應(yīng)用于各種生態(tài)系統(tǒng)中[9-14]。但是由于其昂貴的價(jià)格、架設(shè)和維護(hù)方面的困難,該方法的使用仍然受到限制。因此利用模型對(duì)農(nóng)田蒸散量進(jìn)行準(zhǔn)確的估算就尤為重要。
作為估算作物蒸散量的模型,Penman-Monteith公式[15-17]可以很好地預(yù)測(cè)各種生態(tài)系統(tǒng)的蒸散量,被認(rèn)為是預(yù)測(cè)蒸散量最為可靠的方法之一。以Penman-Monteith公式為基礎(chǔ)延伸出兩種估算模型:一種是由Doorenbos和Pruitt[18]于1997年提出,由Allen等[19]在1998年發(fā)展而來(lái)的模型(簡(jiǎn)稱(chēng)FAO PM模型)。該方法首先利用氣象數(shù)據(jù)得到參考作物蒸散量,再與相應(yīng)的作物系數(shù)相乘即可得到作物的實(shí)際蒸散量。由于氣象數(shù)據(jù)比較容易獲得,計(jì)算精度較高,所以該方法得到了廣泛的應(yīng)用[20-22]。使用該方法的前提是作物系數(shù),針對(duì)作物系數(shù)的研究已有很多[23-28],但由于作物系數(shù)受到多種因素的影響[29],準(zhǔn)確地獲得作物系數(shù)比較困難,因此該方法存在一定的局限性。另一種模型是直接利用Penman-Monteith公式計(jì)算蒸散量,但是由于模型中的冠層阻力rc受到太陽(yáng)輻射,水汽壓差以及土壤含水量的影響,求解困難。Katerji等[30]提出一個(gè)簡(jiǎn)單的冠層阻力計(jì)算模型,Rana等[31]于1994年對(duì)該模型進(jìn)行分析,并在草地上進(jìn)行驗(yàn)證,預(yù)測(cè)結(jié)果良好。Rana 等[32]于1997年將rc的計(jì)算模型用于有水分脅迫發(fā)生的情況,發(fā)現(xiàn)不同的水分條件下預(yù)測(cè)結(jié)果良好。Rana和Katerji[33]于2009年將Penman-Monteith公式與Katerji和Perrier提出的rc模型結(jié)合,得到可以實(shí)際操作的蒸散量預(yù)測(cè)模型,簡(jiǎn)稱(chēng)R-K模型。該模型同樣基于氣象數(shù)據(jù)來(lái)確定作物的蒸散量,需要對(duì)模型中的兩個(gè)參數(shù)進(jìn)行校正,但是確定方法及過(guò)程比作物系數(shù)的確定更加簡(jiǎn)單,易于操作。近年來(lái)R-K模型已經(jīng)在一些作物蒸散量的預(yù)測(cè)中取得了成功,包括:大豆和甜高粱[33],小麥和燕麥[34],番茄[35],玉米和油菜[36]等等。Katerji等[37]對(duì)該模型的研究進(jìn)展及其應(yīng)用做了更為詳細(xì)的介紹。
冬小麥?zhǔn)侨A北平原重要的作物之一,因此準(zhǔn)確預(yù)測(cè)冬小麥農(nóng)田蒸散量對(duì)于華北平原水資源的實(shí)際應(yīng)用和理論研究都非常重要。迄今為止,試驗(yàn)地仍然采用傳統(tǒng)的灌溉方式,灌溉的時(shí)間及用水量由經(jīng)驗(yàn)來(lái)決定,因此過(guò)量或不充足的水分供應(yīng)等不利于作物生長(zhǎng)的情況很容易發(fā)生。為了解該地區(qū)冬小麥田蒸散量的變化特征,并為精確灌溉提供數(shù)據(jù)支持,本文利用渦度相關(guān)系統(tǒng)對(duì)冬小麥田的蒸散量進(jìn)行測(cè)量,并利用觀測(cè)的氣象數(shù)據(jù)對(duì)R-K模型中的關(guān)鍵參數(shù)進(jìn)行修正;最后通過(guò)對(duì)R-K模型預(yù)測(cè)值與FAO-PM模型預(yù)測(cè)值及EC系統(tǒng)測(cè)量值進(jìn)行對(duì)比,說(shuō)明R-K模型對(duì)冬小麥田蒸散量預(yù)測(cè)的實(shí)用性及準(zhǔn)確性。
1.1 研究區(qū)域概況
青島農(nóng)業(yè)大學(xué)現(xiàn)代農(nóng)業(yè)科技示范園(120.48°E,36.26°N)位于山東省青島市,屬溫帶大陸性季風(fēng)氣候,年均氣溫為12.4℃,年均日照時(shí)數(shù)為2 229 h;近12年(2003-2014)的年均降雨量為637 mm。園區(qū)占地面積約66萬(wàn)m2,海拔約8 m,地勢(shì)平坦。本試驗(yàn)所在區(qū)域位于示范園的東南方,觀測(cè)面積為150 m×200 m,除觀測(cè)區(qū)域西面為果樹(shù)外,各方向200 m范圍內(nèi)與觀測(cè)區(qū)內(nèi)種植種類(lèi)相同,均為冬小麥和夏玉米,一年兩熟。2013年10月15日和2014年10月15日種植冬小麥,品種為‘濟(jì)麥22’,一遍翻耕加兩遍旋耕后,采取帶肥種植方式,播種行距為0.20 m,在播種時(shí)基施復(fù)合肥,每公頃525 kg(N∶P2O5∶K2O=22∶10∶10)。小麥分別于2014和2015年6月14日收獲。根據(jù)FAO56的劃分標(biāo)準(zhǔn)[17],結(jié)合田間實(shí)際觀測(cè),將冬小麥的整個(gè)生長(zhǎng)季劃分為初期(播種-分蘗),越冬期(分蘗-返青),發(fā)育期(返青-拔節(jié)),中期(拔節(jié)-開(kāi)花)和后期(開(kāi)花-收獲)5個(gè)階段。在冬小麥生長(zhǎng)季,除了在播種后和拔節(jié)期間各澆水一次外,在其他時(shí)期不再進(jìn)行水分補(bǔ)充。澆水方式為漫灌。試驗(yàn)地的土壤為砂漿黑土,pH值為5.93,有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)為9.80 g/kg,堿解氮、速效磷和速效鉀分別為69.60、37.62和110.80mg/kg。
1.2 數(shù)據(jù)采集和處理
本研究所需的蒸散量數(shù)據(jù)由渦度相關(guān)系統(tǒng)獲得。渦度相關(guān)系統(tǒng)安裝在位于試驗(yàn)地中心的通量塔上,于2013 年6月份安裝完成并開(kāi)始投入使用。其主要儀器有超聲風(fēng)速儀(CAST3,Campbell. USA)和開(kāi)路式紅外氣體分析儀(LI-7500,Li-cor. Inc. USA),分別用來(lái)測(cè)量三維風(fēng)速和CO2/H2O密度,渦度相關(guān)系統(tǒng)安裝在2.5 m高度。同時(shí)小氣候觀測(cè)系統(tǒng)對(duì)環(huán)境因子進(jìn)行觀測(cè),主要有:凈輻射儀(CNR1,Kipp and Zonen,Netherlands)對(duì)各輻射通量進(jìn)行測(cè)量;地下5 mm處安裝有3個(gè)土壤熱通量板(HFP01SC,Hukseflux,Netherlands)測(cè)量土壤熱通量;風(fēng)速風(fēng)向由安裝在5 m高度的開(kāi)關(guān)風(fēng)速計(jì)(A100R,Rhyl,Vector,UK)和風(fēng)向儀(W200P,Vector,UK)測(cè)量;空氣溫度、濕度由溫濕度傳感器(HMP45C,Campbell,USA)測(cè)量;降雨量利用雨量筒(52202,Young,USA)測(cè)量。5,20,50和100 cm深度的土壤溫度和濕度分別由土壤溫度儀(109,Campbell Scientific INC USA)和土壤濕度儀(CS616,Campbell Scientific INC USA)測(cè)定。所有儀器由專(zhuān)業(yè)人員進(jìn)行安裝,并定期對(duì)儀器進(jìn)行維護(hù)。原始數(shù)據(jù)由數(shù)據(jù)采集器(CR3000,Campbell,USA)進(jìn)行采集并存儲(chǔ)在PC卡上,采集頻率為10 Hz。利用Eddypro軟件(由LI-COR 公司提供的免費(fèi)計(jì)算軟件)對(duì)原始數(shù)據(jù)進(jìn)行后期處理得到半小時(shí)平均值。
1.3 模型
1.3.1 FAO-PM模型
參考作物蒸散量(reference crop evapotranspiration,ET0)可由式(1)[19]表示。

式中Δ為飽和水汽壓梯度,kPa/℃;Rnd和Gd分別為作物表面日凈輻射通量和日土壤熱通量,MJ/(m2?d);γ為干濕表常數(shù),kPa/℃;T為平均氣溫;es和ea是飽和水汽壓及實(shí)際水汽壓,kPa;u2為2 m高度的風(fēng)速,m/s。
實(shí)際蒸散量公式為

式中kc為作物系數(shù)。
1.3.2 R-K模型
R-K模型為

式中λ為水的汽化潛熱,J/kg;Rn是作物表面的凈輻射通量,W/m2;G是土壤表面的土壤熱通量,W/m2;ρ為空氣密度;CP為空氣定壓比熱,J/(kg?℃);ra為空氣動(dòng)力學(xué)阻力,s/m;r*是臨界阻力,s/m;a和b是經(jīng)驗(yàn)系數(shù),由試驗(yàn)數(shù)據(jù)決定。
臨界阻力首次由Monteith[15]提出,僅與天氣有關(guān),是蒸散過(guò)程的一個(gè)關(guān)鍵值。臨界阻力大于冠層阻力,則蒸散隨著風(fēng)速增大而增大;反之蒸散隨著風(fēng)速增大而減小[34]。空氣動(dòng)力學(xué)阻力和臨界阻力以通過(guò)下述公式計(jì)算[38],

式中d=0.67h,z0=0.1h,h為冠層高度;κ為Von Karman常數(shù),大小為0.4。
1.4 統(tǒng)計(jì)分析
為了評(píng)價(jià)模型性能,本文利用統(tǒng)計(jì)參數(shù)進(jìn)行評(píng)價(jià),包括:測(cè)量值與預(yù)測(cè)值的平均值(和);標(biāo)準(zhǔn)偏差(S()和S());平均絕對(duì)誤差(mean absolute error,MAE),方均根誤差(root mean square error,RMSE),相對(duì)誤差(relative error,RE);另外還對(duì)觀測(cè)值和預(yù)測(cè)值進(jìn)行線性回歸,通過(guò)線性回歸的斜率及確定性系數(shù)R2對(duì)模型的性能進(jìn)行評(píng)價(jià)。除了這些評(píng)價(jià)參數(shù)外,還應(yīng)用符合指數(shù)(agreement of index,AI)來(lái)對(duì)模型的性能進(jìn)行評(píng)價(jià)。

AI是由Willmott[39]于1981年提出,反映測(cè)量值和預(yù)測(cè)值符合程度的一個(gè)統(tǒng)計(jì)參數(shù),它的值與確定性系數(shù)一樣,在0和1之間變化,越接近1,說(shuō)明模型的預(yù)測(cè)效果越好。
2.1 渦度相關(guān)系統(tǒng)性能評(píng)價(jià)
能量閉合度分析是對(duì)任何生態(tài)系統(tǒng)進(jìn)行水、碳和熱量循環(huán)研究的一個(gè)重要方面,它可以作為判斷數(shù)據(jù)質(zhì)量的一個(gè)重要指標(biāo)[40-42]。定義一段時(shí)間內(nèi)有效能量(H+λE)占可利用能量(Rn?G)的百分比稱(chēng)為能量閉合度,其中H為顯熱通量,W/m2,λE為潛熱通量,W/m2。本文利用最小二乘法,對(duì)半小時(shí)平均值進(jìn)行能量閉合情況分析,可知2013-2014年和2014-2015年兩個(gè)冬小麥生長(zhǎng)季的能量閉合度分別為0.81(R2=0.89)和0.79(R2=0.78),該結(jié)果略低于劉渡等[42]及童應(yīng)祥等[43]對(duì)冬小麥田能量閉合度的研究結(jié)果。原因可能在于渦度相關(guān)系統(tǒng)普遍存在的問(wèn)題:潛熱通量的低估及其他能量的忽略造成。雖然能量未達(dá)到非常好的閉合情況,但是該試驗(yàn)地的能量閉合情況大于FLUXNET和ChinaFLUX站點(diǎn)的平均能量閉合度為0.8[44]和0.73[45]。由于該能量閉合度處于合理的范圍內(nèi),因此認(rèn)為本站點(diǎn)的渦度相關(guān)數(shù)據(jù)是可靠的。
2.2 冬小麥季氣象條件及日蒸散量的變化特征
整個(gè)冬小麥生長(zhǎng)季的平均氣溫大約在8℃,在12-1月間溫度達(dá)到最低值,約為?5℃;在冬小麥?zhǔn)斋@期(次年6月)達(dá)到最高氣溫約為26℃。2013-2014 和2014-2015兩個(gè)冬小麥生長(zhǎng)季的降雨量有明顯差異,分別為126.6和63.9 mm,且主要集中在冬小麥生長(zhǎng)季的中后期。
利用渦度相關(guān)系統(tǒng)對(duì)冬小麥田的蒸散量進(jìn)行測(cè)量,其變化特征如圖1所示。從圖1a可以看出,冬小麥田日蒸散量有非常明顯的季節(jié)變化特點(diǎn),隨著越冬期的到來(lái),日蒸散量逐漸減小,在整個(gè)越冬期保持低蒸散狀態(tài),1月底蒸散量達(dá)最低值,接近0。隨著氣溫回升,返青期的到來(lái),蒸散量逐漸增大,在4、5月份蒸散量達(dá)到最大值(2013-2014年約為7.37 mm/d;2014-2015年約為5.72 mm/d)。2013-2014和2014-2015兩個(gè)冬小麥季的平均日蒸散量為1.79和1.43 mm/d;由圖1b可以看出,2013-2014年月蒸散量大于2014-2015年月蒸散量,月蒸散量最小值出現(xiàn)在1月,2013-2014年與2014-2015年分別為10.7和8.6 mm;最大蒸散量為5月,分別為142.8 和102.5 mm。兩個(gè)小麥生長(zhǎng)季的總蒸散量分別為436.3 和334.8 mm。

圖1 冬小麥蒸散量變化Fig.1 Dynamics of ET in winter wheat growing seasons
模型中所需氣象數(shù)據(jù)的10 d平均值變化見(jiàn)圖2。由圖2可以看出,冬小麥生長(zhǎng)過(guò)程中,各個(gè)氣象數(shù)據(jù)具有明顯的季節(jié)變化,特別是凈輻射通量和水汽壓差,隨著冬小麥的生長(zhǎng),先逐漸降低,在越冬期保持低水平值,在冬小麥返青后,逐漸呈現(xiàn)上升趨勢(shì)。而土壤熱通量和風(fēng)速呈現(xiàn)出在某一數(shù)值附近波動(dòng)的特點(diǎn),土壤熱通量值在2013-2014年和2014-2015年差別較大,主要原因在于2014-2015年蓄電池在冬季性能較差,供電不足導(dǎo)致期間部分時(shí)段的數(shù)據(jù)缺失。還可能因?yàn)橐粋€(gè)熱通量板損壞,只剩兩個(gè)熱通量板進(jìn)行測(cè)量,這可能是造成兩年的土壤熱通量值差別較大的兩個(gè)原因。

圖2 氣象數(shù)據(jù)的季節(jié)變化Fig.2 Seasonal variation of meteorological conditions
2.3 R-K模型的校正
利用2013-2014年渦度相關(guān)系統(tǒng)所測(cè)的蒸散量數(shù)據(jù)及同期的小氣候數(shù)據(jù)資料,利用式(3)~式(5)進(jìn)行非線性擬合,得出a和b的值。非線性擬合的結(jié)果為a=1.277,b=0.540(R2=0.741,RMSE=2.034×10-5)。為了說(shuō)明模型的穩(wěn)定性,又分別利用2014-2015年冬小麥季數(shù)據(jù)以及2013-2015兩季冬小麥數(shù)據(jù)對(duì)模型中的系數(shù)a和b進(jìn)行修正。2014-2015年數(shù)據(jù)的校正結(jié)果為a=1.559,b=1.245(R2=0.675,RMSE=2.026×10-5);2013-2015兩年數(shù)據(jù)的校正結(jié)果為a=1.389,b=0.801(R2=0.706,RMSE=2.060×10-5)。從擬合結(jié)果可以看出,利用三組不同的數(shù)據(jù)對(duì)模型中的系數(shù)進(jìn)行校正,校正結(jié)果中系數(shù)a的差別并不是很大,而由2014-2015年數(shù)據(jù)校正的系數(shù)b與其他兩組的擬合結(jié)果相差較大,原因可能在于2014-2015年由于蓄電池供電不足而導(dǎo)致缺失部分?jǐn)?shù)據(jù),由數(shù)據(jù)插補(bǔ)而導(dǎo)致數(shù)據(jù)存在較大的偏差。在后續(xù)的分析中,認(rèn)為2013-2014年模型的校正結(jié)果適用于冬小麥田,利用2014-2015年數(shù)據(jù)對(duì)校正后模型進(jìn)行驗(yàn)證。經(jīng)過(guò)試驗(yàn)數(shù)據(jù)修正后,R-K模型的形式為

2.4 R-K模型的驗(yàn)證
以2014-2015年測(cè)量的氣象數(shù)據(jù)為基礎(chǔ),利用修正后模型對(duì)冬小麥田的蒸散量進(jìn)行估算,然后與渦度相關(guān)系統(tǒng)測(cè)量的蒸散量及FAO-PM模型預(yù)測(cè)值進(jìn)行比較,對(duì)修正后的R-K模型的性能進(jìn)行評(píng)價(jià)。R-K模型及FAO-PM模型對(duì)2014-2015年冬小麥田的日蒸散量預(yù)測(cè)值與實(shí)測(cè)值的統(tǒng)計(jì)分析見(jiàn)表1。

表1 模型預(yù)測(cè)值與渦度相關(guān)系統(tǒng)測(cè)量值的對(duì)比分析Table 1 Comparison analysis between predicted daily evapotranspiration with models and observed daily evapotranspiration with eddy covariance system
從表1可以看出,兩種模型對(duì)冬小麥田日蒸散量的預(yù)測(cè)效果良好,確定性系數(shù)大于0.85,符合指數(shù)(AI)均大于0.90(確定性系數(shù)和符合指數(shù)越大,說(shuō)明模型預(yù)測(cè)效果越好),說(shuō)明兩種模型比較準(zhǔn)確地預(yù)測(cè)冬小麥田的日蒸散量。FAO-PM模型的預(yù)測(cè)值稍大于測(cè)量值,相對(duì)誤差為16.2%;而R-K模型的預(yù)測(cè)值比測(cè)量值小,相對(duì)誤差為7.0%,對(duì)日蒸散量的平均值有低估現(xiàn)象。通過(guò)對(duì)兩種模型的性能參數(shù)進(jìn)行對(duì)比,發(fā)現(xiàn)R-K模型的各項(xiàng)參數(shù)稍?xún)?yōu)于FAO-PM模型(較高的確定性系數(shù)和符合指數(shù),較低的相對(duì)誤差、平均絕對(duì)誤差和方均根誤差),說(shuō)明R-K模型能夠更好地預(yù)測(cè)冬小麥田的日蒸散量。
2.5 R-K模型的應(yīng)用
為了便于對(duì)冬小麥田的灌溉計(jì)劃進(jìn)行指導(dǎo),合理地對(duì)冬小麥進(jìn)行及時(shí)補(bǔ)水,利用R-K模型對(duì)2014-2015年冬小麥不同生育階段的蒸散量進(jìn)行預(yù)測(cè),并與渦度相關(guān)系統(tǒng)測(cè)量的蒸散量進(jìn)行對(duì)比,見(jiàn)表2。

表2 2014-2015年冬小麥不同生長(zhǎng)階段蒸散量預(yù)測(cè)值與測(cè)量值對(duì)比Table 2 Comparison between predicted and observed evapotranspiration in different growing stages of winter-wheat in 2014-2015
從表2中可以看出,R-K模型較好地預(yù)測(cè)了冬小麥整個(gè)生長(zhǎng)季的蒸散量(相對(duì)誤差僅為7%)。對(duì)于不同的生長(zhǎng)階段,預(yù)測(cè)效果依次為:后期優(yōu)于發(fā)育期、中期和初期,越冬期最差(誤差高達(dá)92.7%)。模型在越冬季表現(xiàn)最差,原因可能在于冬季冬小麥還未封行,所測(cè)的凈輻射通量并非是作物表面的值,在初期也會(huì)出現(xiàn)這種情況。另外越冬期溫度較低,蓄電池工作性能變差,造成此期間部分時(shí)段數(shù)據(jù)的缺失,因而預(yù)測(cè)及測(cè)量的準(zhǔn)確度降低。另外,由于本文的結(jié)論僅僅是基于2013-2014和2014-2015兩季冬小麥生長(zhǎng)季的測(cè)量數(shù)據(jù),而且對(duì)于R-K模型的修正及驗(yàn)證分別僅利用一季數(shù)據(jù),因此可能會(huì)存在偏差,所以未來(lái)仍然需要大量的數(shù)據(jù)對(duì)模型進(jìn)行修正及驗(yàn)證,通過(guò)進(jìn)一步的研究,希望能夠推動(dòng)R-K模型的實(shí)用化進(jìn)程。
2.6 敏感性分析
依據(jù)張續(xù)軍等[46]的方法,對(duì)R-K模型的敏感性進(jìn)行分析,文中選取7個(gè)環(huán)境參數(shù):包括凈輻射通量Rn,土壤熱通量G,空氣密度ρ,飽和水汽壓es,實(shí)際水汽壓ea,空氣動(dòng)力學(xué)阻力ra和臨界阻力r*。各參數(shù)的變化范圍為率定值的?30%~30%,模型對(duì)各參數(shù)的敏感度見(jiàn)圖3。
由圖3可以看出,R-K模型受氣象參數(shù)(凈輻射通量、土壤熱通量、空氣密度、飽和水汽壓和實(shí)際水汽壓和臨界阻力)的影響程度非常小,當(dāng)各參數(shù)在率定值附近變化時(shí),敏感度基本保持不變;但是R-K模型對(duì)空氣動(dòng)力學(xué)阻力ra的敏感度比較大,特別是氣象參數(shù)在?10%~10%之間變化時(shí),氣象參數(shù)的敏感度略大于5。一般認(rèn)為當(dāng)敏感度的絕對(duì)值大于5時(shí),才認(rèn)為模型對(duì)該參數(shù)敏感,模型僅對(duì)空氣動(dòng)力學(xué)阻力敏感,對(duì)其他參數(shù)不敏感,因此模型的穩(wěn)定性較好。

圖3 R-K模型的敏感度變化Fig.3 Variation of sensitivity of R-K model
1)本文利用渦度相關(guān)系統(tǒng)對(duì)2013-2014年和2014-2015年兩個(gè)冬小麥生長(zhǎng)季的蒸散量進(jìn)行測(cè)量,發(fā)現(xiàn)蒸散量有明顯的季節(jié)變化。冬小麥生長(zhǎng)季日蒸散量的最小值接近0(1月底),返青期開(kāi)始逐漸增大,于4、5月份達(dá)到最大值(2013-2014年最大值為7.37 mm/d;2014-2015年為5.72 mm/d);月蒸散量1月份最低,2013-2014年與2014-2015年分別為10.7和8.6 mm;5月份達(dá)到最高值分別為142.8和102.5 mm;整個(gè)冬小麥生長(zhǎng)季的蒸散量分別為436.3和334.8 mm。
2)利用2013-2014和2014-2015兩個(gè)冬小麥生長(zhǎng)季渦度系統(tǒng)所觀測(cè)的數(shù)據(jù)對(duì)蒸散量的預(yù)測(cè)模型(R-K模型)進(jìn)行修正及驗(yàn)證,并與FAO-PM模型的預(yù)測(cè)值及渦度相關(guān)系統(tǒng)(eddy covariance system,EC)測(cè)量值進(jìn)行對(duì)比。結(jié)果證明:FAO-PM模型和R-K模型均比較準(zhǔn)確地預(yù)測(cè)了冬小麥田的日蒸散量,預(yù)測(cè)值與測(cè)量值之間的確定性系數(shù)均大于0.85,符合指數(shù)均達(dá)到0.90,從各項(xiàng)統(tǒng)計(jì)指數(shù)看,R-K模型的預(yù)測(cè)效果要優(yōu)于FAO-PM模型。
3)分析了R-K模型對(duì)氣象參數(shù)的敏感度,發(fā)現(xiàn)模型對(duì)于凈輻射通量、土壤熱通量、空氣密度、飽和水汽壓、實(shí)際水汽壓及臨界阻力不敏感,對(duì)空氣動(dòng)力學(xué)阻力的敏感度稍大。但從整體來(lái)說(shuō),R-K模型對(duì)于氣象參數(shù)的敏感度較低,具有良好的穩(wěn)定性。
4)利用R-K模型對(duì)冬小麥田不同生長(zhǎng)階段的蒸散量進(jìn)行預(yù)測(cè),結(jié)果表明:模型的預(yù)測(cè)效果在后期表現(xiàn)最佳,相對(duì)誤差僅為0.5%;在越冬期表現(xiàn)最差,相對(duì)誤差高達(dá)92.7%。模型對(duì)生長(zhǎng)季總蒸散量的預(yù)測(cè)較好,相對(duì)誤差僅為7.0%。
雖然R-K模型預(yù)測(cè)效果在冬小麥生長(zhǎng)季的某些階段并不是非常理想,但是總體模擬結(jié)果較好,說(shuō)明該模型是一個(gè)有較高的實(shí)用價(jià)值。在今后,還需要大量的數(shù)據(jù)對(duì)R-K模型進(jìn)行修正和驗(yàn)證,以期在不同區(qū)域及不同時(shí)間尺度上利用該模型預(yù)測(cè)農(nóng)田蒸散量,為水資源管理提供參考。
[1] Allen R G, Pereira L S, Howell T A, et al. Evapotranspiration information reporting: II. Recommended documentation[J]. Agricultural Water Management, 2011, 98(6): 921-929.
[2] Cheng Hefa, Hu Yuanan, Zhao Jiafu. Meeting China’s water shortage crisis: current practices and challenges[J]. Environmental Science & Technology Feature, 2009, 43(2): 240-244.
[3] Jiang Yong. China’s water scarity[J]. Journal of environmental management, 2009, 90(11): 3185-3196.
[4] Peng Shiqi. Water resources strategy and agricultural development in China[J]. Journal of Experimental Botany, 2011, 62(6): 1709-1713.
[5] Béziat P, Rivalland V, Tallec T, et al. Evaluation of a simple approach for crop evapotranspiration partitioning and analysis of the water budget distribution for several crop species[J]. Agricultural and Forest Meteorology, 2013, 177(6): 46-56.
[6] 趙春江,楊貴軍,薛緒掌,等. 基于互補(bǔ)相關(guān)模型和IKONOS數(shù)據(jù)的農(nóng)田蒸散時(shí)空特征分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(8):115-124. Zhao Chunjiang, Yang Guijun, Xue Xuzhang, et al. Temporal-spatial analysis of farmland evpotranspiration based on complementary relationship model and IKONOS data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(8): 115-124. (In Chinese with English abstract)
[7] Kang Shaozhong, Cai Huanjie, Zhang Jianhua. Estimation of maize evapotranspiration under water deficits in a semiarid region[J]. Agricultural Water Management, 2000, 43(1): 1-14.
[8] Rana G, Katerji N. Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review[J]. European Journal of Agronomy, 2000, 13(2/3): 125-153.
[9] Meyers T P. A comparison of summertime water and CO2fluxes over rangeland for well watered and drought conditions[J]. Agricultural and Forest Meteorology, 2001, 106(3): 205-214.
[10] Wilson K, Meyers T P. The spatial variability of energy and carbon dioxide fluxes at the floor of a deciduous forest[J]. Boundary-Layer Meteorology, 2001, 98(3): 443-473.
[11] Lee Xuhui, Massman W, Law B. Handbook of Micrometeorology: a Guide for Surface Flux Measurement and Analysis[M]. Dordrecht: Kluwer Academic Publishers, 2005: 1-4.
[12] Li Yijun, Li Zhou, Xu Zhenzhu, et al. Comparison of water vapor, heat and energy exchanges over agricultural and wetland ecosystems[J]. Hydrological process, 2009, 23(14): 2069-2080.
[13] Zha Tianshan, Barr A G, Kamp G V. Interannual variation of evapotranspiration from forest and grassland ecosystems in western Canada in relation to drought[J]. Agricultural and Forest Meteorology, 2010, 150(11): 1476-1484.
[14] Chen Yiying, Chu C R, Li M H. A gap-filling model for eddy covariance latent heat flux: Estimating evapotranspiration of a subtropical seasonal evergreen broad-leaved forest as an example[J]. Journal of Hydrology, 2012(468/469): 101-110.
[15] Monteith J L. Evaporation and environment[J]. Symposia of the Society for Experimental Biology, 1965, 19(19): 205-234.
[16] 王瀟瀟,潘學(xué)標(biāo),顧生浩,等. 內(nèi)蒙古地區(qū)參考作物蒸散變化特征及其氣象影響因子[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(增刊1):142-152. Wang Xiaoxiao, Pan Xuebiao, Gu Shenghao, et al. Trend in reference crop evapotranspiration and meteorological factors affecting trends in Inner Mongolia[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp.1): 142-152. (in Chinese with English abstract)
[17] 孫亮,陳仲新. 應(yīng)用Penman-Monteith公式和土壤濕度指數(shù)估算漁區(qū)地表蒸散[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(10):101-108. Sun Liang, Chen Zhongxin. Estimation of regional evapotranspiration based on Penman-Monteith equation and soil moisture index[J]. Transactions of the Chinese Society of Agricultural Engineering (Tansactions of the CSAE), 2013, 29(10): 101-108. (in Chinese with English abstract)
[18] Doorenbos J, Pruitt W O. Guidelines for Prediction Crop Water Requirements. FAO Irrigation and Drainage Paper 24[M]. Rome: FAO publishers, 1997: 179.
[19] Allen R G, Pereira L S, Raes D, et al. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements[M]. Rome: FAO Publishers, 1998: 20-90.
[20] Shahrokhnia M H, Sepaskhah A R. Single and dual crop coefficients and crop evapotranspiration for wheat and maize in a semi-humid region[J]. Theoretical and Applied Climatology, 2013, 114(3): 495-510.
[21] 殷長(zhǎng)琛,齊廣平,康燕霞. 基于云模型的甘肅省參考作物蒸散量時(shí)空分布特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,31(8):152-158. Yin Changchen, Qi Guangping, Kang Yanxia. Analysis on characteristics of temporal-spatial potential evapotranspiration distribution in Gansu based on cloud mode[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 31(8): 152-158. (in Chinese with English abstract)
[22] Zhang Chuan, Yan Haofang, Shi Haibin, et al. Study of crop coefficient and the ratio of soil evaporation to evapotranspiration in an irrigated maize field in an arid area of Yellow River Basin in China[J]. Meteorology & Atmospheric Physics, 2013, 121(3): 207-214.
[23] Allen R G, Perria L S, Smith M, et al. FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions[J]. Journal of Irrigation & Drainage Engineering, 2005, 131(1): 2-13.
[24] Yan Haofan, Zhang Chuan, Oue H, et al. Comparison of different methods for estimating soil surface evaporation in a bare field[J]. Meteorology & Atmospheric Physics, 2012, 118(3): 143-149.
[25] Flumignan D L, Faria R T, Prete C E C. Evapotranspiration components and dual crop coefficients of coffee trees during crop production[J]. Agricultural Water Management, 2011, 98(5): 791-800.
[26] Carrasco-Benavides M, Ortega-Farías S, Lagos L O, et al. Crop coefficients and actual evapotranspiration of a drip-irrigated Merlot vineyard using multispectral satellite images[J]. Irrigation Science, 2012, 30(6): 485-497.
[27] Zhang Baozhong, Liu Yu, Xu Di, et al. The dual crop coefficient approach to estimate and partitioning evpotranspiration of the winter wheat-summer maize crop sequence in North China Plain[J]. Irrigation Science, 2012, 31(6): 1303-1316.
[28] Zhao Nana, Liu Yu, Cai Jiabin, et al. Dual crop coefficient modeling applied to the winter wheat-summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component[J]. Agricultural water management, 2013, 117: 93-105.
[29] Kang Shaozhong, Gu Binjie, Du Taisheng, et al. Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region[J]. Agricultural Water Management, 2003, 59(3): 239-254.
[30] Katerji N, Perrier A. A modélisation de l'évapotranspiration réelle d’une parcelle de luzerne: r?le d'un coefficien cultural[J]. Agronomie, 1983, 3(6): 513-521.
[31] Rana G, Katerji N, Mastrodli M, et al. Evapotranspiration and canopy resistance of grass in a Mediterranean region[J]. 1994, Theoretical and Applied Climatology, 51(1/2): 61-71.
[32] Rana G, Katerji N, Mastrodli M, et al. Validation of a model of actual evapotranspiration for water stressed soybeans[J]. Agricultural and Forest Meteorology, 1997, 86(3/4): 215-224.
[33] Rana G, Katerji N. Operational model for direct determination of evapotranspiration for well watered crops in Mediterranean region[J]. Theoretical and Applied Climatology, 2009, 97(3): 243-253.
[34] Rana G, Katerji N, Ferrara R M, et al. An operational model to estimate hourly and daily crop evapotranspiration in hilly terrain: validation on wheat and oat crops[J]. Theoretical and Applied Climatology, 2011, 103(3/4): 413-426.
[35] Rana G, Katerji N, Lazzara P, et al. Operational determination of daily actual evapotranspiration of irrigated tomato crops under Mediterranean conditions by one-step and two-step models: Multiannual and local evaluations[J]. Agricultural Water Management, 2012, 115(12): 285-296.
[36] Liu Guoshui, Liu Yu, Hafeez M, et al. Comparison of two methods to derive time series of actual evapotranspiration using eddy covariance measurements in the southeastern Australia[J]. Journal of Hydrology, 2012, 4(454/455): 1-6.
[37] Katerji N, Rana G. FAO-56 methodology for determining water requirement of irrigated crops: critical examination of the concepts, alternative proposals and validation in Mediterranean region[J]. Theoretical and Applied Climatology, 2014, 116(16): 515-536.
[38] Rana G, Katerji N, Perniola M. Evapotranspiration of sweet sorghum: a general model and multilocal validity in semi arid environmental conditions[J]. Water Resources Research, 2001, 37(2): 3237-3246.
[39] Willmott C J. On the validation of models[J]. Phys. Geogr., 1981, 2(2): 184-194.
[40] 張強(qiáng),李宏宇. 黃土高原地表能量不閉合度與垂直感熱平流的關(guān)系[J]. 物理學(xué)報(bào),2010,59(8):5888-5895. Zhang Qiang, Li Hongyu. The relationship between surface energy balance unclosure and vertical sensible heat advection over the loess plateau[J]. Acta Physica Sinica, 2010, 59(8): 5888-5895. (in Chinese with English abstract)
[41] Leuning R, Denmead O T, Lang A R G, et al. Effects of heat and water vapor transport on eddy covariance measurement of CO2fluxes[J]. Boundary-Layer Meteorology, 1982, 23(2): 209-222.
[42] 劉渡,李俊,同小娟,等. 華北平原冬小麥/夏玉米輪作田能量閉合狀況分析[J]. 中國(guó)農(nóng)業(yè)氣象,2012,33(4):493-499. Liu Du, Li Jun, Tong Xiaojuan, et al. Analysis of the energy balance closure in a winter wheat/summer maize double cropping system in the North China Plain[J]. Chinese Journal of Agrometeorology, 2012, 33(4): 493-499. (in Chinese with English abstract)
[43] 童應(yīng)祥,田紅. 壽縣地區(qū)麥田能量閉合度分析[J]. 中國(guó)農(nóng)學(xué)通報(bào),2009,25(18):384-387. Tong Yingxiang, Tian Hong. Analysis of energy balance of Shouxian wheat field[J]. Chinese Agricultural Science Bulletin, 2009, 25(18): 384-387. (in Chinese with English abstract)
[44] Wilson K, Goldstein A, Falge E, et al. Energy balance closure at FLUXNET sites[J]. Agricultural and Forest Meteorology, 2002, 113(1/2/3/4): 223-243.
[45] Li Zhengquan, Yu Guirui, Wen Xuefa, et al. Energy balance closure at ChinaFLUX sites[J]. Science in China Ser. D:Earth Sciences, 2005, 48(Supp I): 51-62.
[46] 張續(xù)軍,吳志勇,陸桂華. VIC模型參數(shù)的敏感性分析[EB/OL].中國(guó)科技論文在線.[2006-03-20]. http://www. paper.edu.cn/releasepaper/content/200603-343. Zhang Xujun, Wu Zhiyong, Lu Guihua. Sensitivity analysis of the parametes in VIC model[EB/OL]. Sciencepaper Online. [2006-03-20]. http://www.paper.edu.cn/releasepaper/content/ 200603-343. (in Chinese with English abstract)
Calibration and evaluation of R-K evapotranspiration model for winter wheat in North China Plain
Wang Juan1,2, Wang Jianlin3, Liu Jiabin4, Jiang Yongchao2, Wang Guodong1※
(1. College of Science, Northwest A&F University, Yangling 712100, China; 2. College of Sciences and Information Science, Qingdao Agricultural University, Qingdao 266109, China; 3. College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao 266109, China; 4. Department of Modern Agricultural Demonstration Farm, Qingdao Agricultural University, Qingdao 266109, China)
Understanding of evapotranspiration (ET) of crops is very important for the research on the balance of water, such as hydrology, agronomy and environmental science. The Penman-Monteith equation (PM equation) has been widely used for predicting the actual ET, but the direct application of the PM equation is very difficult because of the determination of canopy resistance. Two operational models are developed to determine the actual ET based on the PM equation: FAO-PM model (FAO is the abbreviation of Food and Agriculture Organization) and Rana and Katerji model (R-K model). To analyze the applicability and stability of these 2 models on predicting the ET from winter wheat field in the North China Plain, the dynamic variations of ET from winter wheat field in 2013-2014 and 2014-2015 were studied on the basis of the data obtained with eddy covariance system (EC) and microclimate observations. The applicability of the R-K model was also analyzed in the experimental field. The R-K model was calibrated and validated with the data obtained in winter wheat growing seasons during 2013-2014 and 2014-2015. The daily ET predicted by the R-K model and the FAO-PM model was compared to the observed ET with the EC method. The application of the R-K model in predicting the ET in different growing stages of winter wheat was further studied. Results indicated that the ET of winter wheat showed obvious seasonal variation, and the minimum daily ET occurred in late January (the value was nearly zero). With the advent of the returning green stage, the winter wheat entered the development stage, and the ET started to increase slowly, reaching the maximum that was 7.37 mm in May for 2013-2014 and 5.72 mm in April for 2014-2015. The minimum monthly ET occurred in January, which was 10.7 and 8.6 mm in 2013-2014 and 2014-2015, respectively; and the maximum monthly ET was 142.8 and 102.5 mm in May for 2013-2014 and 2014-2015, respectively. The total ET of whole growing season was 436.3 and 334.8 mm respectively for these 2 growing seasons. The coefficients a and b in the R-K model were calibrated by using 3 data sets (data in 2013-2014, data in 2014-2015, and data in both years). There was small difference between the 3 data sets, and the stability of the R-K model was good. The calibrated coefficients a and b by using the data in 2013-2014 were 1.277 and 0.540 respectively (R2=0.741 and RMSE=2.034×10-5) and taken as the calibrated coefficients suitable for the experiment field. The data in 2014-2015 were used to validate the performance of the model. In the FAO-PM model, the slope of the linear regression between the observed and predicted values (1.01) was slightly greater than 1.0, the coefficient of determination was higher than 0.85, the index of agreement was 0.90, and the relative error was 16.2%. In the revised R-K model, the slope of linear regression (0.89) was less than 1.0, the coefficient of determination was higher than 0.85, the index of agreement was 0.91 and the relative error was 6.95%. These statistical parameters indicated that predicting daily ET with the revised R-K model performed slightly better than the FAO-PM model. To guide the management of the field irrigation, the ET during different growing stages was predicted with the R-K model. The performance of the model was much better in late-season stage with the relative error less than 0.5%, followed by the development stage with the relative error of about 19%, and then the mid-season stage with the relative error of about 21%, and poor for the initial stage and the overwintering stage with the relative error value of about 48% and 92%, respectively. The sensitivity analysis indicated the R-K model had good stability because it was only slightly sensitive to the aerodynamic resistance and the critical resistance. Overall, the R-K model is a promising model to predict the actual ET, and the calibration and validation of the model need further study at hourly, daily, monthly and annual time scales in different locations.
evapotranspiration; crops; models; eddy covariance method; meteorological parameters
10.11975/j.issn.1002-6819.2016.09.014
S161.4
A
1002-6819(2016)-09-0099-07
王 娟,王建林,劉家斌,姜永超,王國(guó)棟. R-K蒸散模型用于華北平原冬小麥農(nóng)田的參數(shù)校正與評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(9):99-105.
10.11975/j.issn.1002-6819.2016.09.014 http://www.tcsae.org
Wang Juan, Wang Jianlin, Liu Jiabin, Jiang Yongchao, Wang Guodong. Calibration and evaluation of R-K evapotranspiration model for winter wheat in North China Plain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 99-105. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.09.014 http://www.tcsae.org
2015-12-29
2016-03-24
國(guó)家自然科學(xué)基金項(xiàng)目(31171500,31371574);中國(guó)科學(xué)院戰(zhàn)略性先導(dǎo)科技專(zhuān)項(xiàng)(XDA05050601)。
王 娟,女,山東泰安人,博士生,研究方向?yàn)檗r(nóng)田碳水循環(huán)。楊凌 西北農(nóng)林科技大學(xué)理學(xué)院,712100。Email:wangjuan7712@126.com
※通信作者:王國(guó)棟,男,陜西禮泉人,教授,博士生導(dǎo)師,研究方向環(huán)境生物物理學(xué)。楊凌 西北農(nóng)林科技大學(xué)理學(xué)院,712100。Email:gdwang211@aliyun.com