李粉玲,常慶瑞※,申 健,王 力
(1.西北農(nóng)林科技大學資源環(huán)境學院,楊凌712100; 2. 農(nóng)業(yè)部西北植物營養(yǎng)與農(nóng)業(yè)環(huán)境重點實驗室,楊凌 712100)
基于GF-1衛(wèi)星數(shù)據(jù)的冬小麥葉片氮含量遙感估算
李粉玲1,2,常慶瑞1,2※,申 健1,王 力1
(1.西北農(nóng)林科技大學資源環(huán)境學院,楊凌712100; 2. 農(nóng)業(yè)部西北植物營養(yǎng)與農(nóng)業(yè)環(huán)境重點實驗室,楊凌 712100)
以陜西關中地區(qū)大田和小區(qū)試驗下的冬小麥為研究對象,探討基于國產(chǎn)高分辨率衛(wèi)星GF-1號多光譜數(shù)據(jù)的冬小麥葉片氮含量估算方法和空間分布格局。基于GF-1號光譜響應函數(shù)對地面實測冬小麥冠層高光譜進行重采樣,獲取GF-1號衛(wèi)星可見光-近紅外波段的模擬反射率,并構建光譜指數(shù),利用與葉片氮含量在0.01水平下顯著相關的8類光譜指數(shù),分別建立葉片氮含量的一元線性、一元二次多項式和指數(shù)回歸模型。通過光譜指數(shù)與葉片氮含量的敏感性分析,以及所建模型的綜合對比分析,獲取適合冬小麥葉片氮含量估算的最佳模型。結果表明:模擬衛(wèi)星寬波段光譜反射率和衛(wèi)星實測光譜反射率間的相關系數(shù)高于0.95,具有一致性;改進型的敏感性指數(shù)綜合考慮了模型的穩(wěn)定性、敏感性和變量的動態(tài)范圍,敏感性分析表明比值植被指數(shù)對葉片氮含量的變化響應能力最強;綜合模擬方程決定系數(shù)、模型敏感性分析、精度檢驗和遙感制圖的結果,認為基于比值植被指數(shù)建立的葉片氮含量估算模型適用性最強,模擬結果與實際空間分布格局最為接近,為基于GF-1衛(wèi)星數(shù)據(jù)的區(qū)域性小麥氮素營養(yǎng)監(jiān)測提供了理論依據(jù)和技術支持。
衛(wèi)星;氮;敏感性分析;GF-1;冬小麥
基于遙感圖像的作物生化指標反演獲取技術是多平臺遙感精準農(nóng)業(yè)信息獲取的重點[1]。高光譜遙感以其豐富的光譜信息在作物生理生化信息提取方面得到了廣泛應用,為多光譜衛(wèi)星數(shù)據(jù)估算作物生化參量提供了理論依據(jù)[2-3]。當前,國內(nèi)外專家學者針對作物葉面積指數(shù)(LAI)、植被覆蓋度、生物量、葉綠素含量等生長指標的多光譜衛(wèi)星遙感監(jiān)測能力進行了探討[4-7]。氮素營養(yǎng)是作物需求量最大的營養(yǎng)元素,它對作物的生命活動以及作物品質(zhì)和產(chǎn)量的形成有著極其重要的影響。基于衛(wèi)星遙感信息的冬小麥氮素營養(yǎng)狀況監(jiān)測認為,SPOT 5、Landsat TM、HJ-1A/1B等中高空間分辨率數(shù)據(jù)在作物氮素含量的遙感監(jiān)測中具有較好的適用性[8-10],但對于選用何種光譜波段和光譜指數(shù)能更有效、可靠地監(jiān)測小麥氮素營養(yǎng)仍存在爭論,而基于中國自主研制的GF-1號衛(wèi)星數(shù)據(jù)的冬小麥氮素含量遙感監(jiān)測能力也有待研究。中國自2011年高分專項全面啟動實施以來,已經(jīng)成功獲取了來自GF-1和GF-2號衛(wèi)星的遙感影像數(shù)據(jù)。GF-1號衛(wèi)星搭載了2 m全色相機、8 和16 m多光譜相機,重訪周期為41 d,8 m多光譜數(shù)據(jù)包含藍(450~520 nm)、綠(520~590 nm)、紅(630~690 nm)和近紅外(770~890 nm)4個波段。國內(nèi)學者就GF-1衛(wèi)星數(shù)據(jù)在作物長勢遙感監(jiān)測中的適用性展開了部分研究工作,黃汝根等[11],李粉玲等[12]基于GF-1遙感影像分別估算了華南地區(qū)亞熱帶典型作物和關中地區(qū)冬小麥的SPAD值。賈玉秋等[13]研究表明基于GF-1和Landsat 8數(shù)據(jù)的玉米LAI反演結果具有空間一致性。為了進一步研究GF-1數(shù)據(jù)在農(nóng)作物長勢監(jiān)測中的適應性,本研究利用不同年份、不同施氮水平和不同品種類型的冬小麥冠層高光譜信息,模擬國產(chǎn)高空間分辨率GF-1號衛(wèi)星波段的光譜反射,分析小麥葉片氮含量(leaf nitrogen content,LNC)指標與模擬衛(wèi)星波段光譜及光譜指數(shù)的定量關系,探討光譜指數(shù)對冬小麥葉片氮含量監(jiān)測的靈敏性和適用性,以期為基于GF-1衛(wèi)星數(shù)據(jù)的區(qū)域性小麥氮素營養(yǎng)監(jiān)測提供理論依據(jù)和技術支持。
1.1 試驗設計
2013-2014年在西北農(nóng)林科技大學農(nóng)作1站進行氮、磷肥脅迫小區(qū)試驗,土壤類型為紅油土,小區(qū)面積12 m2(3 m×4 m),供試品種為小偃22。設置氮肥和磷肥2個因素各6個水平,每個處理重復2次,共24個試驗小區(qū),氮肥和磷肥作為底肥一次施入,管理按照大田模式進行。2012-2014年在陜西楊凌區(qū)揉谷鎮(zhèn)、扶風縣召公鎮(zhèn)巨良農(nóng)場和扶風縣杏林鎮(zhèn)馬席村開展冬小麥長勢大田觀測試驗,共布置大田樣區(qū)39個,最小大田面積為80 m2(10 m×8 m),由農(nóng)戶按照常規(guī)冬小麥種植方式進行管理。在冬小麥的返青期、拔節(jié)期、抽穗期和灌漿期進行冠層光譜和小麥植株采集。
1.2 冠層光譜及葉片全氮測定
采用美國SVC HR-1024I型光譜輻射儀測定冠層光譜,它在350~1 000 nm的光譜分辨率為3.5 nm,采樣間隔為1.5 nm。選擇晴朗無風的天氣,在10:30-14:00之間進行光譜測定。測量前進行標準白板校正,觀測時傳感器垂直向下,距離冠層130 cm,視場角25°,設置1次采樣重復10次,以其平均值作為該觀測樣點的光譜反射率。每個小區(qū)均勻采集3個樣點,大田采集5個樣點,以樣點光譜數(shù)據(jù)的平均值作為該樣區(qū)的冠層光譜反射數(shù)據(jù)。采集光譜的同時,利用差分GPS同步采集樣點經(jīng)緯度坐標。在測量冠層光譜的區(qū)域選取有代表性小麥20株,將其綠色葉片在105℃殺青30 min,80℃烘干后稱質(zhì)量,粉碎后采用凱氏定氮法測定葉片全氮含量。試驗共獲得204個樣本數(shù)據(jù),其中有效光譜和葉片全氮數(shù)據(jù)樣本192個。將全氮數(shù)值由小到大進行排序,按照4:1的比例抽取訓練集(154樣本)和驗證集(38樣本)。
1.3 衛(wèi)星寬波段光譜模擬
將地面實測高光譜數(shù)據(jù)重采樣為1 nm,根據(jù)GF-1衛(wèi)星8 m多光譜相機的光譜響應函數(shù),利用式(1)[14]模擬GF-1衛(wèi)星藍、綠、紅和近紅外波段的光譜反射。

式中R是模擬衛(wèi)星寬波段的反射率,λmin,λmax分別為傳感器光譜探測的起始和終止波長,S(λ)為傳感器在λ波長的光譜響應函數(shù)值,R(λ)是小麥冠層光譜在λ波長的反射率。
1.4 GF-1衛(wèi)星數(shù)據(jù)處理
研究獲取到楊凌地區(qū)2014年3月10日GF-1號8 m多光譜相機影像一景,影像獲取時間與試驗的返青期采樣時間一致。在ENVI5.0下,對GF-1衛(wèi)星影像進行輻射定標、大氣校正和正射校正。基于面向?qū)ο蠛椭С窒蛄繖C分類算法對圖像進行分類,提取影像中冬小麥的覆蓋區(qū)域,冬小麥的用戶和制圖精度均在90%以上。
1.5 數(shù)據(jù)分析與方法
基于192個模擬光譜數(shù)據(jù)構建多種光譜指數(shù),選擇和葉片氮含量在0.01水平下顯著相關,且相關系數(shù)高于0.6的光譜指數(shù)(表1)用于葉片氮含量估算。以訓練集為基礎,建立基于光譜指數(shù)的小麥葉片氮含量遙感估算模型,并對模型進行敏感性分析。采用驗證集對預測模型進行精度檢驗。通過綜合評定給出最優(yōu)的冬小麥葉片氮含量估算模型,并基于最優(yōu)模型進行返青期冬小麥葉片氮含量遙感制圖。光譜指數(shù)的計算以及光譜指數(shù)與葉片氮含量的相關分析和建模均在Matlab語言環(huán)境下編程實現(xiàn)。

表1 遙感光譜指數(shù)及其計算公式Table 1 Spectral indices and calculation
2.1 葉片氮含量和冠層光譜特征分析
研究區(qū)全生育期葉片氮含量最小值為0.19%,最大值為3.6%,平均值為1.55%,具有中等空間變異性,變異系數(shù)為42.44%。可見光區(qū)的冠層光譜反射率隨葉片氮含量的增加逐漸降低,近紅外波段隨葉片氮含量水平的增加逐漸升高。對比返青期18個大田樣區(qū)的模擬光譜反射率和對應GF-1衛(wèi)星的觀測光譜反射率(圖1),結果表明模擬GF-1衛(wèi)星的藍、綠、紅和近紅外寬波段光譜反射率和實際衛(wèi)星光譜反射率顯著相關,相關系數(shù)在0.95以上,兩者具有一致性。

圖1 模擬反射率與衛(wèi)星反射率空間分布Fig.1 Relationship between simulated and satellite reflectance
2.2 光譜指數(shù)與葉片氮含量的相關分析
所篩選的光譜指數(shù)可以分為兩類:兩波段指數(shù),即通過紅、綠、藍和近紅外中的任意兩個波段構建的光譜指數(shù);三波段指數(shù),如VARI和TCARI/OSAVI指數(shù)。基于192條樣本光譜,在對應光譜范圍內(nèi)構建任意兩波段指數(shù),兩波段指數(shù)和葉片氮含量線性回歸的決定系數(shù)R2分布如圖2。當衛(wèi)星的探測波段和圖2中與葉片氮含量相關性較好的波長區(qū)間相一致時,認為這些光譜指數(shù)對GF-1衛(wèi)星數(shù)據(jù)監(jiān)測葉片氮含量是有效的。NDVI、RVI和MSAVI是由近紅外和紅波段構建的光譜指數(shù),其中RVI指數(shù)和葉片氮含量的相關系數(shù)最高。當紅波段取610~690 nm,近紅外取750~900 nm時,RVI與葉片氮含量的決定系數(shù)在0.45以上,GF-1紅波段和近紅外波段的光譜范圍正好包含了此波段區(qū)間。當藍光波段在410~450 nm,紅光波段在600~690 nm時,NPCI指數(shù)與葉片氮含量的R2相對較高,而GF-1藍光波段(450~520 nm)、紅光波段(600~690 nm)的波長不在NPCI對葉片氮含量響應最佳的波長范圍內(nèi),其R2有所下降,值在0.3~0.4之間。GF-1波段范圍內(nèi)的NRI指數(shù)與葉片氮含量的相關性優(yōu)于GRVI指數(shù)。衛(wèi)星高度獲取作物冠層光譜反射率的影響因素眾多,考慮衛(wèi)星傳感器光譜響應函數(shù),獲取的衛(wèi)星寬波段模擬光譜反射率所構建的8類光譜指數(shù)(TCARI/OSAVI、RVI、NPCI、VARI、MSAVI、GRVI、NRI、NDVI)與葉片氮含量的Pearson相關系數(shù)分別為?0.778、0.759、?0.641、0.632、0.626、0.611、0.613、0.608,RVI光譜指數(shù)表現(xiàn)要優(yōu)于其他兩波段指數(shù),三波段指數(shù)和葉片氮含量的相關性整體上優(yōu)于兩波段指數(shù)。

圖2 不同光譜指數(shù)估算葉片氮含量的決定系數(shù)R2分布圖Fig.2 Distribution of determination coefficient of leaf nitrogen content estimated by different spectral indices
2.3 基于光譜指數(shù)的葉片氮含量估算
基于154個訓練樣本的光譜指數(shù)和葉片氮含量的空間分布如圖3。基于R2最大原則建立光譜指數(shù)和葉片氮含量的回歸模型,各模型均通過0.01水平的顯著性檢驗。其中NDVI和葉片氮含量表現(xiàn)出顯著的指數(shù)關系,VARI、MSAVI、GRVI、NPCI、NRI和葉片氮含量的最優(yōu)模型為二次多項式模型,TCARI/OSAVI、RVI和葉片氮含量為線性相關。TCARI/OSAVI指數(shù)與葉片氮含量的線性模型擬合精度最高,決定系數(shù)達到0.63;其次是RVI指數(shù),模擬方程決定系數(shù)為0.60。
2.4 估算模型的敏感性分析
決定系數(shù)反映了估算模型對因變量的解釋程度,是模型精度評價的重要參數(shù)。當擬合模型呈非線性時,由于光譜指數(shù)對葉片氮含量的敏感度不再是常數(shù),此時決定系數(shù)就存在一定的誤導性[23],需要對所建模型的敏感性進行分析。模型的敏感性通常需要考慮3個因素[5]:光譜指數(shù)應具有抗干擾的能力,具備穩(wěn)定性;光譜指數(shù)對葉片氮含量的變化敏感;光譜指數(shù)應具備較寬的動態(tài)響應范圍。鑒于此,本文在NE指數(shù)[23]和TVI指數(shù)[5]的基礎上提出敏感性指數(shù)S,對不同光譜指數(shù)反演葉片氮含量模型的適用性給出合理的分析評價。

式中σSI是光譜指數(shù)(SI)的標準差,反應了光譜指數(shù)的動態(tài)變化范圍;RMSE(SI,LNC)是光譜指數(shù)SI關于葉片氮含量最優(yōu)擬合模型的均方根誤差,表達了SI-LNC模擬關系的穩(wěn)定性;dSI/dLNC是光譜指數(shù)關于葉片氮含量最優(yōu)擬合模型的一階微分,反映了光譜指數(shù)對葉片氮含量變化的敏感性,本文對其取絕對值。RMSE(SI,LNC)越小,σSI和dSI/dLNC絕對值越大,S值就越小,表明SI對葉片氮含量的敏感度和適用性就越強。

圖3 光譜指數(shù)與葉片氮含量空間分布Fig.3 Relationship between leaf nitrogen content (LNC) and spectral indices
敏感性分析,如圖4所示,RVI、綜合指數(shù)(TCARI/OSAVI)和GRVI指數(shù)對葉片氮含量的響應能力較強,估算模型的適用性較高。GRVI、VARI、MSAVI、NPCI、NRI和葉片氮含量為非線性相關,S值與葉片氮含量呈指數(shù)關系分布,在葉片氮含量較低時,S值也較低,所建模型的適用性較強;之后S值平緩增加,在超過一定閾值后,S值隨著葉片氮含量的增加迅猛提升,適用性降低。GRVI指數(shù)對葉片氮含量的敏感性較高,S值低于其他非線性相關指數(shù)。

圖4 葉片氮含量估算模型的敏感性分析Fig.4 Sensitivity analysis of simulated leaf nitrogen content models
VARI、MSAVI指數(shù)構建的模型適用性整體要高于NRI和NPCI模型(圖4)。VARI指數(shù)在葉片氮質(zhì)量分數(shù)低于2.5%時,適用性強于MSAVI指數(shù),之后相反;NRI指數(shù)在葉片氮含量低于2%時,適用性高于NPCI,之后相反。NDVI指數(shù)構建的模型具有較高的決定系數(shù)(R2=0.53),但模型的敏感性(LNC-SI模擬方程一階微分低于0.25)和適用性降低(S值隨葉片氮含量的增加呈倍數(shù)遞增)。綜合指數(shù)(TCARI/OSAVI)、RVI指數(shù)與葉片氮含量呈線性相關,S為常數(shù)(S<0.2),對葉片氮含量的響應具有穩(wěn)定性。RVI、綜合指數(shù)(TCARI/OSAVI)對LNC-SI模型的一階微分分別為9.44和3.08,模型敏感性S值分別為0.0671和0.1979,因此RVI模型的適用性優(yōu)于綜合指數(shù)(TCARI/OSAVI)。
2.5 葉片氮含量估算模型檢驗
利用驗證集(38樣本)對基于不同光譜指數(shù)變量的模型精度進行檢驗,實測值與預測值空間分布、擬合方程決定系數(shù)R2、均方根誤差RMSE、平均相對誤差MRE結果見圖5,擬合方程均通過0.01的顯著性檢驗。圖5中散點分布越接近1:1線說明模型預測精度越高。所有方程的斜率均低于1,表明基于以上8類光譜指數(shù)構建的葉片氮含量估算模型整體上低估了實測值,當葉片氮質(zhì)量分數(shù)<1.5%時,所有模型的估算值高于或接近于實測值,而在葉片氮質(zhì)量分數(shù)>1.5%時,所有模型均不同程度低估了實測值。8類模型的MRE在25.04%~32.79%,RMSE在0.45~0.56之間。基于MSAVI指數(shù)和GRVI指數(shù)的估算值與實測值偏差較大,散點分布較為松散,擬合方程決定系數(shù)較低;NPCI光譜指數(shù)在驗證集上表現(xiàn)較為突出,R2達到0.59,RMSE為0.45;綜合指數(shù)(TCARI/OSAVI)和RVI光譜指數(shù)保持了相對較高的估算精度。綜合估算模型決定系數(shù),光譜指數(shù)對葉片氮含量變化的響應能力和驗證模型的精度,認為基于RVI指數(shù)建立的模型LNC =0.0631RVI+0.2811是葉片氮含量估算的最佳模型。

圖5 基于驗證集的葉片氮含量實測值與預測值分布Fig.5 Distribution of measured and estimated leaf nitrogen content (LNC) based on checking set
2.6 基于GF-1衛(wèi)星數(shù)據(jù)的LNC制圖
在ENVI 5.0下,選擇GF-1衛(wèi)星影像相關波段計算綜合指數(shù)(TCARI/OSAVI)和RVI指數(shù),利用綜合指數(shù)(TCARI/OSAVI)和RVI指數(shù)所建立的模型進行葉片氮含量遙感估算,并以提取的冬小麥覆蓋區(qū)域作為掩膜,獲取冬小麥返青期葉片氮含量遙感監(jiān)測專題圖(圖6)。在空間分布格局上,實測冬小麥葉片氮含量由西南向東北方向逐漸遞增,基于綜合指數(shù)(TCARI/OSAVI)和RVI指數(shù)的葉片氮含量估算結果與實際葉片氮含量空間分布趨勢較為一致。TCARI/OSAVI-LNC模型和RVI-LNC估算模型的平均值分別為0.82和0.91。以同步采集的地面大田實測數(shù)據(jù)進行精度檢驗,結果表明:TCARI/OSAVI-LNC模型和RVI-LNC模型的估算值與實測值所建回歸方程的決定系數(shù)R2分別為0.56和0.52,TCARI/OSAVI指數(shù)和RVI指數(shù)的估算模型均在不同程度上低估了實測數(shù)值,但基于RVI模型的估算精度略高于TCARI/OSAVI模型。
利用光譜信息進行作物生長參量的反演是農(nóng)業(yè)遙感研究的核心。依據(jù)地面控制點,通過建立地面實測作物生理生化指標和衛(wèi)星寬波段光譜指數(shù)的定量關系進行作物生化指標估算是目前常用的研究方法[8-10,24-25],但是這種方法通常會受到地面控制點的定位精度、地面觀測時間和影像獲取時間相互匹配程度的影響。受衛(wèi)星獲取圖像時間周期和天氣狀況的影響,很難獲取到作物全生育期的圖像,因此基于衛(wèi)星圖像的作物生理參量估算都是對特定生育期的研究。高空衛(wèi)星探測的反射光譜不僅受傳感器光譜響應函數(shù)的影響,同時還受大氣狀況、獲取圖像地面分辨率大小等影響。對GF-1圖像經(jīng)過輻射定標、大氣糾正和正射糾正后,提取了和地面實測點位相對應的衛(wèi)星圖像的光譜信息,結果表明模擬的寬波段光譜反射率和圖像提取的光譜反射率高度一致,可見光、近紅外波段反射率間的相關系數(shù)均高于0.95。因此,基于衛(wèi)星傳感器的光譜響應函數(shù)對地面實測高光譜數(shù)據(jù)進行重采樣,獲取和衛(wèi)星傳感器波段一致的模擬光譜反射率構建光譜指數(shù),可以進行全生育期和分生育期作物生化參量的估算研究。
本文從眾多光譜指數(shù)中篩選了8類和葉片氮含量在0.01水平下顯著相關,且相關系數(shù)高于0.6的光譜指數(shù)進行分析。以往研究表明紅邊波段和近紅外波段是氮素最為敏感的波段[26-28],本文研究同樣發(fā)現(xiàn),沒有近紅外波段參與的VARI、NPCI和NRI光譜指數(shù)所構建的LNC估算模型精度要低于其它光譜指數(shù)。基于等效噪聲(NE)的改進型敏感性指標S值,不僅考慮了模型的穩(wěn)定性和敏感性,還考慮了光譜指數(shù)對葉片氮含量的響應范圍,提高了模型精度判別的合理性。綜合指數(shù)(TCARI/OSAVI)、RVI、GRVI指數(shù)對模型的敏感性和穩(wěn)定性較好,適用性較強,其他光譜指數(shù)對葉片氮含量低值的敏感性和精度要優(yōu)于葉片氮含量高值。RVI光譜指數(shù)具有較寬的數(shù)據(jù)變化范圍,S值較低,模型的適用性要優(yōu)于決定系數(shù)更高的綜合指數(shù)(TCARI/OSAVI),這在基于GF-1圖像的葉片氮含量制圖中表現(xiàn)突出。綜合分析認為基于RVI指數(shù)建立的模型是葉片氮含量估算的最佳模型。任意兩波長RVI指數(shù)與葉片氮含量相關分析的R2分布表明:紅波段取610~690 nm,近紅外取750~900 nm時,RVI與葉片氮含量的決定系數(shù)在0.45以上,而多光譜衛(wèi)星紅光波段和近紅外波段的探測區(qū)間一般都在此范圍內(nèi),因此,RVI光譜指數(shù)在其它多光譜衛(wèi)星的應用上也應該具備一定的潛力。
雖然本文所建的全生育期葉片氮含量模型均通過了顯著性檢驗,但驗證集中實測值和預測值分布偏離1:1線,所有模型整體上低估了實測值。在返青期的葉片氮含量遙感制圖中,相對較高的葉片氮含量被低估,導致整體上葉片氮含量值偏低。基于RVI指數(shù)的葉片氮含量空間分布趨勢與實際吻合,精度略高于綜合指數(shù)(TCARI/OSAVI),但是RVI指數(shù)在其他生育期圖像的制圖表現(xiàn)仍需要探討。光譜指數(shù)的選擇影響著模型的精度,模型的構建方法也是影響模型精度的重要因素,因此,在以后的研究中嘗試基于多個光譜指數(shù)的偏最小二乘法以及機器學習算法的應用,彌補多光譜波段數(shù)目有限的不足,進一步提高模型的估算精度,并對分生育期葉片氮含量估算模型進行探討。文中返青期的模擬光譜反射率和衛(wèi)星實測反射率之間的相關性較好,而其他生育期則有待探討。
本文基于大田和小區(qū)試驗下的實測冬小麥冠層高光譜信息,利用光譜響應函數(shù)模擬國產(chǎn)高分辨率衛(wèi)星GF-1號可見光-近紅外波段的冠層反射率,構建了基于光譜指數(shù)的冬小麥全生育期葉片氮含量估算模型,并進行模型敏感性分析、精度檢驗和衛(wèi)星遙感制圖。結果表明:模擬衛(wèi)星寬波段光譜反射率和衛(wèi)星實測光譜反射率間的相關系數(shù)高于0.95,具有一致性;改進型的敏感性指數(shù)S綜合考慮了模型的穩(wěn)定性、敏感性和變量的動態(tài)范圍,敏感性分析表明基于RVI光譜指數(shù)的估算模型適用性最強;綜合模擬方程決定系數(shù)、模型敏感性分析、精度檢驗和遙感制圖的結果,確定基于GF-1衛(wèi)星數(shù)據(jù)的葉片氮含量最佳估算模型,R2為0.6。
[1] 趙春江. 精準農(nóng)業(yè)研究與實踐[M]. 北京:科學出版社,2009:17-18.
[2] Yoder B J, Pettigrew-Crosby R E. Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2 500 nm) at leaf and canopy scales[J]. Remote Sensing of Environment, 1995, 53(3): 199-211.
[3] Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression[J]. Remote Sensing of Environment, 2003, 86(4): 542-553.
[4] Eitel J U H, Vierling L A, Litvak M E, et al. Broadband, red-edge information from satellites improves early stress detection in a New Mexico conifer woodland[J]. Remote Sensing of Environment, 2011, 115(12): 3640-3646.
[5] Wu J, Wang D, Bauer M E. Assessing broadband vegetation indices and QuickBird data in estimating leaf area index of corn and potato canopies[J]. Field Crops Research, 2007, 102(1): 33-42.
[6] Gitelson A A, Peng Y, Masek J G, et al. Remote estimation of crop gross primary production with Landsat data[J]. Remote Sensing of Environment, 2012, 121(138): 404-414.
[7] Zhang X, Liao C, Li J, et al. Fractional vegetation cover estimation in arid and semi-arid environments using HJ-1 satellite hyperspectral data[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 21(4): 506-512.
[8] 譚昌偉,王紀華,趙春江,等. 利用 Landsat TM 遙感數(shù)據(jù)監(jiān)測冬小麥開花期主要長勢參數(shù)[J]. 農(nóng)業(yè)工程學報,2011,27(5):224-230. Tan Changwei, Wang Jihua, Zhao Chunjiang, et al. Monitoring wheat main growth parameters at anthesis stage by Landsat TM[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2011, 27(5): 224-230. (in Chinese with English abstract)
[9] 王備戰(zhàn),馮曉,溫暖,等. 基于SPOT-5影像的冬小麥拔節(jié)期生物量及氮積累量監(jiān)測[J]. 中國農(nóng)業(yè)科學,2012,45(15):3049-3057. Wang Beizhan, Feng Xiao, Wen Nuan, et al. Monitoring biomass and N accumulation at jointing stage in winter wheat based on Spot-5 images[J]. Scientia Agricltura Sinica, 2012, 45(15): 3049-3057. (in Chinese with English abstract)
[10] 譚昌偉,楊昕,馬昌,等. 基于HJ-1A/1B影像的冬小麥開花期主要生長指標遙感定量監(jiān)測研究[J]. 麥類作物學報,2015,35(3):427-435. Tan Changwei, Yang Xin, Ma Chang, et al. Quantitative remote sensing monitoring of major growth indices of winter wheat at anthesis stage based on HJ-1A/1B images[J]. Journal of Triticeae Crops, 2015, 35(3): 427-435. (in Chinese with English abstract)
[11] 黃汝根,劉振華,胡月明,等. 基于高分一號遙感影像反演華南地區(qū)亞熱帶典型作物冠層SPAD[J]. 華南農(nóng)業(yè)大學學報,2015,36(4):105-111. Huang Rugen, Liu Zhenhua, Hu Yueming, et al. Retrieval of typical subtropical crop canopy SPAD value in South China using GF-1 remote sensing image[J]. Journal of South China Agricultural University, 2015, 36(4): 105-111. (in Chinese with English abstract)
[12] 李粉玲,王力,劉京,等. 基于高分一號衛(wèi)星數(shù)據(jù)的冬小麥葉片SPAD值遙感估算[J]. 農(nóng)業(yè)機械學報,2015,46(9):273-281. Li Fenling, Wang Li, Liu Jing, et al. Remote sensing estimation of SPAD value for wheat leaf based on GF-1 data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(9): 273-281. (in Chinese with English abstract)
[13] 賈玉秋,李冰,程永政,等. 基于GF-1與Landsat-8 多光譜遙感影像的玉米LAI反演比較[J]. 農(nóng)業(yè)工程學報,2015,31(9):173-179. Jia Yuqiu, Li Bing, Cheng Yongzheng, et al. Comparison between GF-1 images and Landsat-8 images in monitoring maize LAI[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(9): 173-179. (in Chinese with English abstract)
[14] Trigg S, Flasse S. Characterizing the spectral-temporal response of burned savannah using in situ spectroradiometry and infrared thermometry[J]. International Journal of Remote Sensing, 2000, 21(16): 3161-3168.
[15] Rouse J W, Haas R H, Schell J A, et al. Monitoring the vernal advancements and retrogradation of natural vegetation[R]. NASA/GSFC, Final Report, Greenbelt, MD, USA, 1974.
[16] Jordan C F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology, 1969, 50(4): 663-666.
[17] Gitelson A A, Kaufman Y J, Stark R, et al. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sensing of Environment, 2002, 80(1): 76-87.
[18] Qi J, Chehbouni A, Huete A R, et al. A modified soil adjusted vegetation index[J]. Remote Sensing of Environment, 1994, 48(2): 119-126.
[19] Gitelson A A, Gritz Y, Merzlyak M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves[J]. Journal of Plant Physiology, 2003, 160(3): 271-282.
[20] Penuelas J, Gamon J A, Fredeen A L, et al. Reflectance indices associated with physiological changes in nitrogen-and water-limited sunflower leaves[J]. Remote Sensing of Environment, 1994, 48(2): 135-146.
[21] Schleicher T D, Bausch W C, Delgado J A, et al. Evaluation and refinement of the nitrogen reflectance index (NRI) for site-specific fertilizer management[C]//2001 ASAE Annual International Meeting, St-Joseph, MI, USA. ASAE Paper. 2001 (01-11151).
[22] Haboudane D, Miller J R, Tremblay N, et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture[J]. Remote Sensing of Environment, 2002, 81(2): 416-426.
[23] Gitelson A A. Remote estimation of crop fractional vegetation cover: The use of noise equivalent as an indicator of performance of vegetation indices[J]. International Journal of Remote Sensing, 2013, 34(17): 6054-6066.
[24] 袁金國,牛錚. 基于Hyperion高光譜圖像的氮和葉綠素制圖[J]. 農(nóng)業(yè)工程學報,2007,23(4):172-178. Yuan Jinguo, Niu Zheng. Nitrogen and chlorophyll mapping based on Hyperion hyperspectral image[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(4): 172-178. (in Chinese with English abstract)
[25] 武婕,李玉環(huán),李增兵,等. 基于SPOT-5遙感影像估算玉米成熟期地上生物量及其碳氮累積量[J]. 植物營養(yǎng)與肥料學報,2014,20(1):64-74. Wu Jie, Li Yuhuan, Li Zengbing, et al. Estimation of biomass and C and N accumulation at the maturity stage of corn using synchronous SPOT 5 spectral parameters[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(1): 64-74. (in Chinese with English abstract)
[26] Broge N H, Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J]. Remote Sensing of Environment, 2001, 76(2): 156-172.
[27] 姚霞,朱艷,田永超,等. 小麥葉層氮含量估測的最佳高光譜參數(shù)研究[J]. 中國農(nóng)業(yè)科學,2009,42(8):2716-2725. Yao Xia, Zhu Yan, Tian Yongchao, et al. Research of the optimum hyperspectral vegetation indices on monitoring the nitrogen content in wheat leaves[J]. Scientia Agricultura Sinica, 2009, 42(8): 2716-2725. (in Chinese with English abstract)
[28] Schlemmer M, Gitelson A, Schepers J, et al. Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 25(4): 47-54.
Remote sensing estimation of winter wheat leaf nitrogen content based on GF-1 satellite data
Li Fenling1,2, Chang Qingrui1,2※, Shen Jian1, Wang Li1
(1. College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; 2. Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling 712100, China)
Nitrogen is a major element for plant growth and yield formation in agronomic crops. Crop nitrogen content estimation by remote sensing technique has been being a topic research in remote sensing monitoring of agricultural parameters. Hyper-spectral remote sensing with wealth of spectral information has been widely used in crop physiological and biochemical information extraction. It provides theoretical basis for estimating crop biochemical parameters based on multi-spectral satellite data. In terms of multi-spectral satellite remote sensing, spectral reflectances and spectral indices are effective ways to establish estimation models of biochemical parameters, but which bands and spectral indices are more effective and reliable for leaf nitrogen concentration monitoring in winter wheat is still debatable. In this article, ground-based canopy spectral reflectance and leaf nitrogen content (LNC) of winter wheat were measured from field and plot experiments including varied nitrogen fertilization levels and winter wheat varieties across the whole growth stages. Multi-spectral broadband reflectance was simulated by using the measured hyper-spectral reflectance and spectral response functions of multi-spectral camera of GF-1 satellite with a spatial resolution of 8 m, and then, they were used for the establishment of spectral index (SI). Eight spectral indices significantly correlated with LNC at the 0.01 probability level were used to construct the LNC estimation models in a linear, quadratic polynomial and exponential regression model respectively. Considering the influence factors in evaluating the efficiency of the SI–LNC model, i.e., the stability of the SI to other perturbing factors, the sensitivity of the SI to a unit change of LNC, and the dynamic range of the SI, the improved sensitivity index was proposed based on the NE and TVIindex models. The optimal LNC estimation model was given according to the sensitivity and accuracy analysis, and the model was used to inverse the LNC in greenup growth period based on the GF-1 satellite image. The results showed that: 1) The simulated multi-spectral reflectance was highly correlated with the spectral reflectance from remote sensing images in visible and near infrared bands. They were consistent with each other keeping a correlation coefficient of greater than 0.95. It was concluded that the simulated broadband SI considering the spectral response function could be used to analyze the quantitative relationship with leaf nitrogen in both different growth periods and whole growth stage. 2) The SI based on the simulated spectral reflectance was significantly related with the LNC at 0.01 probability level with the correlation coefficient of greater than 0.6. A different pattern of the best combinations was found for 6 two-band spectral indices. The selection of 610-690 nm paired with 750-900 nm was the most effective two-band combination in RVI index, which was also the center wavelengths of the red and near infrared bands for GF-1 satellite data. 3) The sensitivity analysis indicated that all the regression models of selected SI passed the significance test at 0.01 probability level. The TCARI/OSAVI and RVI indices linearly related with LNC implied a stable response to the LNC changes. The first-order differentials of RVI and TCARI/OSAVI with respect to LNC were 9.44 and 3.08, and the sensitivity indices were 0.0671 and 0.1979 respectively. The RVI index was regarded as the most suitable index for LNC estimation. 4) The TCARI/OSAVI and RVI indices performed well in accuracy test, and the RVI index was more excellent in remote sensing mapping based on the GF-1 satellite image. Taking all factors into consideration, we believed the model based on the RVI index was optimal for LNC estimation with the determination coefficient of 0.6.
satellites; nitrogen; sensitivity analysis; GF-1; winter wheat
10.11975/j.issn.1002-6819.2016.09.022
TP79; S127
A
1002-6819(2016)-09-0157-08
李粉玲,常慶瑞,申 健,王 力. 基于GF-1衛(wèi)星數(shù)據(jù)的冬小麥葉片氮含量遙感估算[J]. 農(nóng)業(yè)工程學報,2016,32(9):157-164.
10.11975/j.issn.1002-6819.2016.09.022 http://www.tcsae.org
Li Fenling, Chang Qingrui, Shen Jian, Wang Li. Remote sensing estimation of winter wheat leaf nitrogen content based on GF-1 satellite data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 157-164. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.09.022 http://www.tcsae.org
2015-11-06
2016-03-02
國家863計劃項目(2013AA102401)。
李粉玲,講師,博士生,主要從事農(nóng)業(yè)遙感技術研究。楊凌 西北農(nóng)林科技大學資源環(huán)境學院,712100。Email:fenlingli@nwsuaf.edu.cn
※通信作者:常慶瑞,教授,主要從事土地資源與空間信息技術。楊凌 西北農(nóng)林科技大學資源環(huán)境學院,712100。Email:changqr@nwsuaf.edu.cn