999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

混凝土及預應力混凝土結構抗火研究現狀與展望

2016-12-22 07:05:19鄭文忠侯曉萌
哈爾濱工業大學學報 2016年12期
關鍵詞:鋼筋混凝土

鄭文忠,侯曉萌,王 英

(1.結構工程災變與控制教育部重點實驗室(哈爾濱工業大學),哈爾濱 150090;2.哈爾濱工業大學 土木工程學院,哈爾濱 150090)

?

混凝土及預應力混凝土結構抗火研究現狀與展望

鄭文忠1,2,侯曉萌1,2,王 英1,2

(1.結構工程災變與控制教育部重點實驗室(哈爾濱工業大學),哈爾濱 150090;2.哈爾濱工業大學 土木工程學院,哈爾濱 150090)

為拓展混凝土及預應力混凝土結構抗火的研究思路與方法,論述了普通鋼筋、預應力筋、混凝土等結構材料的抗火性能,凝煉了混凝土及預應力混凝土結構構件的抗火性能,介紹了火災后混凝土結構加固修復技術,指出了混凝土及預應力混凝土結構抗火研究中存在的一些問題,展望了其發展趨勢.分析表明:混凝土高溫爆裂臨界溫度隨強度變化而變化,摻鋼纖維或聚丙烯纖維可有效防止混凝土火災下爆裂;合理考慮名義拉應力和混凝土強度影響的爆裂判別方法,可有效降低火災下預應力結構混凝土爆裂風險;混凝土及預應力混凝土結構應滿足火災時不爆裂、火災下不坍塌、火災后可修復的抗火設計目標;火災下防爆裂混凝土合理纖維摻量、混凝土及預應力結構構件高溫爆裂機理及預測模型、活性粉末混凝土(RPC)高溫爆裂規律、RPC熱-力耦合本構關系及其結構構件抗火性能、溫度-荷載路徑對結構構件高溫性能的影響、高層混凝土結構和地下空間結構抗火性能等方面應予關注.關鍵詞: 鋼筋混凝土;預應力混凝土;爆裂;抗火性能;抗火設計

火災是高頻災種[1-2],中國每年發生建筑火災約15萬起,全世界每年發生建筑火災約360萬起.火災常導致結構嚴重損傷甚至坍塌.2003年湖南衡陽衡州大廈在火災中突然整體坍塌,奪去了20位消防官兵的寶貴生命.2009年央視北配樓火災、2015年哈爾濱“1.2”火災,無不影響巨大,損失慘重.混凝土工程量大面廣,高溫影響材料性能和結構內力,溫度和荷載有耦合作用,溫度-荷載路徑對材料本構關系和構件受力性能有影響,火災下預應力構件混凝土可能發生爆裂.混凝土及預應力混凝土的研究,經歷了由構件到體系,由靜力到動力,由一般作用到極端作用的多個階段.火災對混凝土及預應力混凝土結構影響研究,成為近年來土木工程行業研究熱點之一.世界各國對結構抗火日益關注,結構抗火學會(SIF)是國際上著名的學術團體,該組織定期舉行結構抗火學術會議,中國建筑學會結構抗火專業委員會每兩年舉辦一次全國結構抗火研討會,積極推進中國結構抗火水平的提升.

本文論述了混凝土、預應力混凝土及活性粉末混凝土抗火性能的研究現狀,介紹了火災后混凝土結構加固修復技術,指出了混凝土及預應力混凝土結構抗火研究中尚存的一些問題,并展望了其發展趨勢.

1 材料的高溫力學性能

1.1 普通鋼筋高溫力學性能

鋼筋的合金成分和生產工藝不同,將導致高溫下鋼筋力學性能有所差別.高溫下,鋼筋內部金屬晶體結構改變,致使力學性能變化.陸洲導等[3-4]對屈服強度為401 MPa的熱軋螺紋鋼筋進行了恒溫加載試驗,發現400 ℃之前鋼筋極限抗拉強度下降不明顯,溫度高于500 ℃后,下降明顯,提出了高溫下鋼筋理想彈塑性的本構關系模型;過鎮海等[5]完成了HPB235級、HRB335級、HRB400級和RRB400級普通鋼筋恒溫加載試驗,提出了高溫下普通鋼筋的極限抗拉強度、屈服強度統一計算式;李明等[6]通過恒溫加載試驗研究了月牙紋鋼筋、光圓鋼筋和高強碳素預應力鋼絲強度變化規律,發現預應力鋼絲極限強度退化快于普通鋼筋,提出了高溫下預應力損失計算公式,該公式適用于溫度不高于500 ℃的情況;王孔藩等[7]完成了光圓鋼筋、螺紋鋼筋、冷拔鋼絲和冷軋扭鋼筋恒溫加載試驗,發現高溫下不同種類鋼筋極限抗拉強度退化并不相同,冷拔鋼絲強度退化更快;吳波等[8]對國內所完成的高溫下普通鋼筋、鋼材的屈服強度進行了統計分析,提出了具有95%保證率的普通鋼筋高溫屈服強度計算公式.

Ingberg等[9]采用恒溫加載試驗研究了屈服強度250 MPa的結構鋼高溫力學性能,獲得了其高溫下應力-應變關系曲線;Harmathy等[10]完成了ASTM A36(屈服強度246 MPa)、CSA G40.12(屈服強度300 MPa)低碳結構鋼及ASTM A421-65 (條件屈服強度1 550 MPa)預應力鋼絲的恒溫加載試驗,獲得了3種鋼材的高溫應力-應變曲線;Lie[11-12]基于上述試驗結果,給出了高溫下結構鋼、熱軋鋼筋應力-應變曲線計算式,并被美國土木工程協會(ASCE)結構防火手冊[13]采納,但該式鋼筋應力-應變曲線無下降段[5,14].

美國混凝土抗火設計規范ACI 216-07[15]給出了高溫下熱軋鋼筋、合金高強鋼筋和冷拉預應力筋屈服強度的退化規律.

歐洲混凝土抗火設計規范EC2-1-2[16-17]給出的高溫下熱軋鋼筋、冷拔鋼絲受拉應力-應變關系曲線,分為彈性段、非線性段、塑性段和下降段四部分.該公式給出的鋼筋極限拉應變(鋼筋極限應力對應的應變)及破斷點應變(鋼筋被拉斷時應力對應的應變)與溫度無關,這與高溫下鋼筋應變發展規律不符.Elghazouli等[18]采用恒溫加載方法,完成的熱軋鋼筋、冷拉鋼筋的力學性能試驗表明,高溫下鋼筋的屈服強度、極限強度退化與歐洲混凝土抗火設計規范的建議值基本一致,但高溫下鋼筋極限應變高于規范建議值.

為比較ASCE防火手冊、歐洲抗火設計規范給出的高溫下普通鋼筋受拉應力-應變計算模型的差別,以屈服強度為400 MPa的熱軋鋼筋為例,高溫下其受拉應力-應變曲線見圖1.溫度為20、300、500、700 ℃時,按ASCE手冊計算鋼筋受拉應力-應變關系為曲線1、2、3、4;按歐洲抗火設計規范計算鋼筋受拉應力-應變關系為曲線5、6、7、8.ASCE防火手冊考慮了鋼筋受拉強化段,按ASCE防火手冊計算常溫下鋼筋極限強度大于按歐洲抗火設計規范計算值,溫度低于500 ℃時,ASCE防火手冊給出的鋼筋應力-應變曲線強度退化較快.

圖1 高溫下鋼筋應力-應變關系

Fig.1 Stress-strain relationships of reinforcing steel bars under high temperatures by ASCE and EC2-1-2 model

鋼筋高溫蠕變影響火災下結構反應.鋼材熔點約為1 400 ℃,一般認為,恒載升溫狀態下,當鋼筋溫度超過其熔點的30%時,高溫蠕變明顯,即鋼筋溫度超過400 ℃時,應合理考慮高溫蠕變的影響[19].Dorn[20]基于恒溫、恒應力高溫蠕變試驗,提出了不同種類結構鋼高溫蠕變模型.Harmathy[21]對Dorn高溫蠕變模型進行了修正,期望使之適用于變應力狀態下結構鋼的高溫蠕變計算,Dorn-Harmathy模型經參數標定后也可用于計算鋼筋高溫蠕變[22].Kodur等[23]研究表明:當用Dorn-Harmathy模型計算變應力狀態下結構鋼、鋼筋的高溫蠕變時,會產生較大偏差.過鎮海等[5]完成了HRB335級鋼筋應力水平為0.2~0.8,溫度為200~600 ℃的高溫蠕變試驗.

國內外對普通鋼筋高溫性能的研究表明,溫度不高于200~300 ℃時,普通熱軋鋼筋的屈服強度、極限強度基本不降低,溫度超過400 ℃時,鋼筋的屈服強度、極限強度急劇降低,600 ℃時,屈服強度、極限強度分別為常溫下強度的30%、45%.鋼筋強度退化規律有一定差別,這可能是鋼筋合金成分、生產工藝(產地)[24]及試驗條件的差別所致.不同文獻給出鋼筋應力-應變計算模型有一定差異,部分模型的計算應變與高溫下鋼筋實際應變不符,因此,在進行結構抗火分析時,應合理選擇鋼筋應力-應變計算模型.

1.2 預應力筋高溫力學性能

中國每年有逾百萬噸高強預應力鋼絲/鋼絞線用于預應力工程建設,預應力鋼絲/鋼絞線抗火性能是預應力結構抗火性能的關鍵影響因素之一.

Day等[25]對預應力鋼絲進行了恒載升溫和高溫蠕變試驗,結果表明,預應力鋼絲應力水平(拉應力與極限抗拉強度之比)為0.6時,溫度升高至400 ℃,鋼絲被拉斷,高溫蠕變引起較大的預應力損失;Abrams等[22]進行了預應力鋼絞線(抗拉強度標準值fptk=1 860 MPa)恒溫加載試驗,獲得了高溫下鋼絞線極限抗拉強度退化規律,結果表明:溫度為427 ℃時,鋼絞線極限抗拉強度降低至50%;過鎮海等[5]采用恒溫加載方法,完成了用于預應力混凝土結構的消除應力鋼絲(直徑5 mm,條件屈服強度為1 274 MPa)高溫性能試驗,提出了高溫下消除應力鋼絲應力-應變計算公式,發現與HPB235~RRB400級普通鋼筋相比,消除應力鋼絲極限抗拉強度退化更快,故應更重視預應力混凝土結構的抗火性能;范進等[26-27]進行了預應力鋼絲(fptk=1 670 MPa)、鋼絞線(fptk=1 860 MPa)的恒溫加載試驗,獲得了其極限強度、條件屈服強度和彈性模量隨溫度的變化規律;陳禮剛等[28-29]完成了fptk=1 570 MPa預應力鋼絲、fptk=1 410 MPa預應力鋼絲、77B螺旋肋鋼絲(fptk=1 120 MPa)和LL650 冷軋帶肋鋼絲(fptk=650 MPa)恒溫加載和恒載升溫試驗,提出了高溫下預應力鋼絲應力-應變關系曲線的二折線模型.發現經過冷拔和回火熱處理后的fptk=1 570 MPa預應力鋼絲、fptk=1 410 MPa預應力鋼絲和77B螺旋肋鋼絲,高溫下強度下降更快,這主要是當溫度高于300 ℃以后,熱處理所造成的金屬晶體框架的畸變逐漸被解除,熱處理作用基本消失所致.此外,恒載升溫路徑下,經熱處理鋼絲的極限抗拉強度略高于恒溫加載路徑下鋼絲的強度,而兩種路徑下LL650冷軋帶肋鋼絲強度基本一致,這主要是恒溫加載路徑減弱了鋼筋熱處理作用所致.

PC鋼棒(fptk=800 ~970 MPa)是近年來發展的新型預應力鋼種.侯曉萌等[30]完成了PC鋼棒高溫下力學性能試驗,建立了其高溫下應力-應變計算公式,發現高溫下PC鋼棒強度退化慢于預應力鋼絲,這主要是PC鋼棒中錳、釩含量較高,提高了其耐火性能所致.為揭示火災下低松弛高強預應力鋼絲的本構模型,鄭文忠等[31-32]采用恒溫加載方法,完成了fptk=1 770、1 860 MPa的低松弛高強預應力鋼絲的高溫力學性能試驗,基于試驗結果建立了兩種強度級別的高溫下低松弛高強預應力鋼絲的本構關系.熱軋鋼筋、PC鋼棒、預應力鋼絲高溫下極限強度退化見圖2.

圖2 高溫下不同鋼筋極限抗拉強度退化規律

Fig.2 Comparison of ultimate tensile strength of different reinforcing steel bars under high temperatures

火災下預應力結構的鋼絲、鋼絞線處于高應力狀態,產生顯著的應力松弛(或蠕變)[33],使結構中預應力明顯降低,變形增大.華毅杰[34]、蔡躍等[35]進行了fptk=1 570 MPa預應力鋼絲的高溫拉伸和高溫蠕變(εcr)試驗,提出了高溫蠕變計算公式.

為揭示火災下預應力筋應力、應變變化規律,張昊宇等[36]開展了52個fptk=1 770 MPa低松弛高強預應力鋼絲試件的高溫蠕變試驗、應力松弛試驗,提出了低松弛高強預應力鋼絲的高溫蠕變、高溫松弛計算公式.

周煥廷等[37-38]開展了高溫下預應力鋼絞線(fptk=1 860 MPa)強度、蠕變性能試驗,并提出了鋼絞線高溫蠕變計算公式.發現預應力鋼絲高溫蠕變低于鋼絞線高溫蠕變,這主要是鋼絞線捻制完成之后,又經歷一次回火所致.

文獻[34-38]均是基于恒溫、恒應力下的高溫蠕變試驗結果,提出的預應力鋼絲/鋼絞線高溫蠕變計算公式,且公式計算結果差異較大.以fptk=1 770 MPa的預應力鋼絲/鋼絞線為例,常溫下應力為751 N/mm2、溫度為350℃時,文獻[34,36,38]給出的高溫蠕變計算值和實測值對比見圖3.用預應力鋼絲高溫蠕變公式計算鋼絞線高溫蠕變,將偏于保守.

圖3 預應力鋼絲/鋼絞線高溫蠕變計算值和實測值對比

Fig.3 Comparison of creep curves of prestressing steel wires/stands under high temperatures

為研究溫度-荷載路徑對預應力混凝土結構受力性能的影響,鄭文忠等[39]考慮了低松弛高強預應力鋼絲溫度變化過程中蠕變、溫度膨脹、應力變化及變形模量變化對鋼絲應變的影響,將任意溫度-荷載路徑分解為恒溫加載和恒載升溫兩種路徑,建立了高溫下低松弛高強預應力鋼絲考慮溫度-時間路徑的應變和應力計算方法.

1.3 混凝土高溫力學性能

國內外學者對高溫下混凝土的抗壓強度、彈性模量、抗拉強度、本構關系、高溫膨脹、高溫徐變、瞬態熱應變等進行了研究.對高溫下普通混凝土(混凝土強度等級≤C50,NSC)力學性能的研究表明[5,40-46]:在溫度低于150 ℃時,混凝土強度降低,在溫度為150~300 ℃時,混凝土抗壓強度稍有提高,甚至大于常溫下強度,溫度大于400 ℃時,混凝土強度快速下降.

Thienel等[47]研究了高溫下NSC雙軸受壓時的本構關系,結果表明,高溫下雙軸受壓強度高于單軸受壓強度,雙軸受壓強度退化規律與單軸受壓強度退化規律相似.高溫下混凝土抗壓強度與混凝土骨料、配合比、升溫速率、應力水平等有關[48-49].高溫與荷載作用下,混凝土游離水先被蒸發,在200 ℃左右,結合水開始分解,在350 ℃左右,發生硅酸鈣和鋁酸鈣等脫水,在550 ℃左右,氫氧化鈣開始分解,導致水泥石破壞.針對這一問題,Gawin等[50]建立了化學反應-溫度-應力混凝土本構數值模型,但模型需要高溫下混凝土滲透系數張量、熱擴散率張量等眾多參數,即使是常溫下,這些參數還難以準確確定.

近年來,不少學者對高溫下高強混凝土(C55-C95,HSC)力學性能進行了研究[51-52],高強混凝土摻入礦渣粉、硅灰等,與NSC相比,微觀結構更為致密,高溫下易發生爆裂[53-54].高溫下NSC、HSC抗壓強度隨溫度變化歸一化曲線見圖4.其中,文獻[5]采用100 mm×100 mm×300 mm棱柱體試件,棱柱體抗壓強度15~35 MPa,文獻[43-45]分別采用φ75 mm×150 mm、φ51 mm×102 mm和φ80 mm×300 mm圓柱體試件,圓柱體抗壓強度分別為28、31和33 MPa,文獻[45,51-52]分別采用φ80 mm×300 mm、φ50 mm×100 mm和φ100 mm×310 mm圓柱體試件,圓柱體抗壓強度分別為107、69~118和60 MPa.

圖4 高溫下混凝土抗壓強度隨溫度變化

Fig.4 Variation with temperature of concrete compressive strength under high temperatures

NSC抗拉強度約為抗壓強度的10%,而HSC抗拉強度與抗壓強度之比更小.火災下混凝土抗拉強度對結構構件的受彎承載力貢獻極小[5],但混凝土抗拉強度影響構件的開裂,對混凝土的高溫爆裂性能也有顯著影響[54].過鎮海等[5]給出的NSC抗拉強度隨溫度升高而線性降低(20~1 000 ℃).高溫下HSC混凝土抗拉強度退化規律與NSC相似,但還受到纖維種類和摻量的影響,有待進一步研究.

受混凝土強度、骨料類型、混凝土配合比、養護條件、升溫條件的影響,不同學者給出的高溫下混凝土力學性能試驗結果有一定差異,但宏觀變化趨勢一致:隨著溫度的升高,混凝土彈性模量的降低速率通常比強度更大[55],混凝土的峰值應變逐漸增大,混凝土的單軸應力-應變曲線趨于扁平.

高溫下混凝土應變主要包括應力引起的應變、自由膨脹應變、高溫徐變和瞬態熱應變.混凝土在持續應力作用下發生徐變.混凝土的高溫徐變遠大于常溫徐變,Bazant等[56]、Harmathy等[57]開展了混凝土高溫徐變研究,但最高溫度為140 ℃,不能滿足混凝土結構抗火分析需要.Khoury[58]提出了混凝土高溫徐變計算公式,高溫徐變隨受火時間、應力水平的增加而增大.過鎮海等[5]基于恒溫、恒應力狀態下的NSC高溫徐變試驗結果,提出了混凝土高溫徐變計算模型(適用于溫度不大于700 ℃,應力水平不大于0.6的NSC),并引入了等效時間,使其可用于恒溫-變應力狀態下的徐變計算,但混凝土高溫徐變計算值明顯小于按文獻[58]的計算值,這可能是混凝土骨料類型、配合比、試件尺寸等差異所致.混凝土強度等級對高溫徐變的影響還有待于進一步研究[59].

高溫下混凝土無應力時的伸長為自由膨脹變形,在壓應力作用下,混凝土高溫變形可能伸長或縮短,將混凝土壓應力作用下的變形與自由膨脹變形的差值,定義為瞬態熱應變.瞬態熱應變與混凝土常溫下應力水平和自由膨脹相關,發生的機理尚不清楚.Anderberg等[60]、南建林等[61]分別給出了NSC瞬態熱應變計算公式,溫度大于200 ℃時,瞬態熱應變可達混凝土高溫徐變的數倍.胡海濤等[62-63]給出了HSC瞬態熱應變計算公式,結果表明隨混凝土強度提高,瞬態熱應變降低.過鎮海等[5]研究了恒溫加載和恒載升溫兩種基本溫度-荷載路徑下混凝土的力學性能退化規律,基于這兩種基本路徑,將混凝土高溫應變進行分解,提出了混凝土溫度-應力耦合本構關系.高溫徐變、瞬態熱應變會影響結構變形,且受火時間越長,影響越顯著;對超靜定結構,還將影響結構的極限荷載,因此應在結構抗火設計時予以重視.

2011年,中國頒布第一本混凝土結構耐火設計技術規程[55],規程中高溫下普通鋼筋屈服強度、彈性模量計算公式采用了文獻[8]的研究成果;預應力筋極限強度、高溫應力松弛和高溫蠕變計算公式分別采用了文獻[31-32,34]的研究成果;NSC和HSC高溫力學性能分別采用了文獻[5,63]的研究成果.

1.4 混凝土高溫爆裂

高溫下混凝土可能發生爆裂.爆裂不僅導致受力鋼筋暴露于烈火之中,而且使構件受力截面減小,結構耐火性能急劇降低.如何實現火災下混凝土不爆裂,一直是混凝土結構抗火研究所關注的問題.混凝土高溫爆裂機理仍有爭議[64].蒸汽壓力理論認為高溫下混凝土內部水蒸汽難以逃逸,混凝土孔隙內部產生蒸汽壓力,當蒸汽壓力超過混凝土的抗拉強度時發生爆裂.熱應力理論認為,高溫下混凝土變形受到約束而產生熱應力,熱應力超過混凝土抗拉強度時,發生爆裂.

吳波[65]對混凝土高溫爆裂的研究表明,混凝土表面溫度在200~500 ℃時,易發生爆裂.為研究纖維種類和摻量對HSC柱爆裂性能的影響,Kodur等[66]完成了4根HSC(標準立方體抗壓強度81~108 MPa)和1根NSC方柱四面受火試驗,結果表明:摻0.54%鋼纖維或0.1%摻聚丙烯(PP)纖維可緩解HSC高溫爆裂,鈣質骨料HSC較硅質骨料HSC爆裂程度低,這主要是由于溫度大于600 ℃時,鈣質骨料發生分解,導致混凝土比熱容增大,進而降低爆裂所致;編制了考慮高溫爆裂影響的HSC柱抗火性能分析程序[67],提出混凝土爆裂臨界溫度為350 ℃,為抗火分析中考慮混凝土高溫爆裂提供了基礎.Xiao等[68]研究表明:強度等級為C50、C80、C100的混凝土,爆裂臨界溫度分別為800、400、500 ℃.以上研究表明爆裂臨界溫度隨著混凝土強度和組成的變化而變化.

為避免混凝土高溫爆裂,不少學者建議摻PP纖維(纖維長度6~30 mm,直徑50~200 μm)以避免混凝土高溫爆裂,摻PP纖維混凝土在美國、歐洲、日本等得到了應用[69-70].研究表明,溫度為160~170 ℃時,PP纖維熔化,在混凝土內形成水蒸汽逃逸的孔道,可減緩混凝土爆裂.例如,對強度等級C60-C80混凝土,添加不少于2 kg/m3的短切PP纖維可避免爆裂[55],歐洲混凝土抗火設計規范(EC2-1-2)[16]建議,對標準立方體抗壓強度73~113 MPa的混凝土,添加不少于2 kg/m3的PP纖維可避免爆裂.

針對摻PP纖維會降低混凝土和易性及常溫下抗壓強度的問題,不少學者提出在混凝土內合理單摻鋼纖維,不僅可防止混凝土高溫爆裂,還可以提高混凝土強度;鋼纖維在混凝土中是隨機分散的,具有較大的熱傳導性,有利于混凝土內部各處溫度的傳遞,可以減少應力造成的內部損傷,由此減緩混凝土爆裂風險.Chen等[71]研究表明:標準立方體抗壓強度為85 MPa的混凝土,摻0.6%鋼纖維可推遲初爆時刻,但仍發生爆裂;Poon等[72]研究表明:標準立方體抗壓強度為79~105 MPa的混凝土,摻1%鋼纖維,可防止高溫爆裂.

事實上,防爆裂用纖維摻量應隨著混凝土抗壓強度的變化而變化.應進一步研究不摻纖維或低纖維摻量的混凝土爆裂臨界溫度,防止火災下不同強度的混凝土爆裂,所需PP纖維或鋼纖維適宜摻量.

1.5 活性粉末混凝土高溫性能

Richard等[73]研制了一種超高強水泥基復合材料,以細度較大的石英砂(粒徑小于0.6 mm)代替粗骨料,由于摻入了具有較高活性的火山灰質材料,被稱為活性粉末混凝土(RPC),其抗壓強度可達800 MPa[73-75].RPC(100 mm×100 mm×100 mm立方體抗壓強度標準值不低于100 MPa)受到其抗火性能的嚴峻挑戰,制約了RPC的發展與應用.2010年以來,國內外學者對RPC材料的高溫性能進行了探索.Ju等[76]實測了常溫至250 ℃時,鋼纖維RPC熱工參數,結果表明:RPC導熱系數低于NSC.鄭文忠等[77]實測了常溫至900 ℃時摻纖維RPC熱工參數,發現RPC導熱系數高于NSC和HSC,且高溫下RPC熱工參數受其組成成分的影響.

劉紅彬[78]完成了鋼纖維體積摻量為0%、1%和2%的RPC高溫爆裂試驗,結果表明:100 mm×100 mm×100 mm立方體試件中心溫度為250 ℃時,RPC發生爆裂,鋼纖維對RPC爆裂臨界溫度的提高效果不明顯,但可降低RPC爆裂程度;陳強[79]研究表明:RPC初爆溫度為420~583 ℃,隨濕含量的增加,RPC爆裂概率和爆裂損傷程度逐漸增大,濕含量(試件所含可蒸發水的質量與試件飽水狀態下所含可蒸發水的質量比)低于63%時,水膠比由0.16增大至0.20時,試件爆裂概率降低,這主要是由于水膠比增大,RPC強度降低、滲透性降低所致;鄭文忠等[80-81]通過試驗研究了含水率、升溫速度、試件尺寸、防火涂料、恒溫時間和纖維種類及摻量對RPC高溫爆裂性能的影響,發現未施加荷載時,單摻2%鋼纖維RPC(試件尺寸為70.7 mm×70.7 mm×70.7 mm)爆裂臨界含水率為0.85%;合理涂抹防火涂料可防止高溫下RPC爆裂.在RPC不爆裂的基礎上,采用恒溫加載方法,研究了高溫下鋼纖維體積摻量分別為1%、2%和3%的RPC力學性能,結果表明:隨溫度升高,鋼纖維RPC棱柱體抗壓強度和彈性模量迅速下降,峰值應變逐漸升高,200、400、600和800 ℃時鋼纖維RPC的抗壓強度分別降為常溫時的76%~82%、53%~62%、33%~42%和14%~19%,提出了高溫下鋼纖維RPC單軸受壓本構模型.Aydin等[82]進行了20~800 ℃下兩種類型RPC高溫力學性能試驗,研究表明:溫度超過300 ℃時常規RPC易爆裂,而高溫下堿礦渣RPC不爆裂,其耐火性能優于常規RPC.Canbaz[83]的研究表明:先對RPC施加80 MPa壓應力,再用90 ℃熱水養護3天,常溫下RPC強度可達200 MPa,摻1%的PP纖維降低了RPC強度,但可避免高溫下爆裂.Ju等[84]用COMSOL軟件分析了高溫下RPC熱應力,采用主拉應力和Von Mises應力判別RPC高溫爆裂,為環境溫度20~500 ℃的RPC爆裂預測提供了參考,但該數值模型未考慮高溫下RPC蒸氣壓力對爆裂的影響,假定RPC發生塑性變形后,應力不再變化,這一假定尚缺乏試驗驗證,爆裂判別方法的適用性還有待商榷.

國內外對RPC高溫性能的研究表明,高溫下RPC易發生爆裂,一般通過摻鋼纖維或PP纖維來避免高溫爆裂.RPC構件抗火性能的試驗研究尚未見報道.

2 混凝土結構抗火性能

在材料高溫性能研究的基礎上,國內外學者開展了鋼筋混凝土構件抗火性能試驗研究,取得如下成果.

2.1 高溫下鋼筋與混凝土間粘結性能

鋼筋與混凝土間的可靠粘結性能是兩者共同工作的基礎.Diederichs等[85]、Morley等[86-87]完成了20~800 ℃高溫下中心拔出試驗,結果表明:鋼筋與混凝土間粘結強度隨溫度升高而降低,退化規律與混凝土抗拉強度相似.火災下變形鋼筋粘結強度退化慢于光圓鋼筋粘結強度退化,光圓鋼筋粘結強度退化快于混凝土抗拉強度的退化.袁廣林等[88]研究表明:受熱溫度不超過450 ℃時,粘結強度下降不超過20%;受熱溫度達到650 ℃時,高溫下試件的粘結強度約下降40%.胡克旭[89]完成了高溫下中心拔出試驗,獲得了不同溫度下的鋼筋-混凝土的粘結-滑移曲線,分別給出了火災下光圓鋼筋、變形鋼筋與混凝土粘結強度退化影響系數計算式.

Huang[90]、Gao等[91]建立了考慮火災下鋼筋-混凝土粘結滑移影響的有限元模型,分析了火災下鋼筋混凝土梁截面應力、跨中變形.結果表明:若忽略火災下鋼筋-混凝土粘結滑移的影響,混凝土梁、板變形計算值可能偏小.

這里需要指出,由于混凝土的組分不同,不同學者間給出的高溫下鋼筋與混凝土間粘結強度退化離散較大.

2.2 混凝土板抗火性能

1950年以來,國內外學者開展了鋼筋混凝土簡支板耐火極限的試驗研究,考察了保護層厚度、板厚、荷載水平對耐火極限的影響.基于ASTM119標準升溫曲線,以背火面混凝土平均溫度超過121 ℃或任意點溫度超過163 ℃作為板耐火極限的標志,Thompson[92]完成了荷載水平為0.5、計算跨度為3 650 mm、板厚為150 mm的鋼筋混凝土簡支板耐火試驗,該板耐火極限大于3 h.Gustaferro等[93-94]的研究表明:梁、板支座約束可提高其耐火極限;膨脹頁巖輕質骨料混凝土耐火性能高于普通硅質、鈣質骨料混凝土;混凝土含水率越高,由溫度控制的板耐火極限越長.混凝土板背火面設置多孔混凝土、珍珠巖混凝土或蛭石混凝土等防火措施,可提高板的耐火極限,且混凝土密度越低,耐火極限越高[95].Lie[96]編制了混凝土板溫度場計算程序,給出了由溫度控制的板耐火極限計算式,結果表明:隨板厚、保護層厚度的增大,板耐火極限增大.陳正昌[97]完成了混凝土空心簡支板抗火性能試驗,結果表明:相同板厚、相同承載力的鋼筋混凝土空心板耐火性能優于預應力空心板,保護層厚度增加、荷載水平降低,耐火極限增大.

2004年以來,國內外學者開始進行混凝土連續板、雙向板抗火試驗與數值模擬.陳禮剛等[98-100]完成了6塊三跨鋼筋混凝土連續板抗火試驗,分別研究了邊跨受火、中跨受火和相鄰兩跨受火下板的支座反力變化規律,結果表明:火災下連續板發生明顯內力重分布,在負彎矩鋼筋截斷處出現集中裂縫.Bailey等[101]完成了48塊鋼筋混凝土簡支雙向板抗火性能試驗,發現常溫下混凝土被壓碎的試驗板,火災下因鋼筋被拉斷而破壞,這是由于鋼筋高溫下強度降低,由適筋板變為少筋板所致.

王濱等[102-103]完成了2塊四邊簡支和1塊四邊固支鋼筋混凝土雙向板抗火性能試驗,結果表明:四邊固支雙向板在板頂出現橢圓形裂縫.楊志年等[104]對3層3×3跨鋼框架三層頂角部鋼筋混凝土雙向板進行了抗火試驗,雙向板受火面積為4.2 m×4.2 m.王勇等[105]對該鋼框架二層2×2區格雙向板進行了抗火試驗,受火面積為8.4 m×8.4 m,結果表明:相鄰構件的約束作用提高了鋼筋混凝土雙向板抗火性能.

為模擬混凝土雙向板火災反應,Huang等[106-108]考慮了幾何非線性和材料非線性的影響,提出了火災下混凝土雙軸破壞判別準則,編制了考慮火災下板薄膜效應有限元程序.Zhang等[109]編制了雙向板火災反應分析程序,結果表明軸向約束能減少火災下雙向板的變形,但分析過程中未考慮混凝土瞬態熱應變、高溫徐變的影響.Wang等[110]提出了火災下雙軸受力混凝土瞬態熱應變的計算方法,并編制了雙向板抗火性能有限元分析程序,與Huang等[106]方法相比,火災下雙向板變形計算值與實測值吻合更好.

2.3 混凝土梁抗火性能

Ellingwood等[111-113]完成了6根鋼筋混凝土伸臂梁抗火試驗,實測了火災下混凝土梁溫度場分布,獲得了基于ASTM119標準升溫曲線和高強度火災[111]兩種升溫曲線下混凝土梁變形,發現不同升溫條件對鋼筋混凝土梁變形有明顯影響,基于火災下混凝土、鋼筋熱工參數和應力-應變關系,編制了火災下鋼筋混凝土梁變形分析程序,但變形計算值小于實測值.Dotreppe等[114]、Wu等[115]也開展了火災下鋼筋混凝土簡支梁、板抗火性能試驗與數值模擬.

Lin等[116]完成了11根單跨兩端伸臂梁抗火試驗,結果表明:由于梁下部區域的膨脹變形大于梁的上部區域,使梁頂拉應力增大,進而使得火災下梁支座負彎矩增大,結構抗火設計時應合理考慮火災下內力重分布的影響.過鎮海等[5]完成了拉區受火、壓區受火鋼筋混凝土梁力學性能試驗,結果表明,壓區受火適筋梁極限荷載降低慢于拉區受火,提出了高溫下梁板受彎承載力簡化計算方法;完成了4根雙跨升溫、2根單跨升溫的兩跨鋼筋混凝土連續梁抗火性能試驗,實測了不同荷載水平下連續梁支座反力變化,發現連續梁抗火性能優于簡支梁.陸洲導等[117]完成了12根鋼筋混凝土簡支梁一面、二面、三面受火試驗,計算了高溫下簡支梁彎矩-曲率關系和跨中變形,發現當荷載水平大于0.5時,簡支梁耐火極限降低明顯.馮雅等[118]提出了考慮火災下混凝土濕熱變化的溫度場數值模擬方法,并得到試驗結果的驗證.向延念等[119]、張威振[120]利用電爐完成了8根b×h=250 mm×400 mm鋼筋混凝土簡支梁抗火試驗與數值分析,結果表明:在一定受火時段內,隨受火時間延長,縱向受拉鋼筋應力增大.時旭東等[121]完成了12根鋼筋混凝土簡支梁抗火試驗,其中6根為恒溫加載路徑,6根為恒載升溫路徑,結果表明:溫度-荷載路徑不僅影響構件截面應力分布,而且影響結構極限荷載.

苗吉軍等[122]完成了7根帶初始裂縫的鋼筋混凝土簡支梁抗火性能試驗,結果表明:初始裂縫寬度越大,梁耐火性能越差;考慮初始裂縫對梁截面溫度場的影響,提出了帶裂縫梁受彎承載力簡化計算方法.該方法同樣適用于研究經氯離子侵蝕后帶裂縫鋼筋混凝土梁抗火性能[123].查曉雄等[124-125]完成了4根GFRP筋混凝土簡支梁在ISO834標準升溫曲線下受力性能試驗,高溫下GFRP筋抗拉強度退化快于普通鋼筋,GFRP筋混凝土梁裂縫開展高度明顯大于鋼筋混凝土梁.

鋼筋混凝土梁抗火性能數值模擬通常采用以下兩種方法:一種是基于截面彎矩-曲率關系,分析火災下梁反應[96,117,126],該方法可較方便揭示截面承載力退化規律;一種是有限元分析方法[114,127-129].Kodur等[126]基于截面分析方法,提出了考慮混凝土高溫徐變、瞬態熱應變和鋼筋高溫蠕變影響的簡支梁抗火性能數值模擬方法,分析了荷載水平、升溫條件、混凝土保護層厚度對梁抗火性能的影響,結果表明:以受拉鋼筋溫度超過593 ℃或梁達到承載能力極限狀態計算確定耐火極限,可能大于變形控制的耐火極限.

實際工程中構件可能受到不同程度的邊界約束,Dwaikat等[130]提出了火災下考慮支座約束和混凝土高溫爆裂影響的鋼筋混凝土梁抗火性能數值分析方法,但該程序假定混凝土爆裂臨界溫度為350 ℃,未考慮不同混凝土爆裂溫度不同的影響;Dwaikat等[131-132]完成了2根NSC梁和4根HSC梁抗火性能試驗,其中NSC和HSC梁中各有一根施加端部軸向約束.結果表明:帶軸向約束梁耐火極限高于簡支梁;HSC梁耐火極限低于NSC梁,與NSC相比,火災下HSC爆裂更嚴重;吳波等[133-134]通過8根同時具有端部軸向和轉動約束的混凝土梁抗火試驗和3 744種工況的計算分析,考察了端部約束梁升降溫全過程軸力及梁端彎矩的變化,提出了相應的實用計算方法;徐明等[135]等完成了3根超高韌性水泥基復合材料(ECC,抗壓強度實測值34.6 MPa)約束梁和3根鋼筋混凝土(抗壓強度實測值29.8 MPa)約束梁耐火性能試驗,結果表明:跨度相同、截面相同、截面承載力相同的ECC梁截面溫度低于鋼筋混凝土梁,ECC約束梁跨中變形、跨中及支座截面彎矩均小于鋼筋混凝土梁.

2.4 混凝土柱抗火性能

1976年以來,美國硅酸鹽水泥協會和加拿大國家研究院合作,完成了31根軸壓柱和6根偏壓柱在ASTM 119標準升溫曲線下四面受火試驗[136-138],結果表明:鈣質骨料混凝土柱耐火性能優于硅質骨料混凝土柱;截面尺寸、柱端約束是影響柱抗火性能的主要因素;截面尺寸越小、荷載水平越高、縱筋配筋率越低,耐火極限越低.軸向荷載水平相同時,偏壓柱耐火極限低于軸壓柱.Dotreppe等[139]完成了6根NSC軸壓柱在ISO 834標準升溫曲線下四面受火試驗,提出了火災下軸壓柱承載力簡化計算公式.過鎮海等[5]完成了三面、二面受火NSC軸壓柱、偏壓柱抗火性能試驗,揭示了該類柱火災下軸向變形和側向變形發展規律,給出了高溫下極限軸力-彎矩包絡圖;發現三面受火軸壓柱發生偏心受壓破壞,恒載升溫柱極限軸力大于恒溫加載柱,兩面受火柱抗火性能優于三面受火柱.Tan等[140-141]提出了一面至四面受火NSC軸壓、偏壓柱耐火極限簡化計算方法.

2003年以來,國內外學者進行了HSC柱抗火性能試驗與數值模擬.為研究箍筋形式對HSC柱爆裂的影響,Kodur等[142]完成了6根HSC(28 d圓柱體強度81~107 MPa)軸壓方柱四面受火試驗,結果表明:截面尺寸為305 mm×305 mm、406 mm×406 mm的方柱,當箍筋末端做成90°彎鉤時(箍筋2φ8,間距406 mm,屈服強度414 MPa),混凝土全截面均可能爆裂;當箍筋末端做成135°彎鉤時(箍筋為2φ6,間距為76~152 mm),僅箍筋外側混凝土發生爆裂,而核心區混凝土不爆裂;加密箍筋間距,可減輕爆裂.吳波等[143]完成了5根HSC方柱(混凝土棱柱體強度66~74 MPa)和2根NSC(混凝土棱柱體強度33 MPa)方柱四面、三面和兩面受火試驗,結果表明,隨受火面的增加,柱耐火極限降低,相同條件下HSC柱的耐火極限低于NSC柱,這主要是由于HSC柱高溫爆裂更嚴重所致;建立了HSC方柱耐火極限和火災下正截面承載力計算式[144].完成了4根端部約束高強混凝土柱抗火試驗[145],揭示了端部約束柱火災行為時變機理,提出了火災下考慮端部約束影響的柱軸力和彎矩計算方法,發現適當增大端部約束可提升HSC柱的耐火性能.

異形柱表體比大,受火時其內部溫度相對常規柱上升更為迅速.針對這一問題,Xu等[146]進行了12根NSC(試驗當天混凝土棱柱體強度35~38 MPa)異形柱的抗火試驗以及6 632種工況的高溫反應分析,考察了荷載水平、荷載角、計算長度、偏心率等對異形柱耐火性能的定量影響,研究了高溫下異形柱廣義中性軸位置、極限承載力、極強中心、極限軸力-彎矩包絡圖等的演變趨勢,提出了混凝土異形柱的耐火設計方法.吳波等[147]完成了16根端部約束異形柱的抗火試驗和8 331種工況的計算分析.實現了可同時在柱伸長和縮短階段施加端部約束的異形柱全過程明火試驗,突破了以往只在柱伸長階段施加約束而無法在柱縮短階段實施約束的局限.揭示了端部軸向和轉動約束對異形柱高溫行為的影響規律,建立了定常端部約束下異形柱高溫下軸力和彎矩時變過程的定量描述,并拓展至了非定常端部約束情況.

2.5 混凝土結構抗火性能

過鎮海等[5]完成了5榀單層單跨鋼筋混凝土框架三面受火試驗,實測了火災下框架梁、柱變形和框架柱內力,結果表明,混凝土框架火災下發生明顯的內力重分布;基于平截面假定,給出了混凝土、鋼筋熱-力耦合本構關系,推導了適用于任意溫度-荷載路徑的平衡方程,編制了桿系有限元析程序NARCSLT.陸洲導等[148]完成了5榀單層雙跨混凝土框架在600 ℃、800 ℃單跨受火、雙跨受火試驗,編制了火災下框架受力性能的非線性分析程序.Bailey[149]在Cardington建筑結構實驗室完成了7層混凝土平板柱底層局部受火試驗,平板柱橫向為3×7.5 m,縱向為4×7.5 m,底層層高4.2 m,其余各層層高3.75 m,中柱截面尺寸為400 mm×400 mm,邊柱截面尺寸為250 mm×400 mm,板厚250 mm,作用荷載為9.25 kN/m2.底層局部受火區域為沿橫向兩個柱距、沿縱向中間兩個柱距所轄區域,面積為15 m×15 m.板混凝土28 d立方體抗壓強度實測值為61 MPa,含水率為3.8%.火災下板混凝土爆裂,導致試驗設備損壞,僅獲得了受火25 min內混凝土樓板中心點的變形值.結果表明:火災下板迎火面混凝土爆裂面積超過75%,部分受力鋼筋被燒斷,但由于雙向板薄膜效應的有利影響,板并未坍塌.劉永軍[150]建立了高溫下混凝土雙軸應力下的本構模型,開發了平面應力單元和桿單元,編制了非線性有限元分析程序STRUFIRE,實現了鋼筋混凝土梁、板、框架的抗火性能分析.吳波等[151]編制了混凝土框架桿系有限元分析程序,并完成了單層3跨鋼筋混凝土框架的火災反應分析,結果表明:火災下框架梁軸力和梁端彎矩變化明顯.陳適才等[152]推導了梁單元非線性應變位移矩陣,編制了基于纖維梁模型的混凝土框架火災反應非線性分析程序,分析了三層三跨混凝土平面框架的火災反應,結果表明:受火位置不同,框架結構破壞形式不同.閆凱等[153-154]應用ABAQUS有限元軟件,引入考慮材料各向異性的磚砌體彈塑性模型,建立了底部框架磚房抗火性能有限元模型,結果表明:火災下框架梁軸向膨脹變形和向下撓曲變形對墻拱傳力機制不利,使框架梁軸向壓應力顯著增大,加速邊柱頂端外側縱向鋼筋受拉屈服,內側混凝土被壓碎.

以上研究表明,荷載水平、截面尺寸、保護層厚度、配筋型式及約束條件、混凝土強度、骨料種類、升溫條件及受火位置和區域、混凝土爆裂等均影響混凝土結構抗火性能.盡管相關規范[16]對混凝土結構耐火極限做出了規定,但一方面規范考慮的影響因素較少,一方面是這些規定僅適用于混凝土不爆裂的情況.

3 預應力混凝土結構抗火性能

預應力混凝土結構跨度大、截面小、功能好,近30年來在中國得到了迅速發展.然而,由于火災下預應力筋強度損失大、應力退化快,火災引起的預應力混凝土內部的水蒸汽難以逃逸,混凝土具有受火爆裂易發性;因爆裂而暴露于烈火之中的鋼筋迅速退出工作,結構可能會突然失效.預應力混凝土耐高溫性能和抗火設計受到關注.

3.1 預應力混凝土結構構件抗火性能

1953年,Ashton等[155]完成了37根縮尺有粘結預應力T形NSC梁恒載升溫試驗,升溫曲線接近ISO 834 標準升溫曲線,實測了火災下預應力鋼絲、混凝土溫度變化,結果表明:鋼絲的升溫速率對梁受彎承載力有顯著影響,當張拉控制應力與極限抗拉強度之比為0.6,鋼絲溫度超過400 ℃時,預應力混凝土梁發生正截面承載力破壞;部分試驗梁因混凝土爆裂而破壞更早.Gustaferro等[156]完成了按ASTM 119標準升溫曲線升溫的11塊有粘結預應力混凝土簡支板抗火性能試驗,以火災下板達到正截面承載力極限狀態的時刻作為耐火極限,結果表明:其他條件相同時,膨脹頁巖輕骨料混凝土板耐火極限高于NSC板(φ152 mm×305 mm圓柱體抗壓強度24 MPa),預應力筋保護層厚度越大、荷載水平越低,板耐火極限越長.Abrams等[157]研究了不同種類和厚度的防火涂料對預應力混凝土簡支板、雙T梁、T形梁抗火性能的影響,結果表明:噴涂防火涂料可有效提高預應力混凝土簡支構件耐火性能,火災下防火涂料與混凝土粘結性能較好,給出了對應2 h、3 h耐火極限的防火涂料厚度建議值.Joseph等[158]完成了無粘結預應力混凝土板的試驗,研究了預應力筋保護層厚度、荷載和端部約束對板耐火性能的影響.

Herberghen等[159]完成了8塊兩端伸臂無粘結預應力混凝土板抗火性能試驗,發現火災下預應力板混凝土爆裂,配置縱橫向非預應力鋼筋的板爆裂程度小于全預應力板,提出了增配支座負彎矩鋼筋的建議.袁愛民等[160]完成了4塊無粘結預應力混凝土簡支板抗火性能試驗,結果表明:保護層厚度越大,板耐火極限越長,預應力度(0.4~0.6)對板的耐火極限影響不明顯.Bailey等[161-162]進行了后張無粘結預應力混凝土單向板抗火性能試驗,研究了鈣質骨料和硅質骨料、板端自由轉動和固定兩種邊界條件對其抗火性能的影響,結果表明:火災下硅質骨料試驗板變形大于鈣質骨料板,板端自由轉動較固定的板變形大,無粘結預應力板的耐火極限高于相關抗火規范BS 8110的規定[163].

袁愛民等[164-167]完成了9塊三跨無粘結預應力混凝土板邊、中跨同時受火、邊跨受火和中跨受火試驗,考察了預應力度、負筋長度等因素對無粘結預應力混凝土連續板耐火性能的影響,結果表明,不同跨受火對無粘結預應力混凝土連續板的抗火性能有重要影響,熱膨脹是火災初期第一內支座兩側控制截面彎矩增大的主要原因.王中強等[168-169]完成了26根無粘結預應力混凝土簡支扁梁抗火性能試驗,并編制了無粘結預應力混凝土梁抗火性能非線性分析程序NAUPCLF,結果表明:荷載水平越大,綜合配筋指標(0.38~0.87)越小,扁梁抗火性能越差.

基于混凝土、非預應力筋和預應力筋的熱-力耦合本構關系[175],用t時刻混凝土應力計算t+1時刻混凝土的瞬態熱應變和高溫蠕變,完成了火災下預應力混凝土梁板截面的彎矩-曲率關系的計算,基于纖維梁單元模型,用割線剛度法對連續梁板支座反力進行迭代求解,計算梁板在曲率與支座反力共同作用下的彎矩、撓度和支座位移,實現了火災下有粘結預應力混凝土連續梁、板的非線性有限元分析.提出了考慮荷載水平、保護層厚度和梁板截面尺寸影響的預應力混凝土結構抗火設計方法[176-178].

Venanzi等[179]完成了4塊預應力膨脹粘土輕骨料高性能混凝土(立方體抗壓強度標準值60 MPa)空心簡支板抗火性能試驗,結果表明:火災下預應力空心板迎火面混凝土爆裂,且出現縱向貫通裂縫,導致板破壞;延長板在干燥環境的養護時間,可減緩板火災下爆裂;Shakya等[180]完成了5塊簡支和1塊施加軸向約束的預應力NSC空心板抗火試驗,并用ANSYS有限元軟件實現了預應力混凝土空心板抗火性能數值模擬[181],結果表明:施加軸向約束的試驗板耐火極限更長,火災下硅質骨料試驗板比鈣質骨料試驗板更易爆裂;周緒紅等[182]完成了4塊簡支、4塊連續預制疊合板抗火性能試驗與有限元分析,結果表明:火災下預應力疊合板迎火面均發生爆裂,預應力疊合板耐火極限小于等強配筋的非預應力疊合板,連續板耐火極限大于簡支板.

與預應力梁、板抗火性能研究相比,預應力框架抗火性能研究較少.陸洲導等[183]完成了5榀單層單跨無粘結預應力混凝土框架抗火性能試驗,實測了火災下框架梁變形和無粘結預應力筋應力變化,結果表明,火災下預應力筋的預應力損失大,是導致框架梁跨中開裂、變形增大的原因,預應力度越高(0.64~0.7),框架抗火性能越不利.

綜上,以往抗火試驗多基于標準升溫曲線,但標準升溫曲線與真實火災升溫曲線有較大差別[184],應重視真實火災下結構構件火災反應的研究.受試驗條件限制,預應力混凝土梁和框架結構抗火性能試驗尺寸偏小,宜進一步開展足尺預應力混凝土結構抗火性能的研究.

3.2 預應力混凝土高溫爆裂與防爆裂驗算

使用過程中,預應力構件的預壓區可能存在壓應力,即使在使用荷載下預壓區受拉,拉應力水平也較低.一定的壓應力或較小的拉應力,使得在使用荷載下梁板迎火面難以出現裂縫,在火災下內部水蒸汽難以逃逸,造成相對較高的蒸汽壓,易使蒸汽引起的混凝土內部拉應力達到混凝土抗拉強度而引發預應力構件迎火面混凝土爆裂.鄭文忠等[185]對38個預應力混凝土梁板火災下的爆裂情況進行總結,15塊簡支單向板中有8塊發生了不同程度的爆裂,9塊連續單向板中有3塊發生了不同程度的爆裂,試件爆裂見圖5.發現作為迎火面的預壓區壓應力水平越高或拉應力水平越低、混凝土抗壓強度及含水率越高,混凝土就越容易發生爆裂或爆裂越嚴重.

圖5 火災下預應力連續板混凝土爆裂

將常溫下名義拉應力(壓為正)引入預應力板混凝土爆裂判別方法,提出了如圖6(a)、(b)所示爆裂上包線,為綜合考慮名義拉應力、混凝土抗壓強度及含水率的影響,提出了如圖6(c)所示的預應力板混凝土爆裂上包面.對于預應力板,用σct≤1.36ftk-2.3來驗算迎火面混凝土爆裂,其中,σct為迎火面混凝土的常溫名義拉應力下限值(MPa),ftk為混凝土常溫抗拉強度標準值(MPa);對預應力梁,用圖6(d)方法判別爆裂區.該公式被新一輪行業標準《無粘結預應力混凝土結構技術規程》[186]所采納,為合理判別火災下預應力梁板混凝土爆裂提供了參考依據.

圖6 預應力混凝土梁板爆裂判別方法

需要指出,基于爆裂試驗數據提出的預應力混凝土梁板爆裂判別方法為經驗方法,宜開展火災下預應力梁板爆裂機理、爆裂預測模型的研究.

4 火災后混凝土結構加固修復技術

混凝土結構火災后可能比火災下更危險.其火災后損傷評估實現由定性到定量發展,是迫切需求.吳波[65]考慮火災荷載密度、通風因子和房間熱工特性的影響,建立了簡潔實用的室內火災溫度發展全過程計算模型,解決了復雜模擬在工程中應用不便的難題.吳波等[187]、鄭文忠等[188-192]分別完成了混凝土試件高溫后力學試驗,獲得了火災后摻纖維HSC、RPC表面歷經最高溫度與損傷特征的關系.吳波[65]提出了確定構件內部最高溫度場的簡便方法.獲得了高溫后主導預應力筋[193]、環向約束高強混凝土等剩余力學性能[194],使高溫后環向約束高強混凝土相比無約束時20%~40%的強度增幅得以有效利用.對中等和輕微損壞的過火結構,提出了鑿除受火溫度500 ℃以上混凝土之后進行有效修復的技術[65].建立了火災后混凝土構件的抗震恢復力模型[195],提出了火災后混凝土構件評價方法,實現了火災后混凝土結構損傷評估由定性到定量的跨越.鄭文忠等[196-198]提出了火災后梁板中預應力筋剩余應力和極限應力的計算方法,發現火災下預應力筋強度退化快于錨具錨固性能退化,火災后退下的錨具不能重新使用[199].針對環氧類有機膠軟化溫度只有60~80 ℃的不足,發明了600 ℃內強度不降低的耐高溫植筋膠[200-204],用其植筋錨固長度計算公式lab=0.065(fy/ft)d,其中fy為帶肋鋼筋抗拉強度設計值,ft為混凝土抗拉強度設計值,d為鋼筋直徑[205].以上研究成果為火災后混凝土及預應力混凝土結構的損傷評估與加固修復提供了技術支撐.

5 結論與展望

1)鋼筋的合金成分和生產工藝不同,是高溫下鋼筋力學性能差異的主要原因.高溫下混凝土可能發生爆裂,加劇其力學性能退化.高溫下混凝土力學性能還受到混凝土組分、配合比和升溫速度等的影響.

2)以往抗火試驗多基于標準升溫曲線,但標準升溫曲線與真實火災下升溫曲線有較大差別,應重視真實火災下結構構件抗火性能的研究.受試驗條件限制,混凝土及預應力混凝土結構抗火性能試驗尺寸偏小,宜進一步開展足尺結構構件抗火性能的研究.提出的混凝土及預應力爆裂判別方法為經驗方法,尚宜繼續開展火災下混凝土及預應力結構構件爆裂機理、爆裂預測模型的研究.

3)混凝土及預應力混凝土結構應滿足火災時不爆裂、火災下不坍塌、火災后可修復的抗火設計目標.

4)國內外學者對高溫下RPC爆裂溫度、防爆裂纖維摻量等進行了研究,但對RPC爆裂的影響因素、定量表達和防爆裂措施缺乏系統研究,高溫下RPC爆裂的數值模擬鮮見報道,宜開展考慮滲透性、含水率、RPC強度等影響的RPC高溫爆裂數值預測方法研究.對高溫下RPC的立方體抗壓強度、軸心抗壓強度、抗拉強度和彈性模量等研究較多,還未開展高溫下RPC熱-力耦合本構關系研究.宜開展RPC結構構件抗火性能研究.

5)混凝土高溫瞬態熱應變、高溫徐變和鋼筋高溫蠕變的數值較大,溫度-荷載路徑不僅影響構件截面應力分布,同時影響結構極限荷載.應進步一開展考慮溫度-荷載路徑影響的結構構件抗火性能研究.

6)高層混凝土結構和地下空間結構可有效利用建筑用地.高層混凝土結構火災蔓延迅速、火勢難以控制;地下空間結構構件的耐火極限要求一般為4 h,是地上結構構件的一倍以上.應開展高層混凝土結構和地下空間結構的火災環境與火災反應研究,進一步研究提升整體結構抗火性能的設計方法.

[1] 吳波,唐貴和. 近年來混凝土結構抗火研究進展[J]. 建筑結構學報,2010,31(6):110-121. WU Bo, TANG Guihe. State-of-the-art of fire-resistance study on concrete structures in recent years[J]. Journal of Building Structures,2010,31(6):110-121.

[2] 鄭文忠,閆凱,王英. 預應力混凝土結構抗火研究進展[J].建筑結構學報,2011,32(12):52-61. ZHENG Wenzhong, YAN Kai, WANG Ying. Progress in fire resistance of prestressed concrete structures [J]. Journal of Building Structures , 2011,32(12):52-61.

[3] 鈕宏, 陸洲導, 陳磊.高溫下鋼筋與混凝土本構關系的試驗研究[J]. 同濟大學學報,1990,18(3):287-297. NIU Hong, LU Zhoudao, CHEN Lei. An experimental study of constitutive relationship between reinforced bar and concrete under elevated temperature [J]. Journal of Tongji University, 1990,18(3):287-297.

[4] 朱伯龍, 陸洲導, 胡克旭.高溫(火災)下混凝土與鋼筋的本構關系[J].四川建筑科學研究,1991,17(1):37-43. ZHU Bolong, LU Zhoudao, HU Kexu. Strain-stress relationship of reinforced bar and concrete under elevated temperature(fire)[J]. Sichuan Building Science, 1991,17(1):37-43.

[5] 過鎮海,時旭東.鋼筋混凝土的高溫性能及其計算 [M] . 北京:清華大學出版社,2003:10-223. GUO Zhenhai, SHI Xudong. Behavior of reinforced concrete at elevated temperature and its calculation [M] . Beijing:Tsinghua University Press,2003:10-223.

[6] 李明,朱永江,王正霖.高溫下預應力筋和非預應力筋的力學性能[J] .重慶建筑大學學報,1998,20(4):73-77. LI Ming, ZHU Yongjiang, WANG Zhenglin. The mechanical behaviors of prestressed and non-prestressed steel rebars under high temperature [J]. Journal of Chongqing Jianzhu University, 1998,20(4):73-77.

[7] 王孔藩,許清風,劉挺林.高溫下及高溫冷卻后鋼筋力學性能的實驗研究[J]. 施工技術, 2005, 34(8):3-5. WANG Kongfan, XU Qingfeng, LIU Tinglin. Experimental research on mechanics performance of steel bar after high temperature and cooled down from high temperature [J]. Construction Technology, 2005, 34(8):3-5.

[8] 吳波,梁悅歡.高溫下混凝土和鋼筋強度的統計分析[J].自然災害學報,2010,19(1):136-142. WU Bo, LIANG Yuehuan. Statistic analysis of strengths of concrete and steel bars at elevated temperature[J]. Journal of Natural Disasters, 2010,19(1):136-142.

[9] INGBERG S H, SALE P D. Compressive strength and deformation of structural steel and cast-iron shapes at temperatures to 950 ℃[J]. Proceedings of the American society for testing and materials,1926,26:33-55.

[10]HARMATHY T Z, STANZAK W W. Elevated-temperature tensile and creep properties of some structural and prestressing steels[J]. ASTM Special Technical Publication,1970,464:186-207.

[11]LIE T T. A Procedure to calculate fire resistance of structural members[J]. Fire & Materials, 1984, 8(1):40-48.

[12]LIE T T. Fire resistance of circular steel columns filled with bar-reinforced concrete[J].Journal of structural Engineering,1994,120(5):1489-1509.

[13]LIE T T. Structural fire protection. ASCE Manuals and reports on engineering practice No.78[R].New York: American Society of Civil Engineering,1992.

[14]鄭文忠,侯曉萌,閆凱.預應力混凝土高溫性能及抗火設計[M].哈爾濱:哈爾濱工業大學出版社,2012:3-22. ZHENG Wenzhong, HOU Xiaomeng, YAN Kai. Fire resistance of prestressed concrete and its fire safety design[M].Harbin:Harbin Institute of Technology Press, 2012:3-22.

[15]American Concrete Institute 216. Code Requirements for Determining Fire Resistance of Concrete and Masonry Construction Assemblies: ACI 216.1-07/TMS-216-07 [S]. Farmington Hills, MI: American Concrete Institute,2007.

[16]British Standards Institution. Eurocode 2: Design of Concrete Structures-Part 1.2: General Rules-Structural Fire Design: EN 1992-1-2 [S]. London: British Standards Institution, 2004.

[17]侯曉萌, 鄭文忠. 歐洲規范中混凝土結構抗火設計主要內容(一)——火災下荷載效應、抗力效應、材料性能與基于表格的抗火設計方法[J]. 工業建筑, 2008,38(4):98-103. HOU Xiaomeng, ZHENG Wenzhong. Introduction of the main contents of structural fire design in eurocode of design of concrete structures (Ⅰ)-effects of actions and design resistance in the fire situation, material properties and fire design method based on tabulated data[J]. Industrial Construction, 2008,38(4):98-103.

[18]ELGHAZOULI A Y, CASHELL K A, IZZUDDIN B A. Experimental evaluation of the mechanical properties of steel reinforcement at elevated temperature[J]. Fire Safety Journal,2009,44(6):909-19.

[19]KODUR V K R, DWAIKAT M M S. Effect of high temperature creep on the fire response of restrained steel beams[J]. Materials and structures, 2010,43(10):1327-41.

[20]DORN J E. Some fundamental experiments on high temperature creep[J]. Journal of the Mechanics and Physics of Solids,1955, 3(2):85-116.

[21]HARMATHY T Z. A comprehensive creep model[J]. Journal of Basic Engineering,1967,89(3):496-502.

[22]ABRAMS M S, CRUZ C R. The behavior at high temperature of steel strand for prestressed concrete [J].Journal of the PCA Research and Development Laboratories,1961,3(3):8-19.

[23]KODUR V K R, DWAIKAT M B. A numerical model for predicting the fire behavior of reinforced concrete beams[J]. Cement & Concrete Composites, 2008, 30(5):431-443.

[24]FELICETTI R, GAMBAROVA P G, MEDA A. Residual behavior of steel rebars and R/C sections after a fire[J]. Constr Build Mater,2009,23(12):3546-55.

[25]DAY M F, JENKINSON E A, SMITH A I. Effect of elevated temperatures on high-tensile-steel wires for prestressed concrete[J]. Proceedings Instituting of civil Engineers, 1960,16(5): 55-70.

[26]范進, 呂志濤. 高溫(火災)下預應力鋼絲性能的試驗研究[J]. 建筑技術,2001,32(12): 833-834. FAN Jin, Lü Zhitao. Experimental research on performance of prestressed steel wire in high temperature environment (fire) [J]. Architecture Technology,2001,32(12): 833-834.

[27]范進, 呂志濤. 受高溫作用時預應力鋼絞線性能的試驗研究[J]. 建筑結構,2002,32(3):50-63. FAN Jin, Lü Zhitao. Experimental research on performance of prestressed steel strand in high temperature[J]. Building structure, 2002,32(3):50-63.

[28]陳禮剛,袁建東,李曉東,等.高溫下預應力鋼絲的應力應變關系[J]. 重慶建筑大學學報,2006,28(4):47-50. CHEN Ligang, YUAN Jiandong, LI Xiaodong, et al. The stress-strain curve of prestressed steel wires at elevated temperature[J]. Journal of Chongqing Jianzhu University, 2006,28(4):47-50.

[29]陳禮剛,高立堂,袁建東.不同溫度-應力途徑下預應力鋼絲的強度試驗研究[J]. 建筑結構,2007,37(6):99-101,104. CHEN Ligang, GAO Litang, YUAN Jiandong. Experimental investigation of strength of prestressed steel wires under different temperature-stress paths[J]. Building structure, 2007,37(6):99-101,104.

[30]HOU Xiaomeng, ZHENG Wenzhong, KODUR V K R, et al. Effect of temperature on mechanical properties of prestressing bars[J]. Construction and Building Materials,2014,61(30):24-32.

[31]鄭文忠, 胡瓊, 張昊宇. 高溫下及高溫后1770級φP5低松弛預應力鋼絲力學性能試驗研究[J].建筑結構學報, 2006,27(2): 120-128. ZHENG Wenzhong, HU Qiong, ZHANG Haoyu. Experimental research on the mechanical properties of prestressing steel wires at and after high temperature[J]. Journal of Building Structures, 2006,27(2): 120-128.

[32]張昊宇, 鄭文忠. 1860級低松弛鋼絞線高溫下力學性能[J]. 哈爾濱工業大學學報, 2007, 39(6): 861-865. ZHANG Haoyu, ZHENG Wenzhong. Mechanical property of steel strand at high temperature[J]. Journal of Harbin Institute of Technology, 2007, 39(6): 861-865.

[33]張愛林,武麗英.預應力鋼絲鋼絞線的高溫蠕變性能研究[J]. 鋼結構,2008,23(1):6-9. ZHANG Ailin, WU Liying. Study on the thermal creep strain property of prestressed steel wire and stranded wire[J]. Steel Construction,2008,23(1):6-9.

[34]華毅杰. 預應力混凝土結構火災反應及抗火性能研究[D]. 上海,同濟大學,2000. HUA Yijie. Fire resistance performance of prestressed concrete structures[D]. Shanghai: Tongji University,2000.

[35]蔡躍,黃鼎業,熊學玉. 預應力混凝土結構材料高溫下的力學性能及模型[J]. 四川建筑科學研究,2003,29(4):82-84. CAI Yue, HUANG Dingye, XIONG Xueyu. Material behaviors and mechanical model of prestressed concrete structure at high temperature[J]. Sichuan Building Science,2003,29(4):82-84.

[36]張昊宇, 鄭文忠. 高溫下1770級φP5鋼絲蠕變及應力松弛性能試驗研究[J]. 土木工程學報, 2006, 39(8): 7-13. ZHANG Haoyu, ZHENG Wenzhong. An experimental study on the creep and stress relaxation properties of 1 770-φP5 prestressing steel wires at high temperatures[J].China Civil Engineering Journal, 2006, 39(8): 7-13.

[37]周煥廷,李國強,蔣首超. 高溫下鋼絞線材料力學性能的試驗研究[J]. 四川大學學報(工程科學版),2008,40(5):106-110. ZHOU Huanting, LI Guoqiang, JIANG Shouchao. Experimental studies on the properties of steel strand at elevated temperatures [J]. Journal of Sichuan University (Engineering Science Edition) ,2008,40(5):106-110.

[38]周煥廷,聶河斌,李國強,等. 高溫作用下1860級預應力鋼絞線蠕變性能試驗研究[J]. 建筑結構學報,2014,35(6):123-129. ZHOU Huanting, NIE Hebin, LI Guoqiang, et al. Experimental research on creep properties of prestressed steel strand in 1 860 MPa at high temperature[J]. Journal of Building Structures ,2014,35(6):123-129.

[39]鄭文忠, 張昊宇, 胡瓊. 基于溫度歷程的高強鋼絲應變及應力計算方法[J]. 建筑材料學報,2007, 10(3): 288-294. ZHENG Wenzhong, ZHANG Haoyu, HU Qiong. Stress and strain calculated methods of high strength steel wire considering temperature-time path[J]. Journal of Building Materials, 2007, 10(3): 288-294.

[40]MALHOTRA H L. The effect of temperature on the compressive strength of concrete[J]. Magazine of Concrete Research,1956,8(23): 85-94.

[41]CRUZ C R. Elastic proprieties of concrete at high temperature[J]. Journal of PCA Research and Development Laboratories, 1966,8(1):37-45.

[42]BALDWIN R,NORTH M A. A stress-strain relationship for concrete at high temperatures[J].Magazine of Concrete Research,1973,25(85):208-212.

[43]ABRAMS M S. Compressive strength of concrete at temperatures to 1600F[J]. Temperature and Concrete, American Concrete Institute, 1971(SP25):33-58.

[44]CASTILLO C, DURRANI A J. Effect of transient high temperature on high-strength concrete[J]. ACI Materials Journal, 1990, 87(1): 47-53.

[45]DIEDERICHS U, JUMPPANEN U M, SCHNEIDER U. High temperature properties and spalling behavior of high strength concrete[C]// Proceedings of 4th Weimar Workshop on High Performance Concrete: Material Properties and Design. Weimar, German:HAB, 1995: 219-236.

[46]SCHNEIDER U. Concrete at high temperatures-A general review[J].Fire Safety Journal, 1988,13(1):55-68.

[47]THENIEL K-CH, ROSTARY F S. Strength of concrete subjected to high temperature and biaxial stress: Experiments and Modeling[J]. Materials and Structures, 1995,28(10):575-581 [48]ARIOZ O. Effects of elevated temperatures on properties of concrete[J]. Fire Safety Journal, 2007,42(8): 516-522.

[49]KODUR V K R, DWAIKAT M M S, DWAIKAT M B. High temperature properties of concrete for fire resistance modeling of structures[J]. ACI Materials Journal, 2008,105(5): 517-527.

[50]GAWIN D, PESAVENTO F, SCHREFLER B A. Modelling of hygro-thermal behavior of concrete at high temperature with thermo-chemical and mechanical material degradation[J]. Computer Methods in Applied Mechanics and Engineering, 2003,192(13/14):1731-1771.

[51]FURUMURA F, ABE T, SHINOHARA Y. Mechanical properties of high strength concrete at high temperatures[C]// Proceedings of 4th Weimar Workshop on High Performance Concrete: Material Properties and Design. Weimar, German:HAB, 1995: 237-254.

[52]HAMMER T A. High strength concrete phase 3, compressive strength and E-modulus at elevated temperatures [R]. Trondheim, Norway: Report No.6.1,SINTEF structures and concrete, STF70 A95023,1995:3-7.

[53]XIAO Jianzhuang, K?NIG G. Study on concrete at high temperature in China-an overview[J]. Fire Safety Journal, 2004,39(1): 89-103.

[54]KODUR V K R. Properties of concrete at elevated temperatures[J]. ISRN Civil Engineering,2014,2014:1-15.

[55]廣東省住房和城鄉建設廳.建筑混凝土結構耐火設計技術規程: DBJ/T 15-81—2011 [S].北京:中國建筑工業出版社,2011. Guangdong Housing And Urban-Rural Construction Office. Code for fire resistance design of concrete structures in buildings: DBJ/T 15-81—2011 [S].Beijing:China Architecture & Building Press,2011.

[56]BAZANT Z P, PANULA L. Practical prediction of time-dependent deformations of concrete-Part IV: Temperature effect on basic creep[J]. Materials and Structures, 1978,11(66):424-434.

[57]HARMATHY T Z. Fire safety design and concrete( Concrete design and construction series)[M]. UK: Longman, 1993:3-23.

[58]KHOURY G A. Deformation of concrete and cement paste loaded at constant temperatures from 140 to 724 ℃[J]. Materials and Structures, 1986, 110(19): 97-104.

[59]邢萬里,時旭東,倪健剛.基于試驗的混凝土高溫短期徐變計算模型[J]. 工程力學,2011,28(4):158-163. XINGWanli, SHI Xudong, NI Jian’gang. Short-term thermal creep model of concrete based on experiments[J]. Engineering Mechanics, 2011,28(4):158-163.

[60]ANDERBERG Y, THELANDERSSON S. Stress and deformation characteristics of concrete at high temperatures, 2-Experimental investigation and material behavior model[R]. Bulletin of Division of Structural Mechanics and Concrete Construction, Bulletin 54. 1976:1-84.

[61]南建林,過鎮海,時旭東.混凝土的溫度-應力耦合本構關系[J]. 清華大學學報(自然科學版),1997,37(6):89-92. NAN Jianlin, GUO Zhenhai, SHI Xudong. Temperature-stress coupling constitutive relationship of concrete[J].Journal of Tsinghua University(Sci&Tech),1997,37(6):89-92.

[62]胡海濤,董毓利. 高溫時高強混凝土瞬態熱應變的試驗研究[J]. 建筑結構學報,2002,23(4):32-35+47. HU Haitao, DONG Yuli. Experimental research on the transient thermal strain of high strength concrete at elevated temperature[J]. Journal of Building Structures, 2002,23(4):32-35,47 [63]胡海濤,董毓利. 高溫時高強混凝土強度和變形的試驗研究[J]. 土木工程學報,2002,35(6):44-47. HU Haitao, DONG Yuli. Experimental research on strength and deformation of high-strength concrete at elevated temperature[J]. China Civil Engineering Journal, 2002,35(6):44-47.

[64]DWAIKAT M B, KODUR V K R. Hydrothermal model for predicting fire-induced spalling in concrete structural systems[J].Fire safety Journal,2009,44:425-434 [65]吳波.火災后鋼筋混凝土結構的力學性能[M].北京:科學出版社,2003:18-23. WU Bo. Performance of reinforced concrete structures after fire [M]. Beijing:China science press,2003:18-23.

[66]KODUR V K R, CHENG F, WANG T, et al. Effect of strength and fiber reinforcement on the fire resistance of high strength concrete columns[J]. Journal of Structural Engineering, ASCE, 2003,129(2):1-22.

[67]KODUR V K R, WANG T, CHENG F. Predicting the fire resistance behavior of high strength concrete columns[J]. Cement Concrete Composite. 2004,26(2):141-53.

[68]XIAO Jianzhuang, FALKNER H. On residual strength of high-performance concrete with and without polypropylene fibres at elevated temperatures[J]. Fire Safety Journal, 2006, 41(2): 115-121.

[69]BREITENBüCKER R. High strength concrete C105 with increased fire resistance due to polypropylene fibres[C]// 4th International Symposium on the Utilization of High-Strength/High-Performance Concrete. Paris, France:[s.n.], 1996,571-577.

[70]KALIFA P, CHENE G, GALLE C. High-temperature behavior of HPC with polypropylene fibres: From spalling to microstructure[J]. Cement and concrete research, 2001, 31(10): 1487-1499.

[71]CHEN Bing, LIU Juanyu. Residual strength of hybrid-fiber-reinforced high-strength concrete after exposure to high temperatures[J]. Cement and Concrete Research, 2004, 34(6): 1065-1069.

[72]POON C S, SHUI Z H, LAM L. Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures[J]. Cement and Concrete Research, 2004, 34(12): 2215-2222.

[73]RICHARD P, CHEYREZY M. Reactive powder concrete with high ductility and 200 MPa-800 MPa compressive strength [J]. ACI Special Publication, 1994(SP 144): 507-518.

[74]鄭文忠,呂雪源. 活性粉末混凝土研究進展[J]. 建筑結構學報,2015,36(10):44-58. ZHENG Wenzhong, LV Xueyuan. Research development of reactive powder concrete[J]. Journal of Building Structures,2015,36(10):44-58.

[75]呂雪源,王英,符程俊,等. 活性粉末混凝土基本力學性能指標取值[J]. 哈爾濱工業大學學報,2014,46(10):1-9. Lü Xueyuan, WANG Ying, FU Chengjun, et al. Basic mechanical property indexes of reactive powder concrete[J]. Journal of Harbin Institute of Technology, 2014,46(10):1-9.

[76]JU Yang, LIU Hongbin, LIU Jinhui, et al. Investigation on thermo physical properties of reactive powder concrete [J]. Science China: Technological Sciences, 2011,54(12):3382-3403.

[77]鄭文忠,王睿,王英.活性粉末混凝土熱工參數試驗研究[J].建筑結構學報,2014,35(9):107-114. ZHENG Wenzhong, WANG Rui, WANG Yin. Experimental study on thermal parameter of reactive powder concrete [J]. Journal of Building Structures, 2014,35(9):107-114.

[78]劉紅彬. 活性粉末混凝土的高溫力學性能與爆裂的試驗研究[D]. 北京:中國礦業大學, 2012. LIU Hongbin. Experimental study on the mechanical properties and explosive spalling of reactive powder concrete exposed to high temperatures[D].Beijing:China University of Mining and technology,2012.

[79]陳強.高溫對活性粉末混凝土高溫爆裂行為和力學性能的影響[D].北京:北京交通大學, 2010. CHEN Qiang. The influence of high temperature on explosive spalling behavior and mechanical properties of reactive powder concrete [D].Beijing:Beijing Jiaotong University,2010.

[80]ZHENG Wenzhong, LUO Baifu, WANG Ying. Microstructure and mechanical properties of RPC containing PP fibres at elevated temperatures [J]. Magazine of Concrete Research, 2014, 66(8): 397-408.

[81]ZHENG Wenzhong, LUO Baifu, WANG Ying. Compressive and tensile properties of reactive powder concrete with steel fibres at elevated temperatures[J]. Construction and Building Materials, 2013, 41: 844-851.

[82]AYDIN S, BARADAN B.High temperature resistance of alkali-activated slag-and Portland cement-based reactive powder concrete[J]. ACI Materials Journal,2012,109(4):463-470.

[83]CANBAZ M. The effect of high temperature on reactive powder concrete[J]. Construction and Building Materials,2014,15(70):508-513.

[84]JU Yang, LIU Jinhui, LIU Hongbin, et al. On the thermal spalling mechanism of reactive powder concrete exposed to high temperature: Numerical and experimental studies[J]. International Journal of Heat and Mass Transfer, 2016,98:493-507.

[85]DIEDERICHS U, SCHNEIDER U. Bond strength at high temperature[J]. Magazine of Concrete Research,1981,33(115):75-84.

[86]MORLEY PD, ROYLES R. Response of the bond in reinforced concrete to high temperature[J]. Magazine of Concrete Research,1983,35(123):67-74.

[87]ROYLES R, MORLEY P D. Further responses of the bond in reinforced concrete to high temperatures[J].Magazine of Concrete Research, 1983,35(124):157-163.

[88]袁廣林,郭操,呂志濤. 高溫下鋼筋混凝土粘結性能的試驗與分析[J].工業建筑,2006,36(2):57-60. YUAN Guanglin, GUO Cao, Lü Zhitao. Experimental study on bond property of reinforced concrete at high temperatures[J]. Industrial Construction,2006,36(2):57-60.

[89]胡克旭.高溫下鋼砼粘結滑移性能及鋼砼門式框架抗火性能研究[D].上海:同濟大學,1989. HU Kexu. Researches on the behavior of bond-slip between concrete and steel to high temperatures and the fire resistance of reinforced concrete portal frames[D].Shanghai:Tongji University,1989.

[90]HUANG Zhaohui. Modelling the bond between concrete and reinforcing steel in a fire[J].Engineering Structures, 2010,32(11): 3660-3669.

[91]GAO Wanyang, DAI Jianguo, TENG Jinguang, et al. Finite element modeling of reinforced concrete beams exposed to fire[J].Engineering Structures, 2013,52: 488-501.

[92]THOMPSON J P. Fire Resistance of Reinforced Concrete Floors[J]. Journal of the American Concrete Institute, 1953,24 (7):677-680.

[93]GUSTAFERRO A H. Factors influencing the fire resistance of concrete[J]. Fire Technology,1966, 2:187-195.

[94]ABRAMS M S, GUSTAFERRO A H. Fire endurance of two-course floors and roofs. Journal of the American Concrete Institute[J]. 1969,66(2):92-102.

[95]GUSTAFERRO A H, ABRAMS M S,LITVIN A. Fire resistance of lightweight insulating concretes[R]. PCA research and development Bulletin (RDO04.01B).Portland:Portland Cement Association,1970. [96]LIE T T. Calculation of the fire resistance of composite concrete floor and roof slabs[J]. Fire Technology, 1978,14(1):28-45 [97]陳正昌. 鋼筋混凝土樓板的耐火性能[J]. 消防科技,1983(1):23-27,32. CHEN Zhengchang. Fire resistance performance of reinforced concrete slabs[J]. Fire science and Technology,1983(1):23-27,32.

[98]陳禮剛,李曉東,董毓利.鋼筋混凝土三跨連續板邊跨受火性能試驗研究[J]. 工業建筑,2004, 34(1):66-68,75. CHEN Ligang, LI Xiaodong, DONG Yuli. Test study on performance of the reinforced concrete three-span continuous slabs under fire-fire in side span.

[J]. Industrial Construction,2004, 34(1):66-68,75.

[99]陳禮剛,董毓利,李曉東.鋼筋混凝土三跨連續板中跨受火試驗研究[J]. 建筑結構,2004,34(4):39-41,53. CHEN Ligang, DONG Yuli, LI Xiaodong. Test study on performance of the reinforced concrete three-span continuous slabs with middle span in fire. Building structure, 2004,34(4):39-41,53.

[100]陳禮剛,高立堂,李曉東,等 兩鄰跨受火RC三跨連續板抗火性能試驗研究[J]. 西安建筑科技大學學報(自然科學版),2006,38(1):100-104. CHEN Ligang, GAO Litang, LI Xiaodong, et al. Study on the fire resistance of the 3-span RC continuous slabs when the two adjacent spans are on fire[J]. Journal of Xi’an University of architecture & technology(Natural Science Edition) ,2006,38(1):100-104.

[101]BAILEY C G, TOH W S. Small-scale concrete slab tests at ambient and elevated temperatures[J].Engineering Structures,2007,29(10): 2775-2791.

[102]王濱,董毓利.四邊簡支鋼筋混凝土雙向板火災試驗研究[J]. 建筑結構學報,2009,30(6):23-33. WANG Bin, DONG Yuli. Experimental research of four-edge simple support two-way reinforced concrete slab under fire[J]. Journal of Building Structures, 2009,30(6):23-33.

[103]王濱,董毓利.鋼筋混凝土雙向板火災試驗研究[J]. 土木工程學報,2010,43(4):53-62. WANG Bin, DONG Yuli. Experimental study of two-way reinforced concrete slabs under fire[J]. China Civil Engineering Journal,2010,43(4):53-62.

[104]楊志年,董毓利,呂俊利,等. 整體結構中鋼筋混凝土雙向板火災試驗研究[J]. 建筑結構學報,2012,33(9):96-103. YANG Zhinian, DONG Yuli, LV Junli, et al. Experimental study of two-way reinforced concrete subjected to fire in a whole structure[J].Journal of Building Structures, 2012,33(9):96-103.

[105]王勇,董毓利,彭普維,等. 足尺鋼框架結構中樓板受火試驗研究[J]. 建筑結構學報,2013,34(8):1-11. WANG Yong, DONG Yuli, PENG Puwei, et al. fire test on floor of full-scale steel-framed structure[J].Journal of Building Structures,2013,34(8):1-11.

[106]HUANG Zhaohui, BURGESS I W, PLANK R J. Nonlinear analysis of reinforced concrete slabs subjected to fire[J]. ACI Structural Journal,1999,96(1):127-135.

[107]HUANG Zhaohui, BURGESS I W, PLANK R J. Modelling membrane action of concrete slabs in composite buildings in fire i: theoretical development[J]. Journal of Structural Engineering, ASCE, 2003,129(8):1093-1102.

[108]HUANG Zhaohui, BURGESS I W, PLANK R J. Modelling membrane action of concrete slabs in composite buildings in fire. ii: validations[J]. Journal of Structural Engineering, ASCE, 2003,129(8):1103-1112.

[109]ZHANG Y X, BRADFORD M A. Nonlinear analysis of moderately thick reinforced concrete slabs at elevated temperatures using a rectangular layered plate element with timoshenko beam functions[J].Engineering Structures,2007,29(10):2751-2761.

[110]WANG Yong, DONG Yuli, ZHOU Guangchun. Nonlinear numerical modeling of two-way reinforced concrete slabs subjected to fire[J]. Computers & Structures,2013,12(29): 23-36.

[111]ELLINGWOOD B, SHAVER J R. Effects of fire on reinforced concrete members[J]. Journal of the Structural Division,ASCE,1980,106(11): 2151-2166.

[112]LIN T D, ELLINGWOOD B, PIET O. Flexural and shear behavior of reinforced concrete beams during fire tests[R]. Report no. NBS-GCR-87-536, Center for Fire Research, National Bureau of Standards,1987:3-15.

[113]ELLINGWOOD B, LIN T D. Flexural and shear behavior of concrete beams during fires[J]. Journal of Structural Engineering,ASCE, 1991,117(2):440-58.

[114]DOTREPPE J C, FRANSSEN J M. The use of numerical models for the fire analysis of reinforced concrete and composite structures [J]. Engineering Analysis,1985,2(2):67-74.

[115]WU H J, LIE T T, HU J Y. Fire resistance of beam-slab specimens-experimental studies[R]. Internal Report No. 641, Institute for Research in Construction, National Research Council Canada, 1993.

[116]LIN T D, GUSTAFERRO A H, ABRAMS M S. Fire endurance of continuous reinforced concrete beams[R]. R & D Bulletin RD 072.01B. IL(USA): Portland Cement Association, 1981.

[117]陸洲導,朱伯龍,周躍華. 鋼筋混凝土簡支梁對火災反應的試驗研究[J]. 土木工程學報,1993,26(3):47-54. LU Zhoudao, ZHU Bolong, ZHOU Yuehua. Experimental study on fire response of simple supported reinforced concrete beams[J].China Civil Engineering Journal,1993,26(3):47-54.

[118]馮雅,陳啟高,王爾其. 鋼筋混凝土火災下熱濕耦合熱過程研究[J]. 重慶建筑大學學報,1999,21(3):41-44. FENG Ya, CHEN Qigao, WANG Erqi. Coupled heat and moisture transfer progress of reinforced concrete under fire disaster[J]. Journal of Chongqing Jianzhu University,1999,21(3):41-44.

[119]向延念,李守雷,徐志勝. 鋼筋混凝土簡支梁高溫力學性能的試驗研究[J]. 華北科技學院學報,2006,3(1):57-61. XIANG Yannian, LI Shoulei, XU Zhisheng. Experimental study on mechanics performance of the simple RC beams after high temperature[J].Journal of North China Institute of Science & Technology,2006,3(1):57-61.

[120]張威振. 高溫下足尺鋼筋混凝土梁試驗研究及數值分析[J]. 哈爾濱工業大學學報,2009,41(2):198-201. ZHANG Weizhen. Experimental investigation and numerical analysis for RC beams under elevated temperature[J]. Journal of Harbin Institute of Technology,2009,41(2):198-201.

[121]SHI Xudong, TAN T H. Effect of force-temperature paths on behaviors of reinforced concrete flexural members [J]. Journal of Structural Engineering, ASCE,2002 ,128 (3) :365-373.

[122]苗吉軍,陳娜,侯曉燕,等. 使用損傷與高溫耦合作用下鋼筋混凝土梁火災試驗研究與數值分析[J]. 建筑結構學報,2013,34(3):1-11. MIAO Jijun, CHEN Na, HOU Xiaoyan, et al. Experimental research and numerical simulation on fire resistance performance of RC beams with damages caused by service loading[J]. Journal of Building Structures,2013,34(3):1-11.

[123]苗吉軍,劉芳,劉延春,等. 考慮海洋環境損傷的鋼筋混凝土梁抗火性能試驗研究[J]. 建筑結構學報,2014,35(9):64-71. MIAO Jijun, LIU Fang, LIU Yanchun, et al. Experimental research on fire resistance performance of RC beams with damages caused by marine environment[J]. Journal of Building Structures,2014,35(9):64-71.

[124]查曉雄,王曉璐,謝先義. GFRP筋混凝土梁耐火性能的試驗研究[J]. 防災減災工程學報,2012,32(1):50-55. ZHA Xiaoxiong, WANG Xiaolu, XIE Xianyi. Fire performance of GFRP reinforced concrete beams[J]. Journal of Disaster Prevention and Mitigation Engineering,2012,32(1):50-55.

[125]王曉璐,查曉雄,朱庸. GFRP筋混凝土梁耐火性能計算方法[J]. 建筑結構學報,2014,35(3):119-127. WANG Xiaolu, ZHA Xiaoxiong, ZHU Yong. Calculation methods for fire resistance of GFRP reinforced concrete beams[J]. Journal of Building Structures, 2014,35(3):119-127.

[126]KODUR V K R, DWAIKAT M. A numerical model for predicting the fire resistance of reinforced concrete beams[J]. Cement and Concrete Composites, 2008,30(5): 431-443.

[127]BRATINA S, PLANINC I, SAJE M, et al. Non-linear fire-resistance analysis of reinforced concrete beams[J]. Structural Engineering and Mechanics,2003,16(6):695-712.

[128]BRATINA S, SAJE M, PLANINC I, et al. The effects of different strain contributions on the response of RC beams in fire[J]. Engineering Structures, 2007;29(3):418-30.

[129]ZHA Xiaoxiong. Three-dimensional non-linear analysis of reinforced concrete members in fire[J]. Building and Environment, 2003,38(2): 297-307.

[130]DWAIKAT M, KODUR V K R. A numerical approach for modeling the fire induced restraint effects in reinforced concrete beams[J]. Fire Safety Journal, 2008, 43(4): 291-307.

[131]DWAIKAT M, KODUR V K R. Response of restrained concrete beams under design fire exposure[J]. Journal of Structural Engineering, ASCE, 2009,135(11):1408-1417.

[132]DWAIKAT M, KODUR V K R. Fire induced spalling in high strength concrete beams[J]. Journal of Fire Technology, 2010,46(1): 251-274.

[133]WU B, LU J Z. A numerical study of the behavior of restrained RC beams at elevated temperatures[J]. Fire Safety Journal, 2009, 44(4): 522-531.

[134]吳波,喬長江. 混凝土約束梁升降溫全過程的耐火性能試驗[J].工程力學,2011,28(6):88-95. WU Bo, QIAO Changjiang. Experimental study on fire behaviors of RC restrained beams under heating and cooling phases[J].Engineering Mechanics,2011,28(6):88-95.

[135]徐明,楊大峰,尹萬云,等. 鋼筋增強超高韌性水泥基復合材料約束梁耐火性能試驗研究[J]. 建筑結構學報,2016,37(3):29-35. XU Ming, YANG Dafeng, YIN Wanyun, et al. Experimental research on fire resistance of steel reinforced engineered cementitious composites restrained beams[J]. Journal of Building Structures,2016,37(3):29-35.

[136]LIE T T, LIN T D, ALLEN D E,et al. Fire Resistance of Reinforced Concrete Columns[R].National Research Council of Canada, Division of Building Research, NRCC 23065, Ottawa, Canada, 1984.

[137]LIE T T. Fire resistance of reinforced concrete columns: a parametric study[J].Journal of Fire Protection Engineering,1989,1(4):121-129.

[138]蘇南,林銅柱, LIE T T. 鋼筋混凝土柱的抗火性能[J]. 土木工程學報,1992,25(6):25-36. SU Nan, LIN Tongzhu, LIE T T. Fire resistance of reinforced concrete columns[J]. China Civil Engineering Journal,1992,25(6):25-36.

[139]DOTREPPE J C, FRANSSEN J M, BRULS A, et al. Experimental research on the determination of the main parameters affecting the behavior of reinforced concrete columns under fire conditions[J].Magazine of Concrete Research,1997, 179(49): 117-127.

[140]TAN K H, YAO Y. Fire resistance of four-face heated reinforced concrete columns[J]. Journal of Structural Engineering, ASCE,2003,129(9):1220-1229.

[141]TAN KH, YAO Y. Fire resistance of reinforced concrete columns subjected to 1-, 2-, and 3-Face heating[J] Journal of Structural Engineering, ASCE,2004,130(11): 1820-1828.

[142]KODUR V K R, MCGRATH R C. Fire endurance of high strength concrete columns[J].Fire Technology,2003,39 (1):73-87.

[143]吳波,唐貴和,王超. 不同受火方式下混凝土柱耐火性能的試驗研究[J]. 土木工程學報,2007,40(4):27-31,72. WU Bo, TANG Guihe, WANG Chao. Experimental study on fire resistance of RC columns with different faces exposed to fire[J]. China Civil Engineering Journal,2007,40(4):27-31,72.

[144]WU Bo, ZHOU Hong, TANG Guihe, et al. Fire resistance of reinforced concrete columns with square cross section.

[J].Advances in Structural Engineering, 2007, 10(4): 353-369.

[145]WU Bo, LI Yihai, CHEN Shuliang. Effect of heating and cooling on axially restrained RC columns with special-shaped cross section[J]. Fire Technology, 2010, 46(1): 231-249.

[146]XU Yuye, WU Bo. Fire resistance of reinforced concrete columns with L-, T- and +-shaped cross sections[J].Fire Safety Journal, 2009, 44(6): 869-880.

[147]WU Bo, XU Yuye. Behavior of axially-and-rotationally restrained concrete columns with ‘+’-shaped cross section and subjected to fire[J].Fire Safety Journal, 2009, 44(2): 212-218.

[148]陸洲導,朱伯龍, 姚亞雄. 鋼筋混凝土框架火災反應分析[J].土木工程學報,1995, 28(6):18-27. LU Zhoudao, ZHU Bolong, YAO Yaxiong. Fire response analysis of reinforced concrete frames[J]. China Civil Engineering Journal,1995, 28(6):18-27.

[149]BAILEY C G. Holistic behavior of concrete buildings in fire[J]. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 2002,152(3):199-212.

[150]劉永軍. 鋼筋混凝土結構火災反應數值模擬及軟件開發[D].大連:大連理工大學,2002. LIU Yongjun. Modeling and programming of reinforced concrete structures exposed to fires [D]. Dalian :Dalian University of Technology,2002.

[151]吳波,何喜洋. 高溫下鋼筋混凝土框架的內力重分布研究[J].土木工程學報,2006,39(9):54-61. WU Bo, HE Xiyang. A study on the redistribution of internal forces in reinforced concrete frames under high temperature[J]. China Civil Engineering Journal, 2006,39(9):54-61.

[152]陳適才,陸新征,任愛珠,等. 基于纖維梁模型的火災下多層混凝土框架非線性分析[J].建筑結構學報,2009,30(6):44-53. CHEN Shicai, LU Xinzheng, REN Aizhu, et al. Nonlinear analysis of multi-story concrete frame under fire with fiber beam model[J]. Journal of Building Structures,2009,30(6):44-53.

[153]YAN Kai, ZHENG Wenzhong, WANG Ying. Elasto-plastic analysis of masonry with anisotropic plasticity material model [J]. Journal of Harbin Institute of Technology,2011, 18(5): 74-80.

[154]YAN Kai, ZHENG Wenzhong, WANG Ying. Modelling and analysis of the bottom frames of multi-story masonry buildings exposed to fire [J].Advanced Materials Research,2011, 255-260: 704-708.

[155]ASHTON L A, MALHOTRA H L. The fire resistance of prestressed concrete beams[R]. Fire Research Notes 65,1953.

[156]GUSTAFERRO A H, SELVAGGIO S L. Fire endurance of simply-supported prestressed concrete slabs [J]. Journal of the Prestressed Concrete Institute,1967,12(1):37-52.

[157]ABRAMSM S, GUSTAFERRO A H. Fire endurance of prestressed concrete units coated with spray-applied insulation[J]. Journal of the Prestressed Concrete Institute,1972,17(1):82-103.

[158]JOSEPH T R, SON I. Report on unbonded post-tensioned prestressed, reinforced concrete flat plate floor with expanded shale aggregate[J]. Journal of the Prestressed Concrete Institute,1968,13(2):45-56.

[159]HERBERGHEN P V, DAMME M V. Fire resistance of post-tensioned continuous flat floor slabs with unbonded tendons[R]. FIP Notes ,1983: 3-11.

[160]袁愛民,孫寶俊,董毓利,等. 無粘結預應力混凝土簡支板火災試驗研究[J]. 工業建筑,2005,35(4):38-42. YUAN Aimin, SUN Baojun, DONG Yuli, et al. Experimental investigation of unbounded prestressed concrete simply-supported slab subjected to fire[J]. Industrial Construction,2005,35(4):38-42.

[161]BAILEY C G, ELLOBODY E. Fire tests on unbonded post-tensioned one-way concrete slabs[J]. Magazine of Concrete Research,2009,61(1):67-76.

[162]ELLOBODY E, BAILEY C G. Modelling of unbonded post-tensioned concrete slabs under fire conditions[J]. Fire Safety Journal. 2009, 44(2):159-167.

[163]Civil engineering and building structures standards committee. Structural use of concrete, Code of Practice for Special Circumstances: BS8110-2[S]. London:British Standards Institution, 1985.

[164]袁愛民,董毓利,戴航,等. 無粘結預應力混凝土三跨連續板火災試驗研究[J]. 建筑結構學報,2006,27(6):60-66. YUAN Aimin, DONG Yuli, DAI Hang, et al. Experimental investigation of unbounded prestressed concrete continuous slab subjected to fire[J]. Journal of Building Structures,2006,27(6):60-66.

[165]高立堂, 董毓利, 袁愛民. 無粘結預應力混凝土連續板邊中兩跨受火試驗[J]. 哈爾濱工業大學學報, 2009, 41(8): 179-182. GAO Litang, DONG Yuli, YUAN Aimin. Experimental investigation on behaviors of continuous slabs of unbounded prestressed concrete with end-middle span under fire[J]. Journal of Harbin Institute of Technology, 2009, 41(8): 179-182.

[166]高立堂, 陳禮剛, 李曉東,等. 無粘結預應力混凝土連續板火災行為的試驗分析[J]. 混凝土, 2006 (9): 80-83. GAO Litang, CHEN Ligang, LI Xiaodong, et al. Analysis of the behaviors of unbounded prestressed concrete continuous slabs under fire[J]. Concrete, 2006 (9): 80-83.

[167]袁愛民, 董毓利, 戴航, 等. 預應力混凝土連續板不同跨受火火災行為[J]. 哈爾濱工業大學學報, 2008, 40(10): 1633-1638. YUAN Aimin, DONG Yuli, DAI Hang, et al. Behaviors of unbounded prestressed concrete continuous slabs middle span and edge span subjected to fire in_order[J]. Journal of Harbin Institute of Technology, 2008, 40(10): 1633-1638.

[168]王中強,余志武. 高溫下無粘結預應力混凝土扁梁試驗研究[J]. 建筑結構學報,2011,32(2):98-106. WANG Zhongqiang, YU Zhiwu. Experimental research on unbounded prestressed concrete flat beams under high temperature[J]. Journal of Building Structures,2011,32(2):98-106.

[169]王中強,余志武. 高溫下無粘結預應力混凝土受彎構件的非線性有限元分析[J]. 土木工程學報,2011,44(2):42-49. WANG Zhongqiang, YU Zhiwu. Nonlinear finite element analysis of unbounded prestressed concrete flexural members at high temperature[J]. China Civil Engineering Journal,2011,44(2):42-49.

[170]ZHENG Wenzong, HOU Xiaomeng. Experiment and analysis on the mechanical behavior of pc simply-supported slabs subjected to fire[J].Advances in Structural Engineering,2008,11(1):71-89.

[171]HOU Xiaomeng, KODUR V K R, ZHENG Wenzhong. Factors governing the fire response of bonded prestressed concrete continuous beams[J]. Materials and structures,2015,48(9):2885-2900.

[172]HOU Xiaomeng, ZHENG Wenzong, KODUR V K R. Response of unbonded prestressed concrete continuous slabs under fire exposure[J]. Engineering Structures,2013,56(11):2139-2148.

[173]胡瓊,許名鑫,鄭文忠.火災下混凝土構件正截面承載力估算方法[J].哈爾濱工業大學學報,2006,38(1):56-58,66. HU Qiong, XU Mingxin, ZHENG Wenzhong. Estimation method for normal section load-bearing capacity of concrete members subjected to fire[J]. Journal of Harbin Institute of Technology,2006,38(1):56-58,66.

[174]胡瓊,許名鑫,鄭文忠. 火災下無粘結預應力筋應力-應變全過程分析[J]. 計算力學學報,2011,28(6):891-897. HU Qiong, XU Mingxin, ZHENG Wenzhong. Analysis on stress-strain complete process of unbounded prestressing tendons in concrete subjected to fire[J]. Chinese Journal of Computational Mechanics,2011,28(6):891-897.

[175]侯曉萌, 鄭文忠. 預應力混凝土連續梁板抗火性能非線性分析[J].哈爾濱工業大學學報,2011,43(12):36-41. HOU Xiaomeng, ZHENG Wenzhong. Nonlinear finite element analysis of fire resistance performance for prestressed concrete continuous beam and slab[J].Journal of Harbin Institute of Technology, 2011,43(12):36-41.

[176]鄭文忠,侯曉萌. 混凝土及預應力混凝土結構抗火設計建議[J]. 建筑科學,2013,29(5):67-70,76. ZHENG Wenzhong,HOU Xiaomeng. Proposition for Fire Resistance Design of Concrete and Prestressed Concrete Building Structures[J].Building Science, 2013,29(5):67-70,76.

[177]ZHENG Wenzhong, OUYANG Zhiwei. Influence of key factors on deflection of bonded prestressed concrete simply supported slabs subjected to fire[J]. Journal of Harbin Institute of Technology, 2010,17(5):615-621.

[178]ZHENG Wenzhong, HOU Xiaomeng, XU Mingxin. Research into rational concrete cover of prestressed concrete beams and slabs for fire resistance[J]. Journal of Harbin Institute of Technology,2009,16(5):99-106.

[179]VENANZI I, BRECCOLOTTI M, D’ALESSANDRO A, et al. Fire performance assessment of HPLWC hollow core slabs through full-scale furnace testing[J]. Fire Safety Journal, 2014,69:12-22.

[180]SHAKYA A M, KODUR V K R. Response of precast prestressed concrete hollowcore slabs under fire conditions[J]. Engineering Structures, 2015,87(15):126-138.

[181]KODUR V K R, SHAKYA A M. Modeling the response of precast prestressed concrete hollowcore slabs exposed to fire[J]. PCI Journal,2014,59(3):78-94.

[182]周緒紅,鄧利斌,吳方伯,等. 預制混凝土疊合樓板耐火性能試驗研究及有限元分析[J]. 建筑結構學報,2015,36(12):82-90. ZHOU Xuhong, DENG Libin, WU Fangbo, et al. Experimental research and FEA on fire resistance performance of precast concrete composite slabs[J]. Journal of Building Structures,2015,36(12):82-90.

[183]陸洲導,李剛,許立新.無粘結預應力混凝土框架火災下結構反應分析[J]. 土木工程學報,2003,36(10):30-35. LU Zhoudao, LI Gang, XU Lixin. Analysis for structural response of unbounded prestressed reinforced concrete frames in fire environments[J]. China Civil Engineering Journal,2003,36(10):30-35.

[184]GALES J, BISBY L A, GILLIE M. Unbonded post tensioned concrete in fire: A review of data from furnace tests and real fires[J].Fire Safety Journal, 2011,46(4):151-163.

[185]ZHENG Wenzhong, HOU Xiaomeng, SHI Dongsheng, et al. Experimental study on concrete spalling in prestressed slabs subjected to fire[J]. Fire Safety Journal,2010,45(5):283-297.

[186]中華人民共和國住房和城鄉建設部.無粘結預應力混凝土結構技術規程:JGJ92—2016 [S]. 北京:中國建筑工業出版社,2016. Ministry of Housing and Urban-Rural Development of China.Technical specification for concrete structures prestressed with unbounded tendons: JGJ92—2016 [S].Beijing:China architecture & building press,2016.

[187]WU Bo, SU Xiaoping, LI Hui, et al. Effect of high temperature on residual mechanical properties of confined and unconfined high-strength concrete[J]. ACI Materials Journal, 2002, 99(4): 399-407.

[188]ZHENG Wenzhong, LI Haiyan, WANG Ying. Compressive behavior of hybrid fiber-reinforced reactive powder concrete after high temperature[J]. Materials & Design, 2012, 41: 403-409.

[189]鄭文忠, 李海艷, 王英. 高溫后不同聚丙烯纖維摻量的活性粉末混凝土力學性能試驗研究[J]. 建筑結構學報, 2012, 33(9): 119-126. ZHENG Wenzhong, LI Haiyan, WANG Ying. Mechanical properties of reactive powder concrete with different dosage of polypropylene fiber after high temperature[J]. Journal of Building Structures, 2012, 33(9): 119-126.

[190]李海艷, 鄭文忠, 羅百福. 高溫后RPC立方體抗壓強度退化規律研究[J]. 哈爾濱工業大學學報, 2012, 44(4): 17-22. LI Haiyan, ZHENG Wenzhong, LUO Baifu. Experimental research on compressive strength degradation of reactive powder concrete after high temperature [J]. Journal of Harbin Institute of Technology, 2012, 44(4): 17-22.

[191]李海艷, 王英, 解恒燕, 等. 高溫后活性粉末混凝土微觀結構分析[J]. 華中科技大學學報(自然科學版), 2012, 40(5): 71-75. LI Haiyan, WANG Ying, XIE Hengyan, et al. Microstructure analysis of reactive powder concrete after exposed to high temperature[J]. Journal of Huazhong University of Science & Technology(Natural Science Edition),2012,40(5): 71-75.

[192]鄭文忠, 李海艷, 王英. 高溫后混雜纖維RPC單軸受壓應力-應變關系[J].建筑材料學報,2013,16(3):388-395. ZHENG Wenzhong, LI Haiyan, WANG Ying. Compressive stress-strain relationship of hybrid fiber-reinforced reactive powder concrete after exposure to high temperature[J]. Journal of Building Materials,2013,16(3):388-395.

[193]經建生,侯曉萌,鄭文忠. 高溫后預應力鋼筋和非預應力鋼筋的力學性能[J].吉林大學學報(工學版),2010, 40(2):441-446. JING Jiansheng, HOU Xiaomeng, ZHENG Wenzhong. Experimental research on the mechanical properties of prestressing steel wire and non-prestressed steel bar after elevated temperature[J].Journal of Jilin University(Engineering and Technology Edition),2010,40(2):441-446.

[194]吳波,宿曉萍,李惠,等. 高溫后約束高強混凝土力學性能的試驗研究[J]. 土木工程學報,2002,35(2):26-32. WU Bo, SU Xiaoping, LI Hui, et al. Experimental study on mechanical properties of confined high-strength concrete after high temperature[J]. China Civil Engineering Journal,2002,35(2):26-32.

[195]吳波,馬忠誠,歐進萍. 高溫后鋼筋混凝土柱抗震性能的試驗研究[J]. 土木工程學報,1999,32(2):53-58. WU Bo, MA Zhongcheng, OU Jinping. Experimental study on seismic properties of RC columns after high temperature[J]. China Civil Engineering Journal,1999,32(2):53-58.

[196]鄭文忠, 侯曉萌, 陳偉宏. 火災后預應力混凝土簡支板力學性能試驗[J]. 哈爾濱工業大學學報, 2011, 43(2): 8-13. ZHENG Wenzhong, HOU Xiaomeng, CHEN Weihong. Experiment and analysis on mechanical performance of prestressed concrete simply-supported slab after elevated temperature[J].Journal of Harbin Institute of Technology, 2011,43(2):8-13.

[197]侯曉萌, 鄭文忠. 火災后預應力混凝土連續板力學性能試驗與分析[J]. 湖南大學學報(自然科學版), 2010, 37(2): 6-13. HOU Xiaomeng, ZHENG Wenzhong. Experiment and analysis on mechanical performance of unbonded prestressed concrete continuous slab after elevated temperature[J].Journal of Hunan University(Natural Sciences), 2010,37(2):6-13.

[198]鄭文忠, 陳偉宏, 侯曉萌. 火災后配筋混凝土梁受力性能試驗與分析[J]. 哈爾濱工業大學學報, 2008, 40(12), 1861-1867. ZHENG Wenzhong, CHEN Weihong, HOU Xiaomeng. Experiment and analysis on mechanical properties of reinforced concrete beam after fire[J].Journal of Harbin Institute of Technology, 2008,40(12):1861-1867.

[199]侯曉萌,鄭文忠,孫洪宇.火災作用下錨具對預應力鋼棒錨固性能退化規律研究[J]. 建筑結構學報,2014, 35(3):110-118. HOU Xiaomeng, ZHENG Wenzhong, SUN Hongyu. Research on deterioration of anchoring performance between anchorages to steel bars for prestressed concrete under fire [J]. Journal of Building Structures,2014, 35(3):110-118.

[200]鄭文忠,陳偉宏,王英. 堿礦渣膠凝材料的耐高溫性能[J]. 華中科技大學學報(自然科學版),2009, 37(10):96-99. ZHENG Wenzhong, CHEN Weihong, WANG Ying. High-temperature resistance performance of alkali-activated slag cementitious materials[J]. Journal of Huazhong University of Science & Technology(Natural Science Edition),2009, 37(10):96-99.

[201]鄭文忠,陳偉宏,徐威,等. 用堿激發礦渣耐高溫無機膠在混凝土表面粘貼碳纖維布試驗研究[J].建筑結構學報,2009, 30(4):138-144. ZHENG Wenzhong, CHEN Weihong, XU Wei, et al. Experimental research on alkali-activated slag high temperature resistant inorganic adhesive pasting CFRP sheets on surface of concrete[J]. Journal of Building Structures, 2009, 30(4):138-144.

[202]萬夫雄, 鄭文忠. 無機膠粘貼碳纖維布加固板防火涂層厚度取值[J]. 哈爾濱工業大學學報, 2012, 44(2): 11-16. WAN Fuxiong, ZHENG Wenzhong. Thickness value of fireproof coating for slabs strengthened with Carbon Fiber Sheet bonded with an inorganic adhesive[J]. Journal of Harbin Institute of Technology, 2012, 44(2): 11-16.

[203]鄭文忠, 萬夫雄, 李時光. 用無機膠粘貼CFRP布加固混凝土板抗火性能試驗研究[J]. 建筑結構學報, 2010, 31(10):89-97. ZHENG Wenzhong, WAN Fuxiong, LI Shiguang. Experimental research of fire performance on reinforced concrete slabs strengthened with CFRP sheets bonded with inorganic adhesive[J]. Journal of Building Structures, 2010, 31(10):89-97.

[204]鄭文忠, 朱晶. 無機膠凝材料粘貼碳纖維布加固混凝土結構研究進展[J]. 建筑結構學報, 2013, 34(6): 1-12. ZHENG Wenzhong, ZHU Jing. Progress of research on concrete structures strengthened with CFRP sheets with inorganic adhesive[J]. Journal of Building Structures, 2013, 34(6): 1-12.

[205]鄭文忠,陳偉宏,張建華. 堿礦渣膠凝材料作膠粘劑的植筋性能研究[J]. 武漢理工大學學,2009, 31(14):10-14. ZHENG Wenzhong, CHEN Weihong, ZHANG Jianhua. Experimental research on performance on bonded rebars with alkali-activated cementitious material[J].Journal of Wuhan University of Technology,2009, 31(14):10-14.

(編輯 趙麗瑩)

Progress and prospect of fire resistance of reinforced concrete and prestressed concrete structures

ZHENG Wenzhong1,2, HOU Xiaomeng1,2,WANG Ying1,2

(1.Key Lab of Structures Dynamic Behavior and Control (Harbin Institute of Technology), Ministry of Education,Harbin 150090, China; 2. School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China)

In this chapter, the fire resistance of reinforced concrete and prestressed concrete structures are outlined to expend further research. The progress and prospect in fire resistance of reinforced concrete (RC) structures and prestressed concrete(PC) structures and its repair technology after fire is presented, and some issues that still need to be investigated are discussed. The progress mainly includes mechanical properties of materials at elevated temperatures, fire resistance of RC and PC structures, and fire-induced spalling of concrete. The results show that spalling critical temperature of concrete varies with compressive strength of concrete. Adding steel fibers or polypropylene (PP) fibers is able to prevent fire-included spalling of concrete effectively. The criteria considering nominal stress of concrete and concrete strength is effective for judging fire-induced spalling, which is capable for reducing the possibility of fire-induced spalling of concrete in PC members. The requirements that concrete structures will not collapse or spalling during fire and can be repaired after fire should be satisfied in fire safety design. Rational fibers dosage to prevent fire-included spalling of concrete, fire-included spalling and its prediction model on RC and PC members, fire-induced spalling of RPC, temperature-stress coupling strain-stress relation of RPC and fire resistance of RPC members, effect of force-temperature paths on behaviors of structures and members, fire resistance of high-rise buildings and underground structures are the main problems which need to be studied in the future.

reinforced concrete; prestressed concrete; spalling; fire resistance; fire safety design

10.11918/j.issn.0367-6234.2016.12.001

2016-02-27

國家自然科學基金(51578184,51478142); 黑龍江省博士后科研啟動基金(LBH-Q15058)

鄭文忠(1965—),男,長江學者特聘教授,博士生導師; 侯曉萌(1982—),男,副教授,博士生導師

侯曉萌,houxiaomeng_hit@126.com

TU378.1

A

0367-6234(2016)12-0001-18

猜你喜歡
鋼筋混凝土
高層建筑的鋼筋混凝土梁式轉換層施工技術分析
淺析鋼筋混凝土主體結構檢測技術的應用
鋼筋混凝土結構在高層建筑中的應用現狀
鋼筋混凝土灌注樁施工技術探析
居業(2016年9期)2016-12-26 21:52:25
鋼筋混凝土橋梁裂縫的原因分析及修補方法
橋梁施工技術現狀及發展方向
中國市場(2016年32期)2016-12-06 11:08:24
鋼筋混凝土反力墻關鍵工序的施工改進技術
“鋼筋混凝土”治療動脈瘤
祝您健康(2016年11期)2016-10-31 11:41:27
基于鋼筋混凝土的結構設計論述
淺析建筑物鋼筋砼與砌體結構抗震加固的技術方法
主站蜘蛛池模板: 亚洲成年人片| 婷婷伊人五月| 国产精品亚洲一区二区三区z| 粗大猛烈进出高潮视频无码| 亚洲高清中文字幕在线看不卡| 欧洲精品视频在线观看| 国产精品短篇二区| 极品尤物av美乳在线观看| 亚洲av日韩av制服丝袜| 波多野结衣爽到高潮漏水大喷| 成人一区在线| 97国产精品视频自在拍| 亚洲中文在线看视频一区| 91精品久久久无码中文字幕vr| 色AV色 综合网站| 日韩av无码精品专区| 亚洲精品成人片在线观看| 91精品伊人久久大香线蕉| 国产欧美日韩专区发布| 91免费国产在线观看尤物| 久久综合丝袜日本网| 一区二区三区高清视频国产女人| 在线观看国产小视频| 九色免费视频| 亚洲视频a| 国产资源免费观看| 伊人五月丁香综合AⅤ| 精品一区国产精品| 国产毛片片精品天天看视频| 91精品aⅴ无码中文字字幕蜜桃| 国产成在线观看免费视频| 久久福利片| 欧美色亚洲| 久久毛片网| 亚洲一级色| 亚洲国产精品VA在线看黑人| 国产你懂得| 久久国产精品波多野结衣| 91精品综合| 国产嫩草在线观看| 99爱在线| 午夜性刺激在线观看免费| 美女免费精品高清毛片在线视| 黄色网站不卡无码| 亚洲中文无码av永久伊人| 全裸无码专区| 日韩欧美高清视频| 亚洲中文字幕无码爆乳| 亚洲美女操| 尤物精品国产福利网站| 成人另类稀缺在线观看| 久久久精品无码一区二区三区| 色综合久久久久8天国| 新SSS无码手机在线观看| 91精品国产一区自在线拍| 萌白酱国产一区二区| 无码国内精品人妻少妇蜜桃视频| 很黄的网站在线观看| 亚洲天堂精品在线观看| 久久久久久高潮白浆| 91久久精品日日躁夜夜躁欧美| 成年人久久黄色网站| 青青热久免费精品视频6| 日韩人妻无码制服丝袜视频| 欧美视频在线播放观看免费福利资源| 午夜免费视频网站| 国产欧美成人不卡视频| 综合色天天| 欧美国产视频| 亚洲一区二区三区国产精品| 美女视频黄频a免费高清不卡| 国产久操视频| 久久中文无码精品| 亚洲色图综合在线| 有专无码视频| 色噜噜中文网| 色综合中文综合网| 新SSS无码手机在线观看| 亚洲一区二区三区麻豆| 韩国v欧美v亚洲v日本v| 亚洲激情区| 国产18在线播放|