999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Chemical constituents from underground part ofAstragaluscamptodontoides

2016-12-22 09:43:05HANBingYangZHANGYuTIANXinYanXIAOChaoJiangDONGXiangJIANGBei
廣西植物 2016年11期
關(guān)鍵詞:黃酮植物

HAN Bing-Yang, ZHANG Yu, TIAN Xin-Yan, XIAO Chao-Jiang,DONG Xiang, JIANG Bei

( Institute of Materia Medica, Dali University, Dali 671000, Yunnan, China )

Abstract: For understanding the chemical constituents of Astragalus camptodontoides, nineteen compounds were isolated from the ethyl acetate fraction of the methanol extract of underground part. By physical-chemical properties and spectroscopic date, their structures were identified as isobavachin (1), 4′-hydroxyisolonchocarpin (2), 5-deoxyeuchrenone (3), shinflavanone (4), khonklonginols H (5), 4′-O-methylpreglabridin (6), 3′-hydroxy-4′-O-methylglabridin (7), 4′-O-methylglabridin (8), 8-prenyl-phaseollinisoflavan (9), xambioona (10), glabrol (11), glyasperin H (12), methylnissolin (13), phthalic acid isodibutyl ester (14), butul isobutyl phthalate (15), β-sitosterol (16), daucosterol (17), oleanic acid (18), and (2S,3S,4R,9E)-1,3,4-trihydroxy-2- [(2′R)-2′-hydroxytetracosanoylamino]-9-octadecene (19). All compounds were isolated from this plant for the first time, including compounds 1-7 obtained from Astragalus genus for the first time.

?

Chemical constituents from underground part ofAstragaluscamptodontoides

HAN Bing-Yang, ZHANG Yu, TIAN Xin-Yan, XIAO Chao-Jiang,DONG Xiang, JIANG Bei*

(InstituteofMateriaMedica,DaliUniversity, Dali 671000, Yunnan, China )

Abstract: For understanding the chemical constituents ofAstragaluscamptodontoides, nineteen compounds were isolated from the ethyl acetate fraction of the methanol extract of underground part. By physical-chemical properties and spectroscopic date, their structures were identified as isobavachin (1), 4′-hydroxyisolonchocarpin (2), 5-deoxyeuchrenone (3), shinflavanone (4), khonklonginols H (5), 4′-O-methylpreglabridin (6), 3′-hydroxy-4′-O-methylglabridin (7), 4′-O-methylglabridin (8), 8-prenyl-phaseollinisoflavan (9), xambioona (10), glabrol (11), glyasperin H (12), methylnissolin (13), phthalic acid isodibutyl ester (14), butul isobutyl phthalate (15),β-sitosterol (16), daucosterol (17), oleanic acid (18), and (2S,3S,4R,9E)-1,3,4-trihydroxy-2- [(2′R)-2′-hydroxytetracosanoylamino]-9-octadecene (19). All compounds were isolated from this plant for the first time, including compounds 1-7 obtained fromAstragalusgenus for the first time.

Astragaluscamptodontoides, underground part, chemical constituents, isolation and identification

Astragaluscamptodontoides, a species ofAstragalusgenus, grows on grassland with altitude over 3 100 m and is mainly distributed in South Tibet, Southwest Sichuan, and Northwest Yunnan in China (China Flora Editorial Board, 1993; Kunming Institute for Botany, 2006). This plant is often used as substitute of Chinese medicine “Huang Qi” by local folks, and therefore, it is supposed to have the major constituents similar to Huangqi. However, research concerning its chemical composition has not been reported yet. In order to investigate the chemical patterns of its major constituents, a detailed chemical study on the underground part ofA.camptodontoideswas carried out recently. As a result, nineteen compounds were isolated from the EtOAc fraction of its MeOH extract. Their structures were identified as isobavachin (1), 4′-hydroxyisolonchocarpin (2), 5-deoxyeuchrenone (3), shinflavanone (4), khonklonginols H (5), 4′-O-methylpreglabridin (6), 3′-hydroxy-4′-O-methylglabridin (7), 4′-O-methylglabridin (8), 8-prenyl-phaseollinisoflavan (9), xambioona (10), glabrol (11), glyasperin H (12), methylnissolin (13), phthalic acid isodibutyl ester (14), butul isobutyl phthalate (15),β-sitosterol (16), daucosterol (17), oleanic acid (18), and (2S,3S,4R,9E)-1,3,4-trihydroxy-2- [(2′R)-2′-hydroxytetracosanoylamino]-9-octadecene (19) (Fig. 1). All of these compounds were isolated from this plant for the first time, and compounds 1-7 were isolated fromAstragalusgenus for the first time.

1 Materials and Methods

1.1 Plant Materials

Astragaluscamptodontoideswas collected from Diqing (Yunnan, China) in September 2012 and identified by Dr. ZHANG De-Quan, Laboratory of Pharmacognosy of Dali University. A voucher specimen (20120918-2-A) was deposited in Institute of Materia Medica at Dali University.

1.2 Experimental Instruments

EI-MS spectra were obtained on VG Auto Spec-3000 and API QSTAR Pulsari Spectrometer.1H-NMR and13C-NMR spectra were recorded on a Bruker-400 MHz Spectrometer using TMS as an internal standard. TLC was performed on silica gel G and GF254plates (Qingdao Marine Chemical Factory). Column chromatography was carried out on silica gel (200-300 mesh; Qingdao Marine Chemical Factory), Sephadex LH-20 (Amersham Biosciences), and RP-18 gel (40-75 μm; J. T. Baker). TLC spots were visualized by 10% H2SO4with heating or by UV light.

2 Extraction and Isolation

The dried and powdered roots ofA.camptodontoides(1.05 kg) were extracted with MeOH for six times, 6 h each time. The extracts were combined and concentratedinvacuumto give a crude extract. The crude extract was suspended in water and partitioned with EtOAc and butanol, successively. Removal of the solvent from each phase gave the EtOAc fraction, butanol fraction, and water-soluble extract, respectively. The EtOAc fraction (123.5 g) was subjected to a silica gel column and eluted with CHCl3-Me2CO (1∶0-0∶1) to provide Fr. 1-7. Fr. 1 (4 g) was subjected repeatedly to column chromatography on silica gel and eluted with petroleum ether-Me2CO to yield compounds 2 (5.4 mg), 3 (12.0 mg), 5 (15.3 mg), 6 (3.2 mg), 9 (5.5 mg), 14 (5.7 mg), 17 (5.6 mg) and 18 (8.7 mg). Fr. 2 (7.5 g) was subjected repeatedly to column chromatography padded with silica gel and eluted with petroleum ether-Me2CO to yield compounds 1 (5.2 mg), 4 (5.4 mg), 7 (8.3 mg), 8 (5.6 mg), 10 (15.3 mg), 12 (5.4 mg), 15 (3.8 mg), and 16 (20.2 mg). Fr. 3 (3 g) was purified repeatedly on silica gel column and eluted with petroleum ether-Me2CO to yield Compound 11 (8.2 mg). Fr. 6 (8 g) was subjected to a RP-18 chromatographic column and eluted with MeOH-H2O and followed by Sephadex LH-20 (MeOH) purification to yield compounds 13 (8.1 mg) and 19 (5.7 mg).

3 Results and Analysis

Isobavachin (1) Yellow powder; C25H26O4;1H-NMR (CDCl3, 400 MHz)δ: 7.76 (1H, d,J= 8.7 Hz, H-5), 6.96 (2H, d,J= 2.2 Hz, H-2′, 6′), 6.69(2H, d,J= 8.3 Hz, H-3′, 5′), 6.36 (1H, d,J= 9.8 Hz, H-6 ), 5.59 (1H, t,J= 9.8 Hz, H-2″), 5.36 (1H, dd,J= 13.3, 2.8 Hz, H-2), 3.15 (2H, overlap, H-1″), 3.01 (1H, dd,J= 16.8, 13.3 Hz, H-3b), 2.81 (1H, dd,J= 16.8, 2.9 Hz, H-3a), 1.49 (3H, s, H-4″), 1.46 (3H, s, H-5″);13C-NMR (CDCl3, 100 MHz)δ: 185.5 (s, C-4), 159.6 (s, C-7), 157.7 (s, C-9), 156.8 (s, C-4′), 131.7 (s, C-3″), 131.1 (s, C-1′), 128.8 (d, C-5), 127.9 (d, C-2′, 6′), 121.9 (d, C-2″), 116.0 (d, C-3′, 5′), 115.6 (s, C-10), 113.1 (s, C-8), 111.1 (d, C-6), 79.5 (d, C-2), 44.2 (t, C-3), 22.7 (q, C-4″), 22.7 (t, C-1″), 14.1 (q, C-5″). These data are consistent with the literature values (Ali et al, 2011), and hence was identified as isobavachin.

Fig. 1 Chemical structures of compounds 1-19

4′-Hydroxyisolonchocarpin (2) Yellow oil; C20H18O4;1H-NMR (CDCl3, 400 MHz)δ: 7.74 (1H, d,J= 8.7 Hz, H-5), 7.20 (2H, d,J= 8.6 Hz, H-2′, 6′), 6.81 (2H, d,J= 2.0 Hz, H-3′, 5′), 6.64 (1H, d,J= 10.5 Hz, H-1″), 6.49 (1H, d,J= 8.7 Hz, H-6), 5.55 (1H, d,J= 10.0 Hz, H-2″), 5.35 (1H, dd,J= 13.2, 2.8 Hz, H-2), 3.00 (1H, dd,J= 13.3, 3.6 Hz, H-3b), 2.79 (1H, dd,J= 16.8, 2.9 Hz, H-3a), 1.46 (6H, s, H-4″, 5″);13C-NMR (CDCl3, 100 MHz)δ: 190.5 (s, C-4), 159.6 (s, C-9), 157.8 (s, C-7), 155.4 (s, C-4′), 131.3 (s, C-1′), 128.8 (d, C-5), 127.9 (d, C-2″), 127.1 (d, C-2′, 6′), 124.3 (d, C-3′, 5′), 122.0 (d, C-1″), 116.5 (s, C-8), 116.0 (s, C-10), 111.1 (d, C-6), 79.6 (d, C-2), 77.3 (s, C-3″), 44.1 (t, C-3), 28.4 (q, C-4″), 28.1 (q, C-5″). Its1H-NMR and13C-NMR data were in accordance with those reported in the literature (Ryu et al, 2012). Therefore, Compound 2 was identified as 4′-hydroxyisolonchocarpin.

5-Deoxyeuchrenone (3) Yellow oil; C30H32O4;1H-NMR (CDCl3, 400 MHz)δ: 7.66 (1H, s, H-5), 7.13 (1H, dd,J= 2.2, 8.2 Hz, H-6′), 7.01 (1H, d,J= 2.2 Hz, H-2′), 6.74 (1H, m, H-5′), 6.57 (1H, d,J= 10.0 Hz, H-α), 6.27 (1H, d,J= 9.8 Hz, H-α′), 5.59 (1H, d,J= 9.8 Hz, H-β), 5.50 (1H, d,J= 10.0 Hz, H-β′), 5.30 (1H, dd,J= 2.8, 13.3 Hz, H-2), 5.27 (1H, bt, H-2″), 3.60 (1H, d,J= 4.5 Hz, H-1″), 2.94 (1H, m, H-3b), 2.72 (1H, dd,J= 2.9, 16.8 Hz, H-3a), 1.50 (6H, s, 2×CH3), 1.18 (12H, s, 4×CH3);13C-NMR (CDCl3, 100 MHz)δ: 192.7 (s, C-4), 166.5 (s, C-7), 156.7 (s, C-9), 152.3 (s, C-4′), 131.4 (s, C-1′), 130.3 (s, C-3″), 130.1 (d, C-2′), 129.9 (d, C-β′), 127.8 (d, C-β), 127.8 (d, C-6′), 126.9 (t, C-2″), 126.1 (d, C-α), 123.3 (s, C-5′), 120.9 (d, C-5), 115.4 (s, C-6), 115.0 (d, C-3′), 113.7 (d, C-α′), 110.1 (s, C-8), 108.3 (s, C-10), 78.6 (s, 2×-Me2C), 76.3 (d, C-2), 43.1 (t, C-3), 30.9 (t, C-1″), 29.9 (q, C-CH3), 28.7 (q, C-CH3), 28.3 (q, C-CH3), 27.4 (q, C-CH3), 26.7 (q, C-4″), 18.1 (q, C-5″). Its1H NMR and13C NMR data were identical with those reported in the literature (Mali et al, 1998). Thus, Compound 3 was identified as 5-deoxyeuchrenone.

Shinflavanone (4) Yellow powder; C25H26O4;1H-NMR (CDCl3, 400 MHz)δ: 7.74 (1H, d,J= 8.7 Hz, H-5), 7.22 (1H, d,J= 5.7 Hz, H-2′), 7.20 (1H, s, H-6′), 6.86 (1H, d,J= 8.2 Hz, H-1?), 6.50 (1H, d,J=8.6 Hz, H-6), 6.63 (1H, d,J= 8.3 Hz, H-5′), 5.56 (1H, d,J= 9.8 Hz, H-2?), 5.38 (1H, t,J= 2.4 Hz, H-2″ ) , 5.35 (1H, dd,J= 3.2, 12.8 Hz, H-2), 3.39 (2H, d,J= 6.7 Hz, H-1″), 3.02 (1H, dd,J= 16.8, 13.3 Hz, H-3b), 2.80 (1H, dd,J= 2.9, 16.8 Hz, H-3a), 1.78 (6H, s, H-4″, 5″), 1.47 (3H, s, H-4?), 1.44 (3H, s, H-5?);13C-NMR (CDCl3, 100 MHz)δ: 191.3 (s, C-4), 159.7 (s, C-9), 157.9 (s, C-7), 154.8 (s, C-4′), 134.9 (s,C-3″), 130.8 (s, C-1′), 128.8 (d, C-5), 128.0 (d, C-2′), 127.9 (s, C-3′), 127.4 (d, C-2?), 125.4 (d, C-6′), 121.4 (d, C-2″), 116.0 (d, C-1?), 115.8 (d, C-5′), 114.7 (s, C-8), 111.1 (s, C-10), 109.4 (d, C-6), 79.7 (s, C-3?), 77.2 (d, C-2), 44.1 (t, C-3), 29.6 (t, C-1″), 28.4 (q, C-4?), 28.1 (q, C-5?), 25.8 (q, C-4″), 17.9 (q, C-5″). Compound 4 was identified as shinflavanone since its1H-NMR and13C-NMR data agreed with those reported literatures (Suh et al, 1999).

Khonklonginols H (5) Yellow oil; C26H28O6;1H-NMR (CDCl3, 400 MHz)δ: 7.18 (1H, d,J= 8.4 Hz, H-6′), 6.87 (2H, d,J= 6.6 Hz, H-1?), 6.64 (1H, dd,J= 8.5, 2.2 Hz, H-5′), 6.32 (1H, d,J= 2.2 Hz, H-3′), 5.82 (1H, dd,J= 12.6, 2.0 Hz, H-2), 5.65 (1H, d,J= 7.0 Hz, H-2?), 5.56 (1H, t,J= 9.7 Hz, H-2″), 3.89 (3H, s, -OCH3), 3.20 (2H, t,J= 7.0 Hz, H-1″), 3.01 (1H, dd,J= 17.6, 14.6 Hz, H-3a), 2.91 (1H, dd,J= 17.6, 3.1 Hz, H-3b), 1.76 (6H, s, H-4″, 5″), 1.46 (3H, s, H-4?), 1.44 (3H, s, H-5?);13C-NMR (CDCl3, 100 MHz)δ: 191.8 (s, C-4), 161.8 (s, C-4′), 159.8 (s, C-7), 158.0 (s, C-9), 157.9 (s, C-5), 154.9 (s, C-2′), 131.2 (s, C-3″), 130.5 (d, C-6′), 128.8 (d, C-2?), 121.6 (d, C-2″), 116.0 (s, C-1′), 115.7 (t, C-1″), 114.6 (s, C-8), 113.1 (d, C-5′), 111.2 (s, C-6), 109.4 (d, C-3′), 108.1 (s, C-10), 79.8 (s, C-3?), 77.6 (d, C-2), 56.2 (q, -OCH3), 44.0 (t, C-3), 28.4 (q, C-4?), 28.1(q, C-5?), 25.9 (q, C-4″), 22.4 (t, C-1″), 17.9 (q, C-5″). Its1H-NMR and13C-NMR data were in accordance with those reported in the literature (Sutthivaiyakit et al, 2009). Therefore, Compound 5 was identified as khonklonginols H.

4′-O-Methylpreglabridin (6) Yellow oil;C21H24O4;1H-NMR (CDCl3, 400 MHz)δ: 6.83 (1H, d,J= 8.2 Hz, H-5), 6.67 (1H, d,J= 8.3 Hz, H-6′), 6.60 (1H, d,J= 8.2 Hz, H-5′), 6.56 (1H, s, H-3′), 6.40 (1H, dd,J= 8.2, 8.3 Hz, H-6), 5.25 (1H, m, H-2″), 4.34 (1H, d,J= 9.1 Hz, H-2b), 3.90 (3H, s, -OCH3), 3.90 (1H, dd,J= 11.9, 6.0 Hz, H-2a), 3.41 (1H, m, H-3), 3.40 (2H, d,J= 4.8 Hz, H-1″), 2.93 (1H, ddd,J= 15.8, 10.2, 2.0 Hz, H-4), 1.81 (3H, s, H-5″), 1.74 (3H, s, H-4″);13C-NMR (CDCl3, 100 MHz)δ: 161.9 (s, C-7), 153.8 (s, C-9), 152.6 (s, C-4′), 151.7 (s, C-2′), 134.2 (s, C-3″), 129.1 (d, C-5), 127.6 (d, C-6′), 122.1 (d, C-2″), 120.8 (s, C-1′), 114.4 (s, C-8, 10), 108.1 (d, C-5′), 106.4 (d, C-3′), 97.7 (d, C-6), 69.3 (t, C-2), 56.2 (q, -OCH3), 31.6 (d, C-3), 31.0 (t, C-4), 25.8 (q, C-5″), 22.3 (t, C-1″), 17.9 (q, C-4″). Its1H-NMR and13C-NMR data were identical with those reported in the literature (Castro et al, 1986). Compound 6 was identified as 4′-O-methylpreglabridin.

3′-Hydroxy-4′-O-methylglabridin (7) White oil; C21H22O5;1H-NMR (Acetone-d6, 400 MHz)δ: 6.85 (1H, d,J= 8.2 Hz, H-5), 6.65 (1H, d,J= 2.3 Hz, H-1″), 6.63 (1H, d,J= 2.3 Hz, H-6′), 6.5 (1H, d,J= 8.6 Hz, H-5′), 6.31 (1H, d,J= 8.2 Hz, H-6), 5.64 (1H, d,J= 9.9 Hz, H-2″), 4.36 (ddd, 1H,J= 2.1, 3.4, 10.3 Hz, H-2a), 4.04 (t, 1H,J= 10.2 Hz, H-2b), 3.81 (3H, s, -OCH3), 3.51 (m, 1H, H-3), 3.04 (dd, 1H,J= 11.1, 15.6 Hz, H-4b), 2.83 (ddd, 1H,J= 1.8, 5.1, 15.7 Hz, H-4a), 1.38 (6H, s, H-4″, 5″);13C-NMR (Acetone-d6, 100 MHz)δ151.9 (s, C-7), 149.8 (s, C-9), 146.9 (s, C-4′), 143.5 (s, C-2′), 133.4 (s, C-3′), 129.3 (d, C-5), 128.7 (d, C-2″), 120.6 (s, C-1′), 116.9 (d, C-6′), 116.8 (d, C-1″), 114.6 (s, C-10), 109.6 (s, C-8), 108.4 (d, C-6), 102.9 (d, C-5′), 75.2 (s, C-3″), 69.9 (t, C-2), 55.4 (q, -OCH3), 32.0 (d, C-3), 30.2 (t, C-4), 27.1 (q, C-4″), 26.9 (q, C-5″). Compound 7 was identified as 3′-hydroxy-4′-O-methylglabridin by comparison of the1H-NMR and13C-NMR data with those reported in the literature (Kinoshita et al, 1996).

4′-O-Methylglabridin (8) White oil; C21H22O4;1H-NMR (CDCl3, 400 MHz)δ: 7.20 (1H, d,J= 8.7 Hz, H-5), 7.01 (1H, d,J= 8.7 Hz, H-6′), 6.85 (1H, d,J= 8.3 Hz, H-1″), 6.63 (1H, d,J= 12.5 Hz, H-5′), 6.39 (1H, d,J= 8.2 Hz, H-6), 6.34 (1H, d,J= 2.4 Hz, H-3′), 5.56 (1H, d,J= 9.8 Hz, H-2″), 4.37 (1H, ddd,J= 10.4, 3.3, 2.0 Hz, H-2a), 4.02 (1H, t,J= 10.4 Hz, H-2b), 3.89 (6H, s, -OCH3), 3.47 (1H, overlap, H-3), 3.00 (1H, dd,J= 10.9, 15.7 Hz, H-4b), 2.89 (1H, dd,J= 15.7, 5.3 Hz, H-4a), 1.45 (3H, s, H-4″), 1.44 (3H, s, H-5″);13C-NMR (CDCl3, 100 MHz)δ: 151.8 (s, C-4′), 149.8 (s, C-2′), 145.7 (s, C-7), 142.2 (s, C-9), 132.2 (d, C-6′), 129.2 (d, C-5), 128.9 (d, C-2″), 120.9 (s, C-1′), 117.7 (d, C-1″), 117.0 (s, C-10), 114.4 (s, C-8), 109.9 (d, C-6), 108.6 (d, C-5′), 102.6 (d, C-3′), 75.6 (s, C-3″), 69.9 (t, C-2), 56.1 (q, -OCH3), 32.0 (t, C-4), 30.4 (t, C-3), 27.8 (q, C-4″), 27.5 (q, C-5″). Its1H-NMR and13C-NMR data were in accordance with those reported in the literature (Kinoshita et al, 1996). Therefore, Compound 8 was identified as 4′-O-methylglabridin.

8-Prenyl-phaseollinisoflavan (9) Yellow oil; C25H28O4;1H-NMR (CDCl3, 400 MHz)δ: 6.90 (1H, d,J= 8.2 Hz, H-5), 6.81 (1H, d,J= 8.2 Hz, H-6′), 6.64 (1H, d,J= 10.0 Hz, H-1″), 6.49 (1H, d,J= 8.7 Hz, H-6), 6.34 (1H, d,J= 8.2 Hz, H-5′), 5.54 (1H, d,J= 9.8 Hz, H-2″), 5.28 (1H, m, H-2?), 4.35 (1H, ddd,J= 9.8, 3.2, 2.1 Hz, H-2a), 4.08 (1H, dd,J= 9.8, 9.8 Hz, H-2b), 3.66 (1H, m, H-3), 3.34 (2H, d,J= 6.8 Hz, H-1?), 2.94 (1H, ddd,J= 15.4, 5.5, 2.0 Hz, H-4a), 2.72 (1H, m, H-4b),1.81 (3H, s, H-5?), 1.74 (3H, s, H-4?), 1.46 (6H, s, H-4″, 5″);13C-NMR (CDCl3, 100 MHz)δ: 159.4 (s, C-7), 157.8 (s, C-9), 154.0 (s, C-2′), 153.2 (s, C-4′), 131.1 (s, C-3?), 131.0 (d, C-2″), 128.9 (d, C-5), 127.9 (d, C-6′), 127.1 (d, C-2?), 124.3 (s, C-1′), 122.0 (d, C-1″), 121.3 (s, C-10), 116.5 (s, C-8), 116.0 (s, C-3′), 111.1 (d, C-6), 109.4 (d, C-5′), 79.6 (d, C-3″), 71.8 (t, C-2), 44.2 (d, C-3), 32.0 (t, C-4), 29.7 (q, C-4″), 29.7 (q, C-5″), 27.7 (q, C-4?), 22.7 (t, C-1?), 19.2 (q, C-5?). Compound 9 was identified as 8-prenyl-phaseollinisoflavan by comparison of the1H-NMR and13C-NMR data with those reported in the literature (Kinoshita et al, 1996).

Xambioona (10) Yellow powder; C25H24O4;1H-NMR (CDCl3, 400 MHz)δ: 7.74 (1H, d,J= 8.7 Hz, H-5), 7.20 (1H, dd,J= 2.1, 8.3 Hz, H-6′), 7.08 (1H, d,J= 2.1 Hz, H-2′), 6.81 (1H, m, H-5′), 6.64 (1H, d,J= 14.0 Hz, H-α), 6.49 (1H, d,J= 8.7 Hz, H-6), 6.34 (1H, d,J= 9.8 Hz, H-α′), 5.66 (1H, d,J= 9.8 Hz, H-β), 5.56 (1H, d,J= 10.0 Hz, H-β′), 5.36 (1H, dd,J= 2.7, 13.2 Hz, H-2), 3.01 (1H, m, H-3b), 2.79 (1H, dd,J= 2.9, 16.8 Hz, H-3a), 1.46 (12H, s, 4×CH3);13C-NMR (CDCl3, 100 MHz)δ: 191.0 (s, C-4), 159.6 (s, C-9), 157.8 (s, C-7), 153.3 (s, C-4′), 131.3 (d, C-5), 131.1 (s, C-1′), 128.8 (d, C-6′), 127.9 (d, C-β′), 127.1 (d, C-β′), 124.3 (d, C-2′), 122.0 (d, C-α), 121.3 (s, C-3′), 116.5 (d, C-5′), 116.0 (d, C-α′), 114.7 (s, C-8), 111.1 (d, C-6), 109.4 (s, C-10), 79.6 (d, C-2), 77.5 (s, 2×-Me2C), 44.1 (t, C-3), 28.4 (q, C-CH3), 28.2 (q, C-CH3), 28.1 (q, 2×C-CH3). These data are consistent with the literature values (Mizuno et al, 1989). Therefore, Compound 10 was identified as xambioona.

Glabrol (11) Yellow oil;C25H28O4;1H-NMR (CDCl3, 400 MHz)δ: 7.76 (1H, d,J= 8.7 Hz, H-5), 7.38 (1H, s, H-2′), 7.17 (1H, d,J= 2.5 Hz, H-6′), 6.67 (1H, d,J= 8.1 Hz, H-5′), 6.56 (1H, d,J= 8.6 Hz, H-6), 5.33 (2H, dd,J= 2.4, 13.2 Hz, H-2), 5.27 (2H, m, H-2″, 2?), 3.75 (2H, m, H-1″, 1?), 3.34 (1H, dd,J= 8.5, 10.6 Hz, H-3b), 2.82 (1H, dd,J= 16.8, 2.9 Hz, H-3a), 1.62 (6H, s, H-4″, 5″), 1.61 (6H, s, H-4?, 5?);13C-NMR (CDCl3, 100 MHz)δ: 191.5 (s, C-4), 161.4 (s, C-7), 160.7 (s, C-9), 144.5 (s, C-4′), 131.8 (s, C-1′), 131.1 (s, C-3″, 3?), 126.5 (d, C-6′), 121.9 (d, C-5), 121.1 (d, C-2′), 121.1 (d, C-2″, 2?), 115.5 (s, C-10), 114.9 (d, C-6), 114.5 (s, C-3′), 112.9 (d, C-5′), 110.5 (s, C-8), 79.4 (d, C-2), 44.0 (t, C-3), 29.2 (t, C-1?), 25.8 (q, C-5″, 5?), 22.3 (t, C-1″), 17.9 (q, C-4″, 4?). The1H-NMR and13C-NMR data above were identical with those reported in the literature (Cho et al, 2012). Thus, Compound 11 was identified as glabrol.

Glyasperin H (12) Yellow oil; C22H24O5;1H-NMR (CDCl3, 400 MHz)δ: 6.83 (1H, d,J= 4.5 Hz, H-1″), 6.65 (1H, d,J= 8.6 Hz, H-6′), 6.63 (1H, d,J= 9.2 Hz, H-5′), 6.38 (1H, d,J= 7.0 Hz, H-6), 5.58 (1H, d,J= 11.8 Hz, H-2″), 4.35 (1H, d,J= 8.0 Hz, H-2a), 3.99 (1H, d,J= 9.2 Hz, H-2b), 3.89 (6H, s, 2×OCH3), 3.54 (1H, m, H-3), 2.92 (1H, d,J= 11.1 Hz, H-4b), 2.84 (1H, d,J= 15.8 Hz, H-4a), 1.43 (3H, s, H-5″), 1.42 (3H, s, H-4″), 7.74 (1H, d,J= 8.7 Hz, H-5);13C-NMR (CDCl3, 100 MHz)δ: 151.9 (d, C-7), 149.7 (s, C-9), 146.6 (s, C-4′), 145.3 (s, C-2′), 138.7 (s, C-3′), 129.2 (s, C-5), 129.0 (d, C-2″), 127.5 (s, C-1′), 117.0 (d, C-6′), 116.9 (d, C-1″), 114.4 (s, C-10), 109.9 (s, C-8), 108.7 (d, C-6), 106.5 (d, C-5′), 75.6 (s, C-3″), 70.6 (t, C-2), 61.1 (q, 2′-OCH3), 56.2 (q, 4′-OCH3), 31.6 (d, C-3), 31.6 (t, C-4), 27.8 (q, C-5″), 27.5 (q, C-4″). Compound 12 was identified as glyasperin H by comparison of the1H-NMR and13C-NMR data with those reported in the literature (Sairafianpour et al, 2002).

Methylnissolin (13) White oil; C17H16O5;1H-NMR (CD3OD, 400 MHz)δ: 7.47 (1H, d,J= 8.5 Hz, H-1), 7.01 (1H, d,J= 4.2 Hz, H-7), 6.66 (1H, d,J= 2.2 Hz, H-8), 6.55 (1H, dd,J= 8.2, 2.2 Hz, H-2), 6.48 (1H, d,J= 8.7 Hz, H-4), 5.57 (1H, d,J= 6.2 Hz, H-11a), 4.28 (1H, dd,J= 9.6, 3.4 Hz, H-6e), 3.84 (3H, s, 9-OCH3), 3.82 (3H, s, 10-OCH3), 3.81 (1H, m, H-6a), 3.33 (1H, m, H-6);13C-NMR (CD3OD, 100 MHz)δ: 158.6 (s, C-3), 156.5 (s, C-4a), 154.8 (s, C-9), 152.8 (s, C-11b), 131.8 (s, C-10), 129.8 (d, C-1), 122.0 (s, C-6b), 118.5 (d, C-7), 110.3 (s, C-1a), 104.8 (d, C-2), 104.2 (d, C-8), 102.8 (d, C-4), 78.9 (d, C-11a), 66.0 (t, C-6), 61.0 (q, -OCH3), 55.5 (q, -OCH3), 39.8 (d, C-6a). Compound 13 was identified as methylnissolin by comparison of the1H-NMR and13C-NMR data with the data reported in the literature (Lee et al, 2008).

Phthalic acid isodibutyl ester (14) Yellow powder; C16H22O4;1H-NMR (CDCl3, 400 MHz)δ: 7.74 (2H, m, H-3, 6), 7.53 (2H, m, H-4, 5), 4.10 (2H, d,J= 7.2 Hz, H-1′), 2.04 (1H, m, H-2′), 0.99 (6H, d,J= 7.2 Hz, H-1″, 3′);13C-NMR (CDCl3, 100 MHz)δ: 167.6 (s, C-α), 132.3 (s, C-2), 132.3 (s, C-1), 130.8 (d, C-6), 130.8 (d, C-3), 128.7 (d, C-5), 128.7 (d, C-4), 71.8 (t, C-1′), 29.7 (q, C-2′), 19.2 (q, C-3′), 19.2 (q, C-4′). Its1H-NMR and13C-NMR data were identical with those reported in the literature (Zhang et al, 2003). So, Compound 14 was identified as hthalic acid isodibutyl ester.

Butul isobutyl phthalate (15) Yellow oil; C16H22O4;1H-NMR (CDCl3, 400 MHz)δ: 7.74 (2H, m, H-3, 6), 7.53 (2H, m, H-4, 5), 4.10 (2H, d,J= 7.2 Hz, H-1′), 2.04 (1H, m, H-2′), 0.99 (6H, d,J= 7.2 Hz, H-1″, 3′);13C-NMR (CDCl3, 100 MHz)δ: 167.8 (s, C-α), 132.9 (s, C-1, 2), 130.9 (d, C-4, 5), 128.8 (d, C-3, 6), 71.8 (t, C-1′), 67.7 (t, C-1″), 29.7 (t, C-2′), 27.7 (d, C-2″), 19.2 (q, C-3″), 18.5 (t, C-3′), 14.1 (q, C-4′). These data are consistent with the literature values (Liu et al, 2011), and Compound 15 was therefore identified as butul isobutyl phthalate.

β-Sitosterol (16) White powder. The compound was developed withβ-sitosterol standard on co-TLC experiments eluted with different solvent systems, and they had same Rfvalues. Therefore, it was identified asβ-sitosterol.

Daucosterol (17) White powder. This compound was identified by co-TLC experiments and it showed the same Rfvalues with daucosterol standard in different develop systems. Therefore, it was determined as daucosterol.

Oleanic acid (18) White powder. By co-TLC experiments, it was identified as oleanic acid due to the same Rfvalues with oleanic acid standard in different elution systems.

(2S,3S,4R,9E)-1,3,4-Trihydroxy-2- [(2′R)-2′-hydroxytetracosanoylamino]-9-octadecene (19) White powder; C42H83O5N; EI-MS: 681 [M]+;1H-NMR (CD3OD, 400 MHz)δ: 8.56 (1H, d,J= 8.7 Hz, NH), 5.52 (2H, m, H-9 and H-10), 5.08 (1H, m, H-2), 4.60 (1H, dd,J= 7.5, 3.6 Hz, H-2′), 4.47 (1H, dd,J= 10.8, 4.8 Hz, H-1a), 4.41 (1H, dd,J= 10.8, 4.6 Hz, H-1b), 4.32 (1H, dd,J= 6.2, 5.1 Hz, H-3), 4.26 (1H, m, H-4), 2.15-2.18 (4H, m, H-5a, H-8a, H-9a and H-3′a), 1.94-2.05 (5H, m, H-5b, H-8b, H-9b, H-3′b and H-4′a), 1.71-1.77 (3H, m, H-6a, H-6b and H-4′b), 1.26-1.32 (methylene band), 0.87 (6H, brt,J= 7.0 Hz, H-18 and H-24′);13C-NMR (CD3OD, 100 MHz)δ: 175.2 (s, C-1′), 131.0 (d, C-9 or C-10), 130.8 (d, C-9 or C-10), 77.0 (d, C-3), 73.0 (d, C-4), 72.6 (d, C-2′), 62.1 (t, C-1), 53.1 (d, C-2), 35.8 (t, C-3′), 34.0 (t, C-5), 33.5 (t, C-8), 33.1 (t, C-11), 32.3 (t, C-16′ and C-22′), 29.6-30.4 (methylens), 26.9 (t, C-4′), 26.0 (t, C-6), 23.1 (t, C-17 and C-23′), 14.4 (q, C-18 and C-24′). Compound 19 was identified as (2S, 3S, 4R, 9E)-1, 3, 4-trihydroxy-2- [(2′R)-2′-hydroxytetracosanoylamino]-9-octadecene by comparison of the1H-NMR and13C-NMR data above with those reported in the literature (Su et al, 2002).

ALI MS, ALI MI, ONOCHA PA,et al, 2011. Bis-Sigmodiol: a new prenylflavanone dimer fromErythrinasigmoideaHua (Fabaceae) of Nigeria [J]. J Asian Nat Prod Res, 13:182-187.

CASTRO O, LOPEZ J, VERGARA A. 1986. Isoflavans and a stilbene from wood of the decay-resistant tropical treeDiphysarobinioides[J]. J Nat Prod, 49:680-683.

CHINA FLORA EDITORIAL BOARD, CHINESE ACADEMY OF SCIENCE, 1993. The Flora of China [M]. Beijing: Science Press:94.

CHO S, PARK JH, PAE AN, 2012. Hypnotic effects and GABAergic mechanism of licorice (Glycyrrhizaglabra) ethanol extract and its major flavonoid constituent glabrol [J]. Bioorg Med Chem, 20:3493-3501.

(Continueonpage1352)(Continuefrompage1388)

KINOSHITA T, KAJIYAMA K, HIRAGA Y, et al, 1996. Isoflavan derivatives fromglycyrrhizaglabra(licorice) [J]. Heterocycles, 43:581-588.

KUNMING INSTITUTE OF BOTANY,CHINESE ACADEMY OF SCIENCE, 2006. Flora of Yunnan [M]. Beijing: Science Press: 733.

LEE EJ, YEAN MH, JUNG HS, et al, 2008. Phytochemical studies onAstragalusroot (2)-flavonoids and a lignan [J]. Natl Prod Sci, 14:131-137.

LIU M, ZHANG W, QIU L, et al, 2011. Synthesis of butyl-isobutyl-phthalate and its interaction with α-glucosidaseinvitro[J]. J Biochem, 1:27-33.MALI RS, KULKARNI-JOSHI P, 1998. Synthesis of 6-prenylpyranoflavanones: Total synthesis of (+/-)-maxima flavanone A [J]. Ind J Chem, Section B: Org Chem Incl Med Chem, 38:596-599.MIZUNO M, TAMURA KI, TANAKA T, et al, 1989. Six flavanones from the roots ofEuchrestaformosana[J]. Phytochemistry, 10:2811-2812.

RYU HW, LEE JH, KANG JE, et al, 2012. Inhibition of xanthine oxidase by phenolic phytochemicals fromBroussonetiapapyrifera[J]. J Kor Soc Appl Biol Chem, 55:587-594.

SAIRAFIANPOUR M, KAYSER O, CHRISTENSEN J, et al, 2002. Leishmanicidal and antiplasmodial activity of constituents ofSmirnowiairanica[J]. J Nat Prod, 65:1754-1758.

SU BN, MISICO R, PARK EJ, et al, 2002. Isolation and characterization of bioactive principles of the leaves and stems ofPhyaslisphiladelphica[J]. Tetrahedron, 58:3453-3466.SUH H, LEE S,KIM N, et al, 1999. Syntheses of (+/-)-shinflavanone and its structural analogues as potent inhibitors of bone resorption pits formation [J]. Bioorg Med Chem Lett, 9:1433-1436.SUTTHIVAIYAKIT S, THONGNAK O, LHINHATRAKOOL T, et al, 2009. Cytotoxic and antimycobacterial prenylated flavonoids from the roots ofEriosemachinense[J]. J Nat Prod, 72:1092-1096.ZHANG W, LOU HX, LI GY, et al, 2003. A new triterpenoid fromEntodonokamuraebroth [J]. J Asian Nat Prod Res, 3:189-195.

2015-07-29

2015-12-20

國家自然科學(xué)基金(31170313) [Supported by the National Natural Science Foundation of China (31170313)]。

韓冰洋(1987-),男,湖北襄陽人,碩士,主要從事藥用植物研究,(E-mail) hby31510@163.com。

類芒齒黃芪地下部分化學(xué)成分研究

韓冰洋, 張 宇, 田新雁, 肖朝江, 董 相, 姜 北*

( 大理大學(xué) 藥物研究所, 云南 大理 671000 )

為了解類芒齒黃芪(Astragaluscamptodontoides)主要化學(xué)成分,從其地下部分甲醇提取物的乙酸乙酯部位分離出19個(gè)單體化合物,通過現(xiàn)代波譜分析及理化性質(zhì)等手段分別鑒定為異補(bǔ)骨脂黃酮 (1),4′-hydroxyisolonchocarpin (2),5-去氧山豆根黃酮(3),shinflavanone (4),khonklonginols H (5),4′-O-methylpreglabridin (6),3′-hydroxy-4′-O-methylglabridin (7),4′-O-methylglabridin (8),8-prenyl-phaseollinisoflavan (9),xambioona (10),光甘草酚 (11),粗毛甘草素H (12),methylnissolin (13),鄰苯二甲酸異丁酯 (14),鄰苯二甲酸丁酯異丁酯 (15),β-谷甾醇(16),胡蘿卜苷(17),齊墩果酸(18),(2S,3S,4R,9E)-1,3,4-trihydroxy-2- [(2′R)-2′- hydr-oxytetracosanoylamino]-9-octadecene (19)?;衔?~19均為首次從該植物中獲得,化合物1~7為首次從黃芪屬(Astragalus)植物中分離得到。

類芒齒黃芪, 地下部分, 化學(xué)成分, 分離與鑒定

10.11931/guihaia.gxzw201505031

*通訊作者: 姜北,博士,教授,主要從事天然藥物、民族醫(yī)藥研究,(E-mail) dalinorthjiang@163.com。

Q946.8 Document code: A Article ID: 1000-3142(2016)11-1382-08

韓冰洋, 張宇, 田新雁, 等. 類芒齒黃芪地下部分化學(xué)成分研究 [J]. 廣西植物,2016,36(11):1382-1388HAN BY, ZHANG Y, TIAN XY, et al. Chemical constituents from underground part ofAstragaluscamptodontoides[J]. Guihaia, 2016, 36(11):1382-1388

猜你喜歡
黃酮植物
桑黃黃酮的研究進(jìn)展
一測多評法同時(shí)測定腦心清片中6種黃酮
中成藥(2018年11期)2018-11-24 02:57:00
HPLC法同時(shí)測定固本補(bǔ)腎口服液中3種黃酮
中成藥(2017年8期)2017-11-22 03:19:40
MIPs-HPLC法同時(shí)測定覆盆子中4種黃酮
中成藥(2017年10期)2017-11-16 00:50:13
植物的防身術(shù)
把植物做成藥
哦,不怕,不怕
DAD-HPLC法同時(shí)測定龍須藤總黃酮中5種多甲氧基黃酮
中成藥(2017年4期)2017-05-17 06:09:50
將植物穿身上
植物罷工啦?
主站蜘蛛池模板: 日韩成人午夜| 久久99精品国产麻豆宅宅| 亚洲欧美一区二区三区蜜芽| 露脸真实国语乱在线观看| 亚洲国产成人自拍| 97狠狠操| 2020精品极品国产色在线观看| 亚洲人妖在线| 日韩精品一区二区深田咏美| a在线观看免费| 色综合天天综合中文网| 露脸一二三区国语对白| 亚洲欧美另类久久久精品播放的| 青青操国产| 免费毛片视频| 国产成本人片免费a∨短片| 播五月综合| 一级毛片不卡片免费观看| 日韩在线视频网| 高清国产在线| 亚洲欧美国产五月天综合| 天天摸天天操免费播放小视频| 成人午夜精品一级毛片| 久久精品丝袜| 这里只有精品在线| 2021精品国产自在现线看| 青青操视频在线| 欧美亚洲一区二区三区在线| 呦系列视频一区二区三区| 2021国产精品自拍| 在线不卡免费视频| 欧美69视频在线| 91精品人妻一区二区| 2020精品极品国产色在线观看 | 日韩欧美国产另类| 亚洲成网777777国产精品| 国产99免费视频| 99无码中文字幕视频| 91成人免费观看| 久久亚洲欧美综合| 国产一级二级在线观看| 欧美日韩动态图| 国产正在播放| 无码'专区第一页| 中文字幕伦视频| 萌白酱国产一区二区| 久久窝窝国产精品午夜看片| 国产又大又粗又猛又爽的视频| 在线观看视频99| 国产在线观看91精品亚瑟| 亚洲VA中文字幕| 中文字幕在线欧美| 日韩欧美中文字幕在线韩免费| аⅴ资源中文在线天堂| 中文字幕啪啪| 国产一级α片| 丁香五月亚洲综合在线| 免费亚洲成人| av一区二区三区高清久久| 亚洲无限乱码| 日韩欧美中文在线| 91成人在线免费视频| 国产99在线| 亚洲天堂日韩av电影| 99热最新网址| 国产精品视频导航| 中文纯内无码H| 三级国产在线观看| 无码精品国产dvd在线观看9久 | 免费一级成人毛片| 日韩精品免费一线在线观看| 区国产精品搜索视频| 中文字幕在线视频免费| 91久久偷偷做嫩草影院电| 国产成人亚洲综合a∨婷婷| 色网站在线视频| 九九九精品成人免费视频7| 亚洲无码91视频| 毛片网站观看| 思思热精品在线8| 精品人妻系列无码专区久久| 亚洲区视频在线观看|