劉廣龍,朱端衛,周易勇,曹秀云,宋春雷,華玉妹,趙建偉(.華中農業大學資源與環境學院,湖北 武漢 430070;.中國科學院水生生物研究所,淡水生態與生物技術國家重點實驗室,湖北 武漢 43007)
硝酸根對有機磷光解釋放磷酸根的影響
劉廣龍1,2,朱端衛1,周易勇2*,曹秀云2,宋春雷2,華玉妹1,趙建偉1(1.華中農業大學資源與環境學院,湖北 武漢 430070;2.中國科學院水生生物研究所,淡水生態與生物技術國家重點實驗室,湖北 武漢 430072)
為了解硝酸根的光化學活性對水體中有機磷間接光解釋放磷酸根過程的影響,采用室內模擬實驗,研究了在草甘膦光解轉化為磷酸根中的作用及濃度對該反應速度的影響,并以甲醇為羥基自由基(·OH)猝滅劑,印證了對富營養化湖泊水體中有機磷光解釋放磷的作用.結果表明,在紫外光(UV)照射下,草甘膦可以直接光解轉化為磷酸根,其磷酸根的釋放量隨著溶液初始pH和草甘膦濃度的增加而增大.加入處理,光照60min后,磷酸根的釋放量由空白處理的0.05mg/L增加到了0.43mg/L.添加Fe3+可促進這一過程,而添加腐殖酸(HA)和碳酸氫根則可以顯著抑制磷酸根的釋放.在湖泊水體中,添加草甘膦,磷酸根的釋放量顯著高于空白,而增加湖水中濃度時,磷酸根的釋放量則進一步增大.在湖水/草甘膦/體系中添加·OH猝滅劑甲醇后,磷酸根的釋放量顯著降低.可見在紫外光條件下,的光化學作用對有機磷釋放磷酸根過程具有重要影響.
有機磷;磷酸根;硝酸根;光降解;自由基
湖水中有機磷通過生物礦化和化學分解轉化為無機磷,是在浮游藻類大規模持續生長時,水體磷補償的一個重要途徑[1-2].一方面,湖泊水體中的磷可通過微生物或酶作用礦化為溶解態反應性磷[3-4],如在風浪擾動下太湖再懸浮沉積物中磷的轉化過程中,懸浮顆粒物中有機磷生物礦化分解所釋放的溶解態磷酸鹽被認為是太湖內源磷動態釋放量的最主要來源[5].另一方面,有機磷的化學分解在其形態轉化過程中也起著重要作用[6-7].最近研究證實,再懸浮沉積物若暴露于光照下會釋放出水溶態營養鹽[7-8],表明光化學分解可能是一種潛在的營養元素遷移轉化機制.
研究發現,經過高壓滅菌處理的潮間帶沉積物(粒徑<30μm)和經過濾除去微生物的海水,在光照條件下沉積物溶解態磷酸鹽釋放通量顯著高于黑暗條件下的值.由于排除了微生物的影響,可以認為海水中溶解態磷酸鹽的增量來源于沉積物中有機磷在持續光照下的光化學分解[10].后續工作證實,富含有機質的沉積物在再懸浮條件下,經光照后更易釋放出溶解態磷酸鹽[11]. 在水環境中,部分有機磷可以直接吸收太陽能而進行分解釋放溶解態磷酸鹽[12-13],其與有機磷結構和形態具有直接相關性.同時,自然水體中的天然光敏物質,如、Fe3+、溶解性有機質(DOM)等,可以在太陽光照射下,誘導產生羥基自由基、超氧陰離子自由基、單線態氧等活性氧物質,進而氧化降解水體的有機物[14].例如,紫外光照射下鐵-草酸絡合物可以氧化降解草甘膦,使其轉化為磷酸根[15].但對自然淺水湖泊而言,水體有機磷光解對溶解態磷酸鹽負荷的貢獻程度可能與有機磷光解的難易程度及其驅動力有關.然而,相關過程還缺乏深入研究.
1.1 試劑
草甘膦為色譜純,購自Sigma-Aldrich(美國);腐植酸(humic acid,HA),購買自國際腐殖質協會;硝酸鈉、氯化鐵、鹽酸、氫氧化鈉、甲醇均為分析純,購買自國藥集團(上海).試驗用的純水由優普系列超純水機(UPH-I-40L)提供.
1.2 實驗裝置
光解實驗在PhchemIII型旋轉式光化學反應儀(北京紐比特科技有限公司)中進行.反應器主要由一個雙層石英冷肼與周圍12支石英管構成,光源為300W高壓汞燈,置于石英冷肼內.12支裝有反應溶液的具塞石英管(200mm×□50mm, 75mL)垂直固定在冷肼外側.將配制好的溶液置于石英反應管中,按照不同要求進行光照試驗.實驗過程中通過光功率測定儀(北京紐比特科技有限公司)測得平均光功率為1.30mW/cm2.
1.3 實驗方法

表1 南湖上覆水基本理化指標Table 1 The physicochemical of overlying water of Nanhu Lake
2.1 pH值對草甘膦直接光解釋放磷酸根的影響

圖1 初始pH對草甘膦直接光解釋放磷酸根的影響Fig.1 The effect of pH on the phophsate release from glyphosate photooxidation
一般而言,環境中的有機物光化學轉化主要為直接光解和間接光解[20].在湖泊水體中,部分有機磷本身可以直接吸收太陽能而進行分解反應,其與有機磷結構和形態具有直接相關性[21].且水體 pH對這一過程具有重要影響,其主要通過改變有機物分子在水溶液中的存在形態,從而影響其吸收光譜特性,最終影響光化學轉化過程
[22].本研究首先模擬水中初始 pH對草甘膦直接光解釋放磷酸根影響的結果,如圖1所示,當草甘膦初始濃度為5mg/L,初始pH分別為2, 4, 7, 8, 10時.光照反應60min后,磷酸根濃度分別達到了0.04, 0.05, 0.08, 0.09, 0.21mg/L,可以看出隨著水體 pH的增高,草甘膦光解釋放磷酸根的速率顯著增快.Manassero等[23]研究草甘膦在H2O2/UVC體系中的降解過程中發現,隨著反應體系 pH的升高,草甘膦的降解速度顯著加快.這些研究結果均以表明,pH升高有利于草甘膦光解釋放磷酸根.在富營養化湖泊水體中,隨著藻類的大量生長,湖水 pH值顯著提升,這一過程則可顯著提升部分有機磷直接光解釋放磷酸根速度,從而增加了湖泊水體中溶解態反應磷的含量.
2.2 草甘膦初始濃度對其光解釋放磷酸根的影響水體中有機磷含量對其直接光解釋放磷酸根的濃度具有重要影響[21].為探討草甘膦初始濃度對其光解釋放的影響,本研究設置草甘膦初始濃度分別為1, 5, 20mg/L,溶液pH為7,且對初始濃度為1mg/L的處理進行進行暗反應實驗.由圖2可知,在草甘膦初始濃度為1mg/L的處理中,由于樣品的水解及保存等原因,初始樣品均可以測得痕量的磷酸根.但是在暗反應60min后,反應體系中磷酸根濃度基本不變,表明草甘膦在暗反應條件下具有較好的穩定性.但是經光照反應后,反應體系中磷酸根濃度顯著提升.紫外光照射60min后,草甘膦的初始濃度為1, 5, 20mg/L體系中,磷酸根濃度分別為0.03, 0.05, 0.08mg/L,即草甘膦濃度越高,經光照直接分解產生的磷酸根含量也就越多.另,草甘膦初始濃度 20mg/L與1mg/L相比,其濃度是后者20倍,經紫外光照射后,前者磷酸根產量僅為后者的 2.5倍左右.這一結果同樣表明,在自然環境中,少量有機磷即可在光照條件下快速釋放大量溶解態磷酸根.湖泊上覆水中溶解態有機磷的含量一般較低,如實驗所用的南湖上覆水中溶解態有機磷的含量為0.12mg/L(表 1).但對淺水湖泊而言,當發生再懸浮過程時,其上覆水中溶解態有機磷的含量急劇增大.這部分溶解態有機磷光解釋放磷酸根過程尚未見報道,值得深入研究.

圖2 草甘膦初始濃度對其直接光解釋放磷酸根的影響Fig.2 The effect of initial concentration of glyphosate onthe phophsate release from glyphosate photooxidation
2.3 硝酸根對草甘膦間接光解釋放磷酸根的影響
已有研究表明,湖泊水體中的有機磷可以經間接光解釋放磷酸根[24].作為自然水體中廣泛存在的光敏物質,能夠經光誘導產生羥基自由基(·OH),從而氧化降解水體中的有機物.一般而言,天然水中濃度為10-5~10-3mol/L[25].本文選取了硝酸根濃度分別為0.2, 2, 20, 200mg/L,反應體系中草甘膦濃度為5mg/L,pH為7,進行紫外光照射下硝酸根濃度對草甘膦間接光解釋放磷酸根的實驗.如圖 3所示,紫外光照射 60min后,濃度為0.2, 2, 20, 200mg/L的體系中,磷酸根濃度分別為0.10, 0.31, 0.43, 0.22mg/L,均高于同等濃度草甘膦直接光解產生的磷酸根濃度(0.05mg/L),說明在存在下,可以顯著加快草甘膦由有機磷向無機磷的轉化過程.這一結果主要是由于能夠吸收光子生成·OH,·OH氧化降解草甘膦生成磷酸根所致,其主要過程如下[17-19]:

-對·OH的淬滅應該是反應體系中 NO3-濃度升高而磷酸根產量降低的主要原因.

圖3 硝酸根濃度為草甘膦間接光解釋放磷酸根的影響Fig.3 The effect of initial concentration ofon the phophsate release from glyphosate photodecomposition by
2.4 Fe3+對硝酸根驅動草甘膦釋放磷酸根的影響
Fe3+在天然水體中的濃度約為1.2~ 16.8μmol/ L,其主要以Fe3+, Fe(OH), Fe(OH)2+和Fe2(OH)等形式存在,其在湖泊水體磷循環過程起著十分重要的作用[29].一方面,Fe3+可與溶解態反應磷(SRP)生成不溶復合物而吸附大量的SRP,另外,羥基氧化鐵膠體也可以吸附一定量的SRP,從而減少水體中可利用性磷的含量[30].另一方面,在光照射條件下,Fe3+和羥基氧化鐵膠體,都可以吸收太陽光(λ>290nm)發生反應產生羥基自由基(·OH),進而氧化水體中的有機物.其過程如下[31-32]:

Lesueur等[13]的結果證明,在紫外光照射下,Fe3+可以氧化降解三磷酸、草甘膦和氨甲基磷酸等磷酸酯氧化降解為磷酸根;Chen等[15]研究表明,UV/Fe(III)/oxalate體系也可以實現草甘膦快速降解為磷酸根.據此,本文進一步探討了Fe3+濃度對硝酸根驅動草甘膦釋放磷酸根的影響.反應體系中,濃度為 20mg/L,草甘膦為 5mg/L.如圖4所示,外源加入Fe3+濃度至3, 5, 10mg/L,光照60min后,反應體系中磷酸根濃度顯著增大,其磷酸根濃度分別達到0.83, 0.85, 0.90mg/L,均高于單一/UV體系.在紫外光照射下,Fe3+轉化為 Fe2+(如式(4)所示),消除了 Fe3+與磷酸根反應形成沉淀而減少水體中磷酸根的過程.此外,Fe2+并沒有表現出過度消耗經光照產生的·OH,表現出了 Fe3+存在可以顯著促進 NO3-驅動有機磷向無機磷轉化的現象.此外,當Fe3+濃度為3mg/L時,紫外光照射60min后,其有機磷轉化率已經達到了90%,證明少量Fe3+即可促進有機磷向無機磷的快速光化學轉化.

圖4 Fe3+對硝酸根驅動草甘膦釋放磷酸根的影響Fig.4 The effect of initial concentration ofon the phophsate release from glyphosate photodecomposition by
2.5 腐植酸對硝酸根驅動草甘膦釋放磷酸根的影響
腐植酸(Humic Acid, HA)是動植物殘體經微生物分解和轉化及一系列化學過程所產生的一類有機物質,占土壤和水生態體系中有機質的50%~80%.其可以吸收可見光被激發,經反應形成各種活性氧自由基,包括·OH、1O2及H2O2等,從而誘導有機物發生光化學降解[33]. Thirumavalavan等[34]研究表明,HA 可以實現臺灣河流水體中微囊藻毒素(MC-LR)的快速降解,在254nm UV照射60min后,水體中的MC-LR完全降解.而Kim和Zoh[14]的研究結果證實,隨著溶液中HA濃度的增大,反應體系中的甲基汞降解速率顯著降低.二者實驗結果的差異,主要是由于HA的·OH的“源”和“匯”作用所導致.一方面,HA可以光解生成·OH.而另一方面,HA又可以捕獲·OH進而對其清除.圖5為HA濃度對驅動草甘膦釋放磷酸根的影響.從圖5中可以看出,隨著反應體系中HA濃度的增加,體系中磷酸根產量逐漸降低.不添加HA的體系中,光照60min后,反應體系中的磷酸根濃度達到了0.43mg/L,而添加了2, 4, 6mg/L的HA體系中,經紫外光照射60min后,反應體系中的磷酸根濃度分別為0.27, 0.19, 0.10mg/L,這表明HA對驅動草甘膦光解釋放磷酸根具有顯著的抑制作用,其主要是由于HA與草甘膦競爭由吸收光而產生的·OH,從而抑制了草甘膦向無機磷的轉化過程所致.

圖5 HA對硝酸根驅動草甘膦釋放磷酸根的影響Fig.5 The effect of initial concentration of HA on the phophsate release from glyphosate photodecomposition by
2.6 碳酸氫根對硝酸根驅動草甘膦釋放磷酸根的影響

圖6對硝酸根驅動草甘膦釋放磷酸根的影響Fig.6 The effect of initial concentration ofon the phophsate release from glyphosate photo-decomposition by
2.7 湖水中草甘膦光解釋放磷酸根
為研究湖水中硝酸根對草甘膦光解釋放磷酸根的影響,本研究將草甘膦溶于自然富營養化湖水.分別探討了湖水、湖水/草甘膦及湖水/草甘膦/3個體系光照前后無機磷的含量變化.從表 1中可以看出,實驗所用湖水中濃度為0.56mg/L,為將湖水與實驗室超純水體系中草甘膦光解釋放磷酸根過程進行對比,因此,外源添加使其濃度至 20mg/L.從圖 8可以看出,湖水體系中,光照60min后,磷酸根濃度由0.14mg/L增加至0.16mg/L,其主要是由于湖水中有機磷的光解所致.Southwell 等[10]的工作已經表明沉積物再懸浮過程中,光照可以實現更多磷酸根釋放,其增量主要來源于沉積物中有機磷在持續光照下的光化學分解.在我們的實驗中,經0.7μm濾膜過濾的水樣中仍含有有機磷,其光解釋放磷酸根是湖水體系中磷酸根含量上升的主要原因.在湖水/草甘膦體系中,經 60min光照后,磷酸根濃度由0.15mg/L增加至0.26mg/L,其水體磷酸根濃度高于湖水體系中的0.16mg/L,主要原因是由于草甘膦的光解所致.從純水實驗結果可以看出,草甘膦的直接光解對磷酸根釋放貢獻較低,但是從表 1可以看出,實驗所用湖水中含有和Fe3+等光敏物質,其可以通過光敏作用實現水體中草甘膦的間接光解,進而增加了水體磷酸根的含量.在湖水/草甘膦/體系中,光照 60min后,磷酸根濃度由0.16mg/L增加至0.32mg/L,顯著高于湖水/草甘膦體系,主要是由于外源添加所致,這一結果同樣表明,當水體中含量增加時,可以增大水體磷酸根的光化學釋放.同時,值得注意的是,湖水/草甘膦/體系中磷酸根的釋放量要低于純水處理,這主要是湖水中的 HA和等物質,競爭捕獲了·OH,進而抑制了有機磷的光化學分解過程[35].

圖7 湖水體中硝酸根驅動草甘膦光解釋放磷酸根的影響Fig.7 The effect ofon the phophsate release from glyphosate photo-decomposition in lake water

圖8 甲醇對湖水中硝酸根驅動草甘膦光解釋放磷酸根的影響Fig.8 The effect of methanol on the phophsate release from glyphosate photo-decomposition byin lake water
[1] Yu F, Zou J, Hua Y. Transformation of external sulphate and its effect on phosphorus mobilization in Lake Moshui, Wuhan, China [J]. Chemosphere, 2015,138:398-404.
[2] Goossen J T H, Kloosterboer J G. Determination of phosphates in natural and waste waters after photochemical decomposition and acid hydrolysis of organic phosphorus compounds [J]. Analytical Chemistry, 1978,50:707-711.
[3] Moorleghem C V, Schutter N D, Smolders E, et al. Bioavailability of organic phosphorus to Pseudokirchneriella subcapitata as affected by phosphorus starvation: An isotope dilution study [J]. Water Research, 2013,47:3047-3056.
[4] Zhou Y, Song C, Cao X, et al. Phosphorus fractions and alkaline phosphatase activity in sediments of a large eutrophic Chinese lake (Lake Taihu) [J]. Hydrobiologia 2008,599:119-125.
[5] 范成新,張 路,秦伯強,等.風浪作用下太湖懸浮態顆粒物中磷的動態釋放估算 [J]. 中國科學, 2003,33:760-780.
[6] Gardolinski P C F C, Worsfold P J, McKelvie I D. Seawater induced release and transformation of organic and inorganic phosphorus from river sediments [J]. Water Research, 2004, 38:688-692.
[7] Nowack B. Environmental chemistry of phosphonates [J]. Water Research, 2003,37:2533-2546.
[8] Kieber R J, Whitehead R F , Skrabal S A. Photochemical production of dissolved organic carbon from resuspended sediments [J]. Limnology and Oceanography, 2006,51:2187-2195.
[9] Mayer L M, Schick L L, Krysia S, et al. Photodissolution of particulate organic matter from sediments [J]. Limnology and Oceanography, 2006,51:1064-1071.
[10] Southwell M W, Kieber R J, Mead R N, et al. Effects of sunlight on the production of dissolved organic and inorganic nutrients from resuspended sediments [J]. Biogeochemistry, 2010,98:115-126.
[11] Southwell M W, Mead R N, Luquire C M, et al. Influence of organic matter source and diagenetic state on photochemical release of dissolved organic matter and nutrients from resuspendable estuarine sediments [J]. Marine Chemistry, 2011, 126:114-119.
[12] Nowack B. Environmental chemistry of phosphonates [J]. Water Research, 2003,37:2533-2546.
[13] Lesueur C, Pfeffer M, Fuerhacker M. Photodegradation of phosphonates in water [J]. Chemosphere, 2005,59:685-691.
[14] Kim M, Zoh K. Effects of natural water constituents on thephoto-decomposition of methylmercury and the role of hydroxyl radical [J]. Science of the Total Environment, 2013,49:95-101.
[15] Chen Y, Wu F, Lin Y, et al. Photodegradation of glyphosate in the ferrioxalate system [J]. Journal of Hazardous Materials, 2007,148: 360-365.
[16] Malouki M A, Lavédrine B, Richard C. Phototransformation of methabenthiazuron in the presence of nitrate and nitrite ions [J]. Chemosphere, 2005,60:1523-1529.
[17] Matykiewiczová N, Kurková R, Klánová J, et al. Photochemically induced nitration and hydroxylation of organic aromatic compounds in the presence of nitrate or nitrite in ice [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007,187: 24-32.
[18] Boucheloukh H, Sehili T, Kouachi N, et al. Kinetic and analytical study of the photo-induced degradation of monuron by nitrates and nitrites under irradiation or in the dark [J]. Photochemical Photobiological Sciences, 2012,11:1339-1345.
[19] Liu G, Gong L, Zhou Y, et al./photosensitized degradation of phenol under simulated sunlight [J]. Fresenius Environmental Bulletin, 2015,24:664-669.
[20] 展漫軍,楊 曦,鮮啟鳴,等.雙酚 A在硝酸根溶液中的光解研究[J]. 中國環境科學, 2005,25:487-490.
[21] Sandy E H, Blake R E, Chang S J, et al. Oxygen isotope signature of UV degradation of glyphosate and phosphonoacetate: Tracing sources and cycling of phosphonates [J]. Journal of Hazardous Materials, 2013,260:947-954.
[22] Romero V, Acevedo S, Marco P, et al. Enhancement of Fenton and photo-Fenton processes at initial circumneutral pH for the degradation of the β-blocker metoprolol [J]. Water Research, 2016,88:449-457.
[23] Sindelar H R, Lloyd J, Brown M T, et al. Transformation of dissolved organic phosphorus to phosphate using UV/H2O2[J]. Environmental Progress Sustainable Energy, 2015, DOI: 10.1002/ep.12272.
[24] Rasoulifard M H, Akrami M, Eskandarian M R. Degradation of organophosphorus pesticide diazinon using activated persulfate: Optimization of operational parameters and comparative study by Taguchi's method [J]. Journal of the Taiwan Institute of Chemical Engineers, 2015,57:77-90.
[25] Mack J, Bolton J R. Photochemistry of nitrite and nitrate in aqueous solution: a review [J]. Journal of Photochemistry and Photobiology A: Chemistry, 1999,128:1-13.
[26] 毛 雯,孫榮國,王定勇,等.硝酸根對水體中甲基汞光化學降解的影響 [J]. 環境科學, 2013,34:2218-2224.
[27] Zepp R G, Hoigne J, Bader H. Nitrate-induced photooxidation of trace organic chemicals in water [J]. Environmental Science Technology, 1987,21:443-450
[28] Russi H, Kotzias D, Korte F. Photoinduzierte hydroxylierungsreaktionen organischer chemikalien in natürlichen Gew?ssern - Nitrate als potentielle OH- radikalquellen [J]. Chemosphere, 1982,11:1041-1048.
[29] Lofts S, Tipping E, Hamilton-Taylor J. The chemical speciation of Fe(III) in freshwaters [J]. Aquatic Geochemistry, 2008,14:337-358.
[30] Peng J, Wang B, Song Y, et al. Adsorption and release of phosphorus in the surface sediment of a wastewater stabilizationpond [J]. Ecological Engineering, 2007,31:92-97.
[31] Cheng J, Liang X, Yang S, et al. Photochemical defluorination of aqueous perfluorooctanoic acid (PFOA) by VUV/Fe3+system [J]. Chemical Engineering Journal, 2014,239:242-249.
[32] Ng T, Chow A T, Wong P. Dual roles of dissolved organic matter in photo-irradiated Fe(III)-contained waters [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2014,290:116-124.
[33] Koumaki E, Mamais D, Noutsopoulos C, et al. Degradation of emergingcontaminants from water under natural sunlight: The effect of season, pH, humic acids and nitrate and identification of photodegradation by-products [J]. Chemosphere, 2015,138:675-681.
[34] Thirumavalavan M, Hu Y, Lee J. Effects of humic acid and suspended soils on adsorption and photo-degradation of microcystin-LR onto samples from Taiwan reservoirs and rivers [J]. Journal of Hazardous Materials, 2012,217-218:323-329.
[35] Micó M M, Zapata A, Maldonado M I, et al. Fosetyl-Al photo-Fenton degradation and its endogenous catalyst inhibition [J]. Journal of Hazardous Materials, 2014,265:177-184.
[36] Shimizu N, Ogino C, Dadjour M F, et al. Sonocatalytic facilitation of hydroxyl radical generation in the presence of TiO2[J]. Ultrasonics Sonochemistry, 2008,15:988-994.
Photo-induced phosphate released from organic phosphorus decomposition by nitrate.
LIU Guang-long1,2, ZHU Duan-wei1, ZHOU Yi-yong2*, CAO Xiu-yun2, SONG Chun-lei2, HUA Yu-mei1, ZHAO Jian-wei1(1.College of Resources & Environment, Huazhong Agricultural University, Wuhan 430070, China;2.State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China). China Environmental Science, 2016,36(12):3657~3664
In order to understand the influence of nitrate (NO3-) photochemical activity on the phosphate released from organic phosphorus indirect photolysis degradation, the phosphate released from glyphosate photodegradation by NO3-was investigated in deionised and natural water under UV irradiation. Meanwhile, the methanol was used as the ·OH scavenger to confirm the role of NO3-on the phosphate released from organic phosphorus degradation in the natural eutrophication lakes. The results showed that the phosphate could be released from glyphosate photolysis under UV irradiation and the release amount of phosphate increased with pH and initial concentration of glyphosate increasing under UV light irradiation in deionised water. NO3-adding enhanced the phosphate released from glyphosate photodegradation in comparison with direct photolysis and the concentration of phosphate increased from 0.05mg/L to 0.43mg/L with the 20mg/L NO3-added to the solution under UV irradiation for 60min. The effect of environmental parameters including Fe3+, HCO3-and humic acid on the phosphate released from glyphosate photodegradation by NO3-was also performed. In the presence of Fe3+, the amount of phosphate released from glyphosate photodegradation increased significantly due to photosensitization by reactive species such as hydroxyl radical. The presence of humic acid and HCO3-inhibited phosphate released through a radical scavenging effect. The release amount of phosphate in the natural water with NO3-spiked is higher than that of control and the phosphate released was inhibited when the methanol was added to the reaction system. All these results reveal that NO3-plays an important role in phosphate released from organic phosphorus photodegradation.
organic phosphorus;phosphate;nitrate;photo-decomposition;radicals
X703.5
A
1000-6923(2016)12-3657-08
劉廣龍(1984-),男,山東即墨人,博士,副教授,主要從事水體污染控制與生態修復研究.發表論文20余篇.
2016-04-20
國家自然科學基金項目(41230748,41401547);霍英東青年教師基金(151078);中央高校基本科研業務費資助(2662016PY061);中國博士后基金項目(2013M540619,2015T80855)
* 責任作者, 研究員, zhouyy@ihb.ac.cn