張昌泉,趙冬生,李錢峰,顧銘洪,劉巧泉
?
稻米品質性狀基因的克隆與功能研究進展
張昌泉,趙冬生,李錢峰,顧銘洪,劉巧泉
(揚州大學農學院植物功能基因組學教育部重點實驗室/江蘇省糧食作物現代產業技術協同創新中心,江蘇揚州225009)
水稻是中國重要的糧食作物之一,高產與優質一直是品種改良的主要目標。目前,中國稻米品質表現總體偏低,在一定程度上影響了其市場競爭力。稻米品質屬綜合性狀,是指稻米或稻米相關產品滿足消費者或生產加工需求的各種特性,主要涉及稻米的物理和化學特性,包括精米率、米粒形狀、透明度、蒸煮時間、米飯質地與香味、冷飯質地以及營養成分等指標。通常用碾磨品質、外觀品質、蒸煮與食味品質和營養品質4個方面來評價稻米品質。近10年來,在上述稻米品質性狀相關基因的克隆與功能研究領域已取得了長足的進展。水稻粒形不僅是重要的產量性狀也是碾磨和外觀品質的重要決定因素,目前已克隆了多個粒形相關的QTL和基因。根據粒形相關基因的表型效應可將其分為3類,即伴隨植株矮化的小粒控制基因(第一類,包括、、、和等)、粒形特異基因(第二類,如、、、、、、、、、、和等)和小圓粒基因(第三類,即),其中只有第二類基因具有較好的育種利用價值。堊白是決定稻米外觀品質的首要性狀,同時也會影響碾磨品質。目前盡管已經鑒定了大量QTL,但只有少數QTL被精細定位和克隆,如、、、、、和等主要通過調控胚乳灌漿和儲藏物積累而影響稻米外觀表現。淀粉占精米胚乳干重的90%以上,其組成與結構是決定稻米外觀和蒸煮與食味品質的最重要因素。淀粉的合成是由多基因參與的復雜調控網絡,直接參與淀粉合成的淀粉合成酶類基因的功能已經比較清楚;此外,參與胚乳淀粉代謝的一些轉錄因子如Dull、OsEBP89、OsEBP5、OsRSR1和OsbZIP58等也已被陸續鑒定和克隆。蛋白質是稻米的第二大成分,目前已克隆了眾多的貯藏蛋白編碼基因,并且已鑒定克隆了多個與蛋白質轉運調控有關的基因如、、、、、、和等。賴氨酸是稻米中的第一限制必須氨基酸,通過過量表達富含賴氨酸蛋白(如RLRH1和RLRH2)或調控游離賴氨酸代謝等途徑,均可顯著提高稻米中的賴氨酸含量。稻米香味主要由2-AP決定,目前,已克隆了和等參與2-AP合成調控的基因。在與稻米貯藏有關的脂質代謝方面,已克隆了脂肪酸氧化酶基因、和以及脂質轉運基因。此外,在稻米維生素、花青素和礦物質等合成調控方面也已鑒定克隆了多個重要基因。綜上,稻米各品質性狀都是由多基因控制,并且各性狀間彼此交叉,其遺傳調控非常復雜。本文重點就近年來控制稻米粒形與堊白、蒸煮與食味品質、儲藏蛋白、脂類、維生素與礦質元素等合成與調控相關基因的克隆、等位變異和功能研究進行了綜述,并對重要品質相關基因的育種利用進行了展望,期望為水稻優質育種提供參考。
稻米品質;基因克隆;QTL;等位變異;功能分析
水稻(L.)是中國乃至世界范圍內的重要糧食作物,對保障糧食安全具有舉足輕重的作用。近30年來,中國水稻生產經過高產育種、超高產育種、超級稻育種和綠色超級稻育種等計劃的實施,水稻產量不斷提高,其中,超級稻產量已達到了6 892.5 kg·hm-2的水平[1]。與此同時,對優質、多抗和廣適應性等需求也不斷提高,尤其是隨著大眾消費水平和生活品味的提高,對優質稻米的需求越來越多[2]。目前,中國在水稻品種審定中所涉及的品質指標主要包括碾磨品質中的整精米率、外觀品質中的長寬比、堊白粒率和堊白度以及蒸煮與食味品質中的膠稠度與直鏈淀粉含量。從稻米的加工和商品價值來看,稻米籽粒形態與堊白是最重要的決定因素,從稻米的食用與營養角度來看,胚及胚乳中儲藏物質的組成與比例又是最重要的影響因素。
水稻種子的發育是一個動態過程,主要以胚乳中淀粉和儲藏蛋白的累積為主,同時也涉及到由激素參與的種子形態的調控和其他代謝物的積累[3]。從分子水平看,參與到種子形態外觀調控、淀粉與儲藏蛋白等初級代謝成分的合成調控、以及脂類與香味物質形成等次生代謝物合成調控的基因以及一些miroRNA都會對稻米品質的形成發揮著重要作用[3-4]。此外,一些環境因素如地域、高溫和水肥等差異都對稻米品質有重要影響[5-9]。本文就近十年來控制稻米粒形、堊白、淀粉合成、儲藏蛋白、香味、脂類和礦質元素等合成調控重要基因的克隆與功能研究進行綜述。
稻米品質表現為多樣性,就優質食用而言,主要包括外觀品質、碾磨品質、蒸煮與食味品質和營養品質4個方面[10]。這些品質性狀直接決定了稻米的商品價值與營養價值和消費者的消費行為。
粒形與堊白是稻米外觀品質的重要構成因素。粒形主要指籽粒的長度、寬度和長寬比;堊白是指稻米胚乳中白色不透明的部分,主要是由于其中的淀粉粒排列不緊密而導致存在著一些空腔進而造成的一種光學特性。粒長、長寬比、堊白粒率和堊白度是決定稻米商品價值的首要性狀,少或無堊白以及長粒形稻米的商品價值高。糙米率、精米率和整精米率是碾磨品質的重要評價指標,其中整精米率最為重要,是指米粒長度達到完整精米粒平均長度3/4以上米粒的質量占總精米試樣質量的百分率。
蒸煮與食味品質(eating and cooking quality,ECQ)是稻米品質構成中的最重要方面,由于胚乳是稻米的主要食用部分,而其中的淀粉又是其主要組分。因此,淀粉的組成與結構是決定稻米ECQ的最重要因素。盡管中國在2008年就已出臺了國家標準《大米蒸煮食用品質感官評價方法》(GB/T15682-2008),然而通過人工品嘗的方式無法精確鑒定。因此,通常采用一些理化指標作為參考,包括表觀直鏈淀粉含量(apparent amylose content,AAC)、膠稠度(gel consistency,GC)和糊化溫度(gelatinization temperature,GT)3個經典的理化指標[11];近年來又發展了一種快速鑒定ECQ的指標即稻米淀粉粘滯性譜(RVA譜)。AAC是影響ECQ的最主要因素,膠稠度通常與AAC呈負相關性,而糊化溫度與稻米ECQ的關系較為密切[12]。稻米在蒸煮過程中的膨脹與伸長特性即出飯特性是ECQ的直接反映,可用米飯的膨脹與延伸特性表示。一般認為延伸性好的米粒不易粘結與斷裂,具有較好的適口性。此外,其他一些組份如香味物質2-乙酰基-1-吡咯啉的含量也會在一定程度上影響蒸煮與食味品質。
營養品質主要是指稻米中的蛋白質含量及氨基酸組成。蛋白質是稻米的第二大成分,占糙米干重的8%—10%。一般認為精米中蛋白質含量對稻米的ECQ起負面效應,其含量越低,稻米的食口性越好[13-14]。從稻米營養角度來看,蛋白質含量高并且人體必需氨基酸含量高的稻米具有很好的營養品質表現[15]。精米中的蛋白質主要以谷蛋白和醇溶蛋白為主,其中,谷蛋白含量高且易被消化吸收,因此,其含量與氨基酸組成是稻米營養品質中最重要的影響因素[16]。從功能性稻米角度來看,低谷蛋白稻米非常適合Ⅰ型和Ⅱ型糖尿病患者食用。此外,稻米中的脂肪酸、維生素類和礦物質元素等微量儲藏物質也是近年來受到廣泛關注的營養成分。
粒形不僅與水稻產量形成有關,也是稻米品質表現的重要影響因素,尤其是對稻米的外觀品質影響甚大。因此,粒形相關基因是稻米產量與品質改良中最受關注的一類基因。近年來,有關水稻粒形調控相關基因的克隆與功能研究已取得了長足的進展,從不同的水稻種質資源中至少已經分離出幾十個粒形相關基因或等位基因。
2.1 粒形決定基因
根據粒形基因決定的表型特征,可將其分為3大類[17]。第一類包括、、、和等,這類基因突變會造成植株矮化從而間接造成小粒表型[18-20];第二類基因能夠特異性調控籽粒形狀,是通常所指粒形控制基因;第三類基因是指小圓粒基因(small and round seed),主要發現于粳稻亞種中[21-22]。
在育種實踐中,對于稻米外觀品質改良具有重要利用價值的主要是第二類基因(表1)。在控制粒長方面,是一個重要的主效QTL,其編碼蛋白的OSR結構域是負向調節粒長的關鍵部位,突變后導致了長粒表型[23]。也是一個粒長負調控因子其編碼一個含Kelch功能域的PPKL家族磷酸酶,通過調控細胞周期蛋白T1;3而控制籽粒大小[24]。位于同一基因位點,因2個串聯重復片段存在而高表達,從而增加粒長[25-26]。在控制粒寬方面,是通過圖位克隆獲得的第一個寬粒基因其編碼的鋅指E3泛素連接酶能負向調控細胞分裂,突變后會導致細胞數目增加,從而表現出粒寬和粒重的增加[27]。與具有相似作用的/編碼一種多聚泛素結合蛋白,該蛋白有功能時籽粒較窄而功能喪失后引起粒寬和粒重增加[28]。是粒寬的正調節因子,其高表達后會導致更大的籽粒,其不同的等位基因差異主要是啟動區的序列變異造成的[29]。編碼一個含GRAS基因家族成員的蛋白質,負調控水稻籽粒大小,突變的等位基因能夠顯著增加粒寬和粒重[30]。編碼一個IAA葡萄糖水解酶活性蛋白,能控制IAA供應,功能喪失后通過對“源”器官的多效影響而增加籽粒重量[31]。編碼一種類似SQUAMOSA啟動子結合蛋白16,是細胞增殖的正調節因子,高表達的能增加粒寬和粒重[32]。編碼一個細胞色素P450蛋白,高表達能夠顯著增加粒長和粒寬[33]。編碼一個具有組蛋白乙酰轉移酶活性的類GNAT蛋白,通過改變細胞數目增加粒長[34]。編碼一個包含QLQ結構域和WRC結構域的GRF轉錄因子,因一個氨基酸的替換而產生大粒表型[35]。

表1 具有育種利用價值的粒形基因
2.2 堊白相關QTL/基因
堊白不僅能夠降低整精米率和稻米外觀品質而且也能引起稻米的適口性變差[35-36]。經典遺傳學和現代分子遺傳學研究表明,稻米堊白性狀受多基因控制并且還極易受環境因素的影響[36-39]。目前已有大量的堊白相關QTL和基因被鑒定出來,但只有少數幾個已被精細定位和克隆。
在堊白QTL精細定位方面,Zhou等[40]利用染色體片段置換系將精細定位在44 kb的區段內;Guo等[41]利用染色體片段代換系將定位在140 kb的區段內。在基因克隆方面,堊白的極端表型—粉質突變體是堊白調控基因克隆的重要遺傳材料,已通過對該類突變體的研究克隆了一批可能與堊白形成相關的基因。Kang等[42]首次克隆了粉質突變體基因,其編碼一個丙酮酸磷酸激酶(pyruvate orthophosphate dikinase,PPDK),通過調節碳代謝而影響胚乳的灌漿。Wang等[39]進一步分析了高溫條件下與堊白的關系,發現在高溫條件下表達下調可能導致了堊白的增多。胚乳中儲藏物質累積受阻往往也會導致堊白出現,Wang等[43]克隆的編碼了一種細胞壁轉化酶,其通過調控籽粒灌漿初期的碳源分流而影響儲藏物質的累積速度,功能喪失會造成高堊白。She等[44]在一個化學誘變突變體中克隆了一個編碼具有TPR結構域蛋白質的新基因,其主要通過調節胚乳中淀粉和蛋白質等儲藏物的積累而引起堊白的出現。Wan等[45]克隆的胚乳粉質基因編碼一個GTP酶(GTPase),其參與了胚乳細胞液泡中蛋白質的轉運,該基因突變干擾了淀粉體的形成。Han等[46]克隆的編碼了一個類二硫鍵異構酶PDIL1-1,該蛋白的缺失對胚乳內質網中淀粉體的合成造成了脅迫,從而造成淀粉的累積減少并表現出粉質突變。在另一粉質突變體中,Matsushima等[47]發現能夠調控造粉體的發育,其突變后能夠產生明顯增大的淀粉粒并造成粉質表型。Li等[37]克隆的編碼一個液泡H+-焦磷酸轉移酶,該酶通過影響內膜轉運系統的pH平衡而影響蛋白質體的合成,過量表達該基因可增加蛋白質體的量從而使淀粉粒無法緊密排列而造成堊白。
淀粉是胚乳中最主要的儲藏物質,淀粉合成相關基因的表達受到影響很容易造成堊白表型。通過轉錄組分析,發現高堊白水稻中淀粉代謝類基因表達譜變化顯著且通常表現為上調,而與淀粉代謝無關的一些糖類代謝基因趨向于下調表達;此外,參與脅迫反應和蛋白質降解的基因也會出現明顯變化[48],這種變化趨勢與高溫脅迫所造成的堊白稻米中的基因表達變化趨勢較為一致[49]。這說明堊白的形成是由多基因控制的復雜調控網絡系統,而淀粉合成相關基因的表達失衡可能與稻米堊白的形成具有密切關系。
淀粉是稻米胚乳的主要成分,稻米ECQ的評價指標大多屬于淀粉的理化特性,因此,ECQ與稻米淀粉的組成和結構密切相關。從分子水平來看,水稻中參與胚乳淀粉合成與調控的基因都可能對稻米ECQ的形成發揮著重要作用[50-51]。參與水稻淀粉合成的酶類主要有ADP-葡萄糖焦磷酸化酶(AGPase)、顆粒結合淀粉合成酶(GBSSI)、可溶性淀粉合成酶(SSS)、淀粉分支酶(SBE)、淀粉去分支酶(DBE)、淀粉磷酸化酶(Pho)和淀粉異構酶(DPE)等,編碼這些酶的基因可統稱為SSRG(starch synthesis-related genes)[50-51]。此外,一些參與SSRG表達調控的轉錄因子也已被克隆。
3.1 淀粉合成相關基因
在植物中對SSRG的功能已有了比較清楚的認識,近年來主要是對這些基因的等位變異進行了較多的研究。在淀粉合成過程中第一個關鍵的酶是AGPase,其由4個大亞基基因和2個小亞基基因所編碼[50,52]。AGPase的作用是將G-1-P中的葡萄糖殘基轉移到ATP上形成焦磷酸(PPi)和腺苷二磷酸葡萄糖(ADPG),是淀粉合成從“源”到“庫”的關鍵一步反應。該酶有胞質型和淀粉體型2種類型,前者主要參與胚乳淀粉合成。該類基因突變后通常導致無法合成淀粉而出現籽粒干癟的表型[53]。過量表達胞質型能夠增強ADPG的供給而顯著提高淀粉的合成量進而增加粒重[54-55]。在等位變異方面,作者的研究表明第1 633堿基處的變異對于直鏈淀粉含量和淀粉黏滯性譜起著微效的影響,而另一亞基基因的第511處堿基的變異對稻米膠稠度也存在微效的影響[11]。這說明選擇合適的AGPase等位基因可以通過改善“源”的供給來修飾淀粉的理化特性而改良稻米品質。
GBSSI由水稻蠟質基因(,)編碼,主要負責直鏈淀粉的合成,該基因的不同等位變異決定了稻米的直鏈淀粉含量[56],是控制ECQ的主效基因[11,57]。截止目前至少有8個已發表的等位基因,朱霽暉等[58]最近就此基因的等位變異進行了綜述。在糯稻中,由于第2外顯子23 bp的缺失造成了轉錄提前終止[59]。在非糯品種中,主要分化為Wx和Wx兩種等位類型。其中,攜帶Wx的稻米直鏈淀粉含量都很高(25%以上),屬于高直鏈淀粉類型。在Wx變異基礎上,還存在一種第10外顯子變異的等位基因Wx,盡管攜帶該等位基因的稻米AAC與Wx持平,但其糊化特性與膠稠度明顯與攜帶Wx等位基因稻米不同[60-61],ZHANG等[62]的研究發現這種差異可能是由于直鏈淀粉的精細結構不同造成的。Wx主要分布在粳稻品種中,攜帶該基因稻米的直鏈淀粉含量屬中等至較低水平(15%—18%)。與Wx相比,Wx的變異是由第一內含子剪接位點處G-T變異造成的,突變降低了前體mRNA的剪接效率從而減少了GBSSI的量進而導致了較低的直鏈淀粉含量[56]。此外,Mikami等[63]克隆了Wx等位基因,證明在第6外顯子上發生的A-C變異使直鏈淀粉含量降至中等水平(18%—22%)。除了上述常規等位基因外,還有3個“軟米基因”即Wx、Wx和Wx被克隆。與Wx相比,Wx在第4和第5外顯子處存在兩處突變,導致直鏈淀粉含量降到10%左右[64]。另一等位基因Wx是在此基礎上在第5外顯子發生了回復突變,攜帶該等位基因的稻米直鏈淀粉含量也在10%左右[65]。經測序分析,目前,中國的多數軟米尤其是江蘇的南粳系列軟米都攜帶有該等位基因(未發表數據)。另一個軟米基因為Wx(或者Wx),是由第4外顯子的A-G突變造成的[63]。
研究表明一些具有相似直鏈淀粉含量的稻米,其品質表現會有很大不同。而支鏈淀粉精細結構的不同可能是導致這種差異的重要原因[66-67]。水稻支鏈淀粉主要由SSS催化合成,其主要有8種同工型[50]。SSSI是SSS的主要組分,占了總酶活的70%,主要負責支鏈淀粉短鏈(DP≤12)合成,其秈型等位基因編碼的酶活性更強,能提高稻米淀粉粘滯性[50]。SSSII-3主要在胚乳中表達,對稻米品質影響最大。高振宇等[68-69]通過圖位克隆方法分離了該基因(),其主要負責延伸支鏈淀粉的短支鏈(A+B1鏈),合成中等長度的分支鏈(B2+B3鏈)。該基因存在很多等位變異類型,但從編碼的酶是否有活性來看,可以分為2類[50]。一類主要存在于秈稻中,表現為高活性,能夠合成較多的中等長度的支鏈而表現為高糊化溫度;而在一些粳稻品種中因該酶活性較低或喪失活性而表現為低糊化溫度[50]。SSSIIIa主要在胚乳中發揮作用,負責長支鏈的延伸(DP≥30),突變后不僅能夠明顯增加堊白而且淀粉粘滯性也極低[70-71]。盡管SSSIV的2種同工型已鑒定出來,但水稻中關于其功能并不清楚,在擬南芥中的研究表明其過量表達后能夠提高葉片瞬時淀粉的含量,據此推測其可能在水稻中具有增加淀粉含量的潛能[72]。
SBE是淀粉合成酶中唯一催化葡聚糖鏈產生分支的酶(催化α-1,6糖苷健形成)。水稻中有3種同工型,其中SBEI(又稱為SBE1)優先催化直鏈淀粉短分支的形成,并參與支鏈淀粉較長鏈和中等長度鏈的合成,其突變后對稻米外觀沒有明顯影響但能夠降低稻米的糊化溫度而可能具有較好的食味表現[73]。SBEIIa和SBEIIb(也稱為SBE3和SBE4)同源性較高,主要負責支鏈淀粉短分支鏈的形成。SBEIIb的功能比較清楚,主要負責A鏈的合成(DP 8-12),且不與SBEIIa功能疊加,后者可能參與了維持淀粉分支酶復合體的結構并合成部分短鏈[50]。最近的一項研究表明,SBEIIa在體外表達時根據其突變位點不同可以合成不同長度的葡聚糖鏈,這暗示該基因可能以一種特殊的方式參與了支鏈的延伸并且其可能在培育高抗性淀粉作物中比較有價值[74]。ZHU等[75]通過同時下調SBEI和SBEIIb的表達而獲得了AAC接近50%、抗性淀粉含量達到13%左右的轉基因水稻材料,這種稻米是一種非常適用于糖尿病人食用的功能性產品。上述研究表明,通過合理的選擇類基因的不同等位組合既可以達到改良ECQ的目的,也可以滿足培育特殊功能性稻米的需要。
DBE的作用是水解α-1,6糖苷鍵,包括異淀粉酶(isoamylase,ISA1、ISA2和ISA3)和普魯蘭酶(pullulanase,PUL)2類。其中在水稻中僅有一個拷貝且與功能存在重疊,僅在胚乳中表達,功能喪失會導致短鏈(DP≤13)分支增加[76]。ISA1和ISA2是胚乳支鏈淀粉合成所必不可缺少的,突變后籽粒中無法形成淀粉,有關兩者的功能目前仍有爭議[50]。最新的研究表明ISA1可能與FLO6協同參與支鏈淀粉的合成[77]。ISA3主要參與瞬時淀粉的合成與降解,與儲藏淀粉關系不大[78]。總體來看,DBE類基因對稻米品質的形成影響劇烈,突變或表達改變后會影響種子胚乳淀粉積累,從而造成糖質胚乳表型[79],因此,在稻米品質改良中可能需要篩選特定的等位基因加以利用。
Pho在水稻中有2種,分別是質體型(Pho1)和胞質型(Pho2),兩者都能催化α-葡萄糖鏈非還原末端的葡萄糖延伸,研究發現Pho1是一種溫度依賴型酶,主要在低溫下參與淀粉合成調控[80]。DPE也存在質體型(DPE1)和胞質型(DPE2),都屬于葡糖苷水解酶家族77(GH77),目前的研究表明DPE1能夠通過轉移麥芽糖到支鏈淀粉上參與淀粉結構修飾,其過量表達會造成較小的淀粉粒而抑制表達能夠增加直鏈淀粉含量[81]。Hwang等[82]進一步發現Pho1能夠與DPE1形成復合體參與低聚麥芽糖的合成,從而起始淀粉的合成,后者可能促進了其糖基轉移酶活性。
盡管單一SSRG的功能已經研究得比較透徹,但ECQ是一個綜合性狀,是由眾多SSRG共同控制的復雜網絡。單個SSRG突變后會引起其他多個SSRG的變化,如ISA1被抑制后,能夠改變和的表達模式[83]。在前期的研究中,Tian等[11]通過對不同等位基因單倍型關聯分析和轉基因驗證試驗,明確了這些SSRG控制ECQ的模式,發現和能夠互作來影響AAC、GC和GT,其中對于AAC和GC是主效的,而對于GT是微效的。相反,對于GT表現為主效而對于AAC和GC為微效。此外,和作為微效基因同時影響GC和GT,、、和共同對AAC有微效的影響,而和分別對GC和GT起微效控制作用[11]。為排除對ECQ主效基因的影響,YAN等[84]對118份糯稻品種中17個SSRG不同單倍型與ECQ的另一指標RVA譜進行了關聯分析,發現不同的SSRG之間也是通過互作來共同控制RVA譜特征值,且其中的對RVA譜特征值的影響最大。此外,通過染色體片段代換系對相關微效QTL進行了定位分析,表明一些微效QTL也參與了這些網絡調控[85]。
3.2 參與淀粉合成相關轉錄因子
盡管已經非常明確SSRG在稻米ECQ形成中是以一個復雜的調控網絡發揮作用的,但這個過程中各SSRG之間是怎樣協調表達的并不是很清楚。因此,近年來有關SSRG的研究重點集中在對這些基因的表達調控方面。
不僅存在多個復等位變異,其表達調控方式也有多種。()編碼了一種前體mRNA剪接因子,這些剪接因子以復合體的形式直接參與調控前體mRNA的剪接效率而影響成熟mRNA的量[86]。在其他調控方面,Zhu等[87]發現轉錄因子OsEBP89和OsEBP5能夠以復合體的形式激活基因表達。Liu等[88]的研究證明的編碼蛋白GBSSI能以寡聚體的形式發揮作用。此外,ZHANG等[89]最近的研究發現在高溫條件下一些QTL能夠穩定的剪接效率,從而使稻米具有高溫鈍感AAC的表現。
通過SSRG協同表達分析克隆的RSR1(rice starch regulator1)是參與SSRG表達調控的關鍵轉錄因子[90],能負向調控SSRG的表達。RSR1突變后能上調胚乳中多數SSRG的表達,其中15個基因上調表達最明顯,這種多基因的上調表達可能破壞了淀粉合成的平衡而導致了直鏈淀粉的升高和支鏈淀粉的結構變化并造成了明顯的堊白。另一轉錄因子OsbZIP58能夠直接與、、、、和啟動子結合,調控這些基因的表達,其突變后導致支鏈淀粉短鏈增加和中長鏈減少并造成了堊白[91]。后續的進一步研究發現,OsbZIP58與另一轉錄因子OsLOL1能夠相互作用并且可能通過調控赤霉素的合成來影響籽粒淀粉的積累和種子的萌發[92]。
3.3 米粒延伸性相關QTL
目前,已克隆了很多控制稻米AAC、GC、GT和RVA譜的基因,但是對于米粒延伸特性的遺傳調控研究相對較慢,尚未有主效基因克隆,目前僅定位了幾個微效QTL。早在1993年,Ahn等[93]對優質秈稻Basmati370中控制米粒延伸性的QTL進行了定位研究,在第8染色體上鑒定了一個QTL。隨后,Amarawathi等[94]利用Basmati×Pusa構建的重組自交系群體在第11染色體上檢測到一個QTL。何予卿等[95]通過QTL定位分析,認為第6染色體附近存在一多效性QTL,控制米粒延伸性。Ge等[96]利用珍汕97和明恢63創建的重組自交系群體在第2、6和11染色體上鑒定了3個QTL。Liu等[97]利用一個秈粳交群體在第2和5染色體上鑒定到了控制米粒延伸性的QTL。最近,Rathi等[98]利用關聯分析在水稻第4染色體分子標記RM142附近鑒定了一個米粒延伸性QTL。綜上可見,米粒延伸性的遺傳較為復雜,是由多個微效基因控制的復雜性狀,在基因克隆方面尚存在不少困難,在育種利用方面也只有少數QTL可以嘗試利用。
4.1 儲藏蛋白與氨基酸合成和代謝相關基因
稻米儲藏蛋白與稻米品質性狀關系密切,其含量在秈粳稻間存在一定差異,在稻米不同層面也存在明顯區別[14,99-100]。目前已在蛋白質含量QTL/基因定位和克隆方面開展了很多工作。有關儲藏蛋白在水稻胚乳細胞內的定位已比較清楚,谷蛋白和球蛋白都定位于蛋白體Ⅱ中,醇溶蛋白定位于內質網中[101]。水稻中已鑒定了至少15個編碼谷蛋白的結構基因,其編碼產物需經高爾基體形成運輸小泡運輸至蛋白體Ⅱ中[102]。稻米中的谷蛋白含量直接與其編碼基因有關,然而由于其編碼基因拷貝數較多,單個結構基因突變后對總蛋白質含量影響較小[103],而參與儲藏蛋白表達及轉運調控的基因對種子儲藏蛋白的累積影響較大。
研究發現,轉錄因子OsRISBZ1和OsRPBF能夠協調控制儲藏蛋白(主要為谷蛋白)基因的表達,兩基因突變后種子儲藏蛋白含量明顯下降[104]。Wan等[45]在一個粉質突變體中克隆了一個能夠調控谷蛋白運輸的基因,其功能喪失后導致谷蛋白無法轉運到蛋白體Ⅱ中;進一步的研究表明其編碼蛋白OsRAB5A可能與OsVPS9A和OsGPA3 蛋白協同參與了谷蛋白前體從高爾基體向蛋白體Ⅱ的轉運,并且鳥嘌呤核苷酸交換因子2(GEF2)在轉運過程中也起重要作用[105]。Tian等[106]克隆了一個編碼小GTPase的,發現3個同源基因能夠同時調控谷蛋白和α-球蛋白從內質網向高爾基體的運輸,其功能喪失后不僅出現粉質胚乳表型,籽粒充實度也變差。在控制蛋白質含量QTL研究方面,Peng等[107]首次克隆了一個主效QTL,該基因能夠正向調控蛋白質含量,過量表達后能明顯提高蛋白質合成相關基因的表達以及根部氨基酸的吸收速度進而提高蛋白質的合成量。
賴氨酸是稻米中的第一限制必須氨基酸。在高等植物中賴氨酸是通過天冬氨酸代謝通路合成[108]。在賴氨酸的合成途徑中有2個受反饋抑制調節的關鍵酶,即天冬氨酸激酶(AK)和二氫吡啶羧酸合酶(DHPS)。AK被蘇氨酸和賴氨酸反饋抑制,而且賴氨酸又是DHPS的反饋調節抑制因子。研究表明,植物體內賴氨酸合成的主要限速步驟是賴氨酸對DHPS的反饋抑制,同時,當賴氨酸含量提高后,會增加賴氨酸分解關鍵酶賴氨酸-酮戊二酸還原酶/酵母氨酸脫氫酶(LKR/SDH)的活性而加快賴氨酸的降解,致使賴氨酸在種子中不能得到有效的積累[108]。LONG等[15]通過突變體和轉基因分析對水稻中賴氨酸代謝途徑關鍵酶基因進行了功能分析,發現葉片中游離賴氨酸的積累主要受合成途徑的調控,而在種子中主要受分解途徑的調控。通過基因工程手段,過量表達水稻內源賴氨酸含量豐富的組蛋白 RLRH1和RLRH2,使稻米賴氨酸含量提高了35%[109]。而通過胚乳特異性表達富含賴氨酸的外源蛋白,也可以使種子賴氨酸含量提高30%[110]。最近,YANG等[111]通過同時表達反饋抑制不敏感的AK和DHPS以及抑制LKR/SDH表達,獲得了游離賴氨酸含量提高25.3倍的水稻株系。
4.2 米香形成相關基因
香味是優質稻米的一個重要指標。稻米中的香味物質有很多種,其中最重要的是2-乙酰基-1-吡咯啉(2-acetyl-l-pyrroline, 2-AP)[112]。香味的遺傳主要受1對隱性基因控制。Bradbury等[113]利用圖位克隆法分離克隆了香味基因,其編碼了甜菜堿乙醛脫氫酶2(betaine aldehyde dehydrogenase,BAD2)。Chen等[114]的研究發現其功能喪失的隱性等位基因和均能引起2-AP積累而導致香味產生。隨后,Kovach等[115]深入分析了該香味基因的起源及進化關系,發現了 8種隱性等位基因,其中是香稻中普遍存在的優勢等位基因,并且首先起源于粳稻,后來才導入到秈稻。最近的研究發現2-AP的積累與脯氨酸的含量呈正相關性[116],因此,Keyghobad等[117]通過過量表達合成脯氨酸的△1-吡咯啉-5-羧酸合成酶(△1-pyrroline-5-carboxylate synthetase)編碼基因,使2-AP的含量提高了2倍。此外,除了遺傳調控外,添加鋅、鑭金屬離子和外源2-AP以及改善栽培條件如土壤和收獲時間等環境因素都能不同程度地影響2-AP的含量[118-119]。因此,米香不僅是食味品質的重要指標,從代謝調控角度來看,其與氨基酸代謝關系密切。
4.3 脂肪酸合成與代謝相關基因
脂質是水稻中另一種重要的儲藏物,主要包括磷脂和脂肪,在胚和糊粉層中最多,而在胚乳中主要以脂質-直鏈淀粉復合體的形式存在[120-121]。脂質不僅對種子活力(壽命)具有重要影響,稻米油更是一種具有高營養價值的食用油,因此,脂質是稻米營養品質決定的重要因素之一[121]。目前,有關脂類的代謝途徑在植物中已有較多研究,水稻中已有很多相關QTL被鑒定出來,但克隆的基因數量較少[10,121]。從稻米營養品質來看,催化脂質氧化反應的脂肪酸氧化酶(LOX)是導致稻米陳化和營養成份下降的重要原因[122]。目前,在水稻中已經克隆了3個編碼LOX的基因,分別為、、/[123-124],其中,和能負調控脂肪酸的降解,其表達下調或功能喪失后能延長稻米儲藏時間而維持較好的適口性與營養成份。對于富含β-胡蘿卜素的黃金稻米而言,下調表達后能夠減少儲藏過程中β-胡蘿卜素的降解[123,125]。在脂質轉運方面,目前的研究較少,但已經清楚的有兩類轉運蛋白,分別是非特異脂質轉運蛋白和特異脂質轉運蛋白[126]。在水稻中只有一個脂質轉運蛋白編碼基因被克隆,其表達下調后能夠明顯降低種子脂質含量,同時也對種子發育產生了不利影響[127]。因此,有關脂質代謝調控研究是未來脂肪組(lipidome)研究的重要方向。
4.4 其他營養成份合成與代謝相關基因
盡管維生素類和類黃酮代謝相關基因在其他模式植物如擬南芥中已比較清楚,但在水稻中只克隆了少量相關基因。
在維生素代謝方面,Chaudhary等[128]在水稻中鑒定了7個維生素E合成相關基因(、、、、和)。Wang等[129]通過對巨胚米突變體的分析發現(編碼細胞色素氧化酶P450)突變后能明顯提高維生素E合成相關基因的表達而提高維生素E的含量。Hwang等[130]研究表明過量表達()也能明顯提高維生素E各成份的含量并且增加了稻米的耐儲藏性。張桂云等[131]的研究顯示在秈稻中γ-三烯生育酚的比例較粳稻高,而粳稻中α-生育酚比例較秈稻高。進一步,其通過過量表達擬南芥,使大部分的γ-三烯生育酚轉化成了α-生育酚,提高了稻米中α-生育酚的比例[132]。Wang等[133]通過全基因組關聯分析對控制水稻α-生育酚的QTL進行了分析,發現的不同等位基因及表達量與α-生育酚的含量關系密切。有關維生素C代謝基因目前研究的也比較清楚,但由于水稻中其含量極低,主要是通過引入外源基因來改良。ZHANG等[134]的研究表明,在水稻中過量表達維生素C合成途徑后6步的擬南芥同源基因、、、、和能不同程度(1.4—2.5倍)提高維生素C的含量。
在類黃酮合成調控方面,已經明確紅米中原花青素合成主要受正調控因子和調控,而在黑米中主要則由和2個位點參與花青素的合成[135]。隨后的研究表明可能也在花青素合成中起著關鍵作用[136]。Oikawa等[137]最近克隆了,命名為其編碼了一個bHLH轉錄因子,因啟動子區的變異造成異位表達而激活花青素合成相關基因表達從而產生黑米表型。
稻米中的礦質元素也是稻米的營養成份之一,適量的有益礦質元素能夠提高稻米的營養價值。在礦質元素轉運與運輸方面,目前,已鑒定了大量的金屬離子轉運相關基因,這些基因多參與了植物的非生物脅迫反應而直接與稻米礦質元素含量相關的基因只占少數[138]。Sperotto等[139]對水稻劍葉和種子中25個金屬轉運基因的表達及金屬元素的積累進行了關聯分析,發現其中9個基因(、、、、、、、和)可能正向調控稻米中鐵和鋅的含量。近年來的研究表明,過量表達水稻、、、、、、、、或等基因都能明顯提高水稻種子金屬離子尤其是鐵離子的含量[140]。此外,過量表達擬南芥和、大麥和菜豆均能顯著提高水稻鐵和鋅的含量[141-142]。而對于有害重金屬鎘而言,研究發現可以通過過量表達或者敲除來降低稻米中鎘的積累[143]。
水稻的品質表現是一個綜合性狀,就加工、外觀以及優質食用和營養品質而言,粒形、淀粉和蛋白質組成是最重要的決定因素。目前,已經克隆了一大批粒形、ECQ和營養成份相關的調控基因,盡管很多基因的功能已比較清楚,但是多數基因往往都具有一因多效性,因此,真正在育種上被利用的基因還只是少數,并且這些少數基因中也只有特定的等位基因對稻米品質改善有利。
在粒形方面,細長粒型稻米能夠提高稻米的外觀品質,但對產量可能有一定的負效應,整精米率也要低些[37,144]。寬粒水稻能夠增加粒重和產量,但往往使堊白程度加重[27]。因此,在外觀品質和產量需求方面可能需要作出一些取舍,一方面通過不同等位基因組合選育特定的粒形以達到增產的目的;另一方面需要協調粒形、粒重和稻米品質間的關系,選擇最優組合以滿足消費者的不同需求。盡管粒形在一定程度上能夠減少稻米堊白,但堊白的遺傳調控非常復雜且易受環境尤其是高溫的影響非常明顯[9,27]。由于全球氣溫的不斷升高,在減少堊白方面除了選擇環境耐受型新種質做為育種資源外,在分子標記輔助選擇方面可以多開發一些關鍵基因或QTL的分子標記用于育種[144]。
基因調控網絡的解析表明,控制ECQ的相關基因往往協同發揮作用,這暗示在稻米品質改良研究中一方面需要擴大種質資源范圍,充分發掘一些關鍵優良等位基因和開發相關分子標記[145-146],另一方面也要從基因的互作與調控網絡入手進行遺傳調控。從目前消費者能夠接受的角度看,通過分子標記輔助選擇改良稻米品質是一種比較實用且有效的方法[146];而從改良速度和效率來看,基因工程技術則是一種快捷和高效的方式。隨著越來越多重要品質基因的克隆尤其是不同物種間有利基因功能的闡明,轉基因技術可加速對這些基因的利用,如富含維生素A的黃金大米和富含鐵元素大米的創建就是很成功的例子[147-148]。目前,類似的研究結果已有很多,盡管在技術層面已經證明可以通過生物合成途徑的調控來改良水稻品質和強化營養,但離商業化應用尚需時日。近幾年發展起來的基因組編輯技術如CRISPR-Cas等[149]可能會在一定程度上加速包括品質改良在內的作物遺傳改良。
[1] 程式華. 中國超級稻育種技術創新與應用. 中國農業科學, 2016, 49(2): 205-206.
Cheng S H. Breeding technique innovation and application of China’s super rice., 2016, 49(2): 205-206. (in Chinese)
[2] Rao Y C, Li Y Y, Qian Q. Recent progress on molecular breeding of rice in China.,2014, 33(4): 551-564.
[3] Zhou S R, Yin L L, Xue H W. Functional genomics based understanding of rice endosperm development., 2013, 16(2): 236-246.
[4] Peng T, Sun H Z, Du Y X, Zhang J, Li J Z, Liu Y X, Zhao Y F, Zhao Q Z. Characterization and expression patterns of micro RNAs involved in rice grain filling., 2013, 8(1): e54148.
[5] 王惠貞, 吳瑞芬, 李丹. 稻米品質形成和調控機理概述. 中國稻米,2016, 22(1): 10-13.
Wang H Z, Wu R F, Li D. Review on rice quality formation and its regulation mechanism., 2016, 22(1): 10-13. (in Chinese)
[6] 王嬌, 王潔, 強愛玲, 官景得, 孫國才, 孫建昌, 齊國鋒, 王興盛, 韓龍植. 北方不同氣候條件對稻米品質性狀的影響. 中國稻米, 2015, 21(6): 13-18.
Wang J, Wang J, Qiang A L, Guan J D, Sun G C, Sun J C, Qi G F, Wang X S, Han L Z. The influence of different climatic ecological conditions on rice quality traits in northern China., 2015, 21(6): 13-18. (in Chinese)
[7] 陳帥君, 邊嘉賓, 丁得亮, 崔晶. 不同有機肥處理對水稻品質和食味的影響. 中國稻米,2016,22(4): 42-45.
Chen S J, Bian J B, Ding D L, Cui J. Effects of organic fertilizers on quality and palatability of rice., 2016, 22(4): 42-45. (in Chinese)
[8] 高繼平, 隋陽輝, 張文忠, 姚晨, 高明超, 趙明輝, 徐正進. 水稻灌漿期冠層溫度對植株生理性狀及稻米品質的影響. 中國水稻科學, 2015, 29(5): 501-510.
Gao J P, Sui Y H, Zhang W Z, Yao C, Gao M C, Zhao M H, Xu Z J. Effect of canopy temperature on physiological characteristic and grain quality at filling stage in rice., 2015, 29(5): 501-510. (in Chinese)
[9] Zhang C Q, Zhou L H, Zhu Z B, Lu H W, Zhou X Z, Qian Y T, Li Q F, Lu Y, Gu M H, Liu Q Q. Characterization of grain quality and starch fine structure of tworice () cultivars with good sensory properties at different temperatures during the filling stage., 2016, 64(20): 4048-4057.
[10] Bao j s. Genes and QTLs for rice grain quality improvement// Yan W G, Bao J S.(ISBN 978-953-51-1240-2). InTech Open Access publisher. 2014: 239-278.
[11] Tian Z X, Qian Q, Liu Q Q, Yan M X, Liu X F, Yan C J, Liu G F, Gao Z Y, Tang S Z, Zeng D L, Wang Y H, Yu J M, Gu M H, Li J Y. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities., 2009, 106(51): 21760-21765.
[12] Bao J S, Corke H, Sun M. Nucleotide diversity in starch synthase IIa and validation of single nucleotide polymorphisms in relation to starch gelatinization temperature and other physicochemical properties in rice (L.)., 2006, 113(7): 1171-1183.
[13] Ning H F, Qiao J F, Liu Z H, Lin Z M, Li G H, Wang Q S, Wang S H, Ding Y F. Distribution of proteins and amino acids in milled and brown rice as affected by nitrogen fertilization and genotype., 2010, 52(1): 90-95.
[14] 楠谷彰人. 中日水稻品種的食味比較. 北方水稻, 2007,5: 72-77.
Kusitani A. Comparison of palatability of rice varieties between China and Japan., 2007, 5: 72-77. (in Chinese)
[15] Long X H, Liu Q Q, Chan M L, Wang Q, Sun S S M. Metabolic engineering and profiling of rice with increased lysine., 2013, 11(4): 490-501.
[16] Ufaz S, Galili G. Improving the content of essential amino acids in crop plants: goals and opportunities., 2008, 147(3): 954-961.
[17] Huang R Y, Jiang L R, Zheng J S, Wang T S, Wang H C, Huang Y M, Hong Z L. Genetic bases of rice grain shape: so many genes, so little known., 2013, 18(4): 218-226.
[18] Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A. Rice gibberellin-insensitive dwarf mutant geneencodes the a-subunit of GTP-binding protein., 1999, 96(18): 10284-10289.
[19] Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Kitano H, Matsuoka M. A rice brassinosteroid-deficient mutant,(), is caused by a loss of function of a new member of cytochrome P450.,2003, 15(12): 2900-2910.
[20] Yamamuro C, hara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint.,2000, 12(9): 1591-1605.
[21] Abe Y, Mieda K, Ando T, Kono I, Yano M, Kitano H, Iwasaki Y. The(/) gene is involved in the regulation of seed size in rice., 2010, 85(5): 327-339.
[22] Kitagawa K, Kurinami S, Oki K, Abe Y, Ando T, Kono I, Yano M, Kitano H, Iwasaki Y. A novel kinesin 13 protein regulating rice seed length., 2010, 51(8): 1315-1329.
[23] Mao H L, Sun S Y, Yao J L, Wang C R, Yu S B, Xu C G, Li X H, Zhang Q F. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice.,2010, 107(45): 19579-19584.
[24] Zhang X J, Wang J F, Huang J, Lan H X, Wang C L, Yin C F, Wu Y Y, Tang H J, Qian Q, Li J Y, Zhang H S. Rare allele ofassociated with grain length causes extra-large grain and a significant yield increase in rice., 2012, 109(52): 21534-21539.
[25] Wang Y X, Xiong G S, Hu J, Jiang L, Yu H, Xu J, Fang Y, Zeng L J, Xu E B, Xu J, Ye W J, Meng X B, Liu R F, Chen H Q, Jing Y H, Wang Y H, Zhu X D, Li J Y, Qian Q. Copy number variation at thelocus contributes to grain size diversity in rice., 2015, 47(8): 944-948.
[26] Wang S K, Li S, Liu Q, Wu K, Zhang J, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C X, Wang F, Huang H X, Fu X D. The-regulatory module determines grain shape and simultaneously improves rice yield and grain quality., 2015, 47(8): 949-954.
[27] Song X J, Huang W, Shi Min, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase., 2007, 39(5): 623-630.
[28] Weng J F, Gu S H, Wan X Y, Gao H, Guo T, Su N, Lei C L, Zhang X, Cheng Z J, Guo X P, Wang J L, Jiang L, Zhai H Q, Wan J M. Isolation and initial characterization of, a major QTL associated with rice grain width and weight., 2008, 18(12): 1199-1209.
[29] Li Y B, Fan C C, Xing Y Z, Jiang Y H, Luo L J, Sun L, Shao D, Xu C J, Li X H, Xiao J H, He Y Q, Zhang Q F. Natural variation inplays an important role in regulating grain size and yield in rice., 2011, 43(12): 1266-1269.
[30] Sun L J, Li X J, Fu Y C, Zhu Z F, Tan L B, Liu F X, Sun X Y, Sun X W, Sun C Q., a member of the GRAS gene family, negatively regulates grain size in rice., 2013, 55(10): 1-12.
[31] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E. Loss of function of the IAA-glucose hydrolase geneenhances rice grain weight and increases yield., 2013, 45(6): 707-711.
[32] Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D. Control of grain size, shape and quality by, 2012, 44(8): 950-954.
[33] Xu F, Fang J, Ou S J, Gao S P, Zhang F, Du L, Xiao Y H, Wang H R, Sun X H, Chu J F, Wang G D, Chu C C. Variations incoding region influence grain size and yield in rice.,2015, 38(4): 800-811.
[34] Song X J, Kuroha T, Ayano M, Furuta T, Nagai K, Komeda N, Segami S, Miura K, Ogawa D, Kamura T, Suzuki T, Higashiyama T, Yamasaki M, Mori H, Inukai Y, Wu J, Kitano H, Sakakibara H, Jacobsen S E, Ashikari M. Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice., 2015, 112(1): 76-81.
[35] Che R H, Tong H N, Shi B H, Liu, Y Q, Fang S R, Liu D P, Xiao Y H, Hu B, Liu L C, Wang H R, Zhao M F, Chu C C. Control of grain size and rice yield by GL2-mediated brassinosteroid responses., 2016, 2(1): 15195.
[36] Bridgemohan P, Bridgemohan R S H. Crop nutrition studies on grain filling and chalkiness in rice., 2014, 6(10): 144-152.
[37] Li Y B, Fan C C, Xing Y Z, Yun P, Luo L J, Yan B, Peng B, Xie W B, Wang G W, Li X H, Xiao J H, Xu C G, He Y Q.encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice., 2014, 46(4): 398-404.
[38] Qin Y, Kim S, Sohn J. Genetic analysis and QTL mapping for grain chalkiness characteristics of brown rice (L.)., 2009, 31(2): 155-164.
[39] Wang Z M, Li H X, Liu X F, He Y, Zeng H L. Reduction of pyruvate orthophosphate dikinase activity is associated with high temperature-induced chalkiness in rice grains., 2015, 89: 76-84.
[40] Zhou L J, Chen L M, Jiang L, Zhang W W, Liu L L, Liu X, Zhao Z G, Liu S J, Zhang L J, Wang J K, Wan J M. Fine mapping of the grain chalkiness QTLL.)., 2009, 118(3): 581-590.
[41] Guo T, Liu X L, Wan X Y, Weng J F, Liu S J, Liu X, Chen M J, Li J J, Su N, Wu F Q, Cheng Z J, Guo X P, Lei C L, Wang J L, Jiang L, Wan J M. Identification of a stable quantitative trait locus for percentage grains with white chalkiness in rice ()., 2011, 53(8): 598-607.
[42] Kang H, Park S, Matsuoka M, An G. White-core endospermfloury endosperm-4 in rice is generated by knockout mutations in the C-type pyruvate orthophosphate dikinase gene (OsPPDKB)., 2005, 42(6): 901-911.
[43] Wang E, Wang J J, Zhu X D, Hao W, Wang L Y, Li Q, Zhang L X, He W, Lu B R, Lin H X, Ma H, Zhang G Q, He Z H. Control of rice grain-filling and yield by a gene with a potential signature of domestication., 2008, 40(11): 1370-1374.
[44] She K, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Naito N, Tsurumaki Y, Yaeshima M, Tsuge T, Matsumoto K, Kudoh M, Itoh E, Kikuchi S, Kishimoto N, Yazaki J, Ando T, Yano M, Aoyama T, Sasaki T, Satoh H, Shimada H. A novel factoris involved in regulation of rice grain size and starch quality., 2010, 22(10): 3280-3294.
[45] Wan Y H, Ren Y L, Liu X, Jiang L, Chen L M, Han X H, Jin M N, Liu S J, Liu F, Lv J, Zhou K N, Su N, Bao Y Q, Wan J M.regulates endomembrane organization and storage protein trafficking in rice endosperm cells., 2010, 64(5): 812-824.
[46] Han X H, Wang Y H, Liu X, Jiang L, Ren Y L, L F, Peng C, Li J J, Jin X M, Wu F Q, Wang J L, Guo X P, Zhang X, Cheng Z J, Wan J M. The failure to express a protein disulphide isomerase-like protein results in a floury endosperm and an endoplasmic reticulum stress response in rice., 2012, 63(1): 121-130.
[47] Matsushima R, Maekawa M, Kusano M, Kondo H, Fujita N, Kawagoe Y, Sakamoto W. Amyloplast-localized SUBSTANDARD STARCH GRAIN4 protein in?uences the size of starch grains in rice endosperm., 2014, 164(2): 623-636.
[48] Liu X L, Guo Tao, Wan X Y, Wang H Y, Zhu M Z, Li A L, Su N, Shen Y Y, Mao B G, Zhai H Q, Mao L, Wan J M. Transcriptome analysis of grain-filling caryopses reveals involvement of multiple regulatory pathways in chalky grain formation in rice., 2010, 11: 730.
[49] Yamakawa H, Hirose T, Kuroda M, Yamaguchi T. Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray.,2007, 144(1): 258-277.
[50] Jeon J S, Ryoo N, Hahn T R, Walia H, Nakamura Y. Starch biosynthesis in cereal endosperm, 2010, 48(6): 383-392.
[51] PFISTER B, ZEEMAN S C. Formation of starch in plant cells., 2016, 73(14): 2781-2807.
[52] Lee S K, Hwang S K, Han M, Eom J S, Kang H G, Han Y, Choi S B, Cho M H, Bhoo S H, An G, Hahn T R, Okita T W, Jeon J S. Identi?cation of the ADP-glucose pyrophosphorylase isoforms essential for starch synthesis in the leaf and seed endosperm of rice (L.)., 2007, 65(4): 531-546.
[53] Tuncel A, Kawaguchi J, Ihara Y, Matsusaka H, Nishi A, Nakamura T, Kuhara S, Hirakawa H, Nakamura Y, Cakir B, Nagamine A, Okita T W, Hwang S K, Satoh H.The rice endosperm ADP-glucose pyrophosphorylase large subunit is essential for optimal catalysis and allosteric regulation of the heterotetrameric enzyme.,2014, 55(6): 1169-1183.
[54] Tuncel A, Okita T W. Improving starch yield in cereals by over-expression of ADP glucose pyrophosphorylase: Expectations and unanticipated outcomes., 2013, 211: 52-60.
[55] Smidansky E D, Martin J M, Hannah L C, Fischer A M, Giroux M J. Seed yield and plant biomass increases in rice are conferred by deregulation of endosperm ADP-glucose pyrophosphorylase., 2003, 216(4): 656-664.
[56] Wang Z Y, Zheng F Q, Shen G Z, Gao J P, Snustad D P, Li M G, Zhang J L, Hong M M. The amylose content in rice endosperm is related to the post-transcriptional regulation of thegene., 1995, 7(4): 613-622.
[57] Gu M H, Liu Q Q, Yan C J, Tan s z. Grain quality of hybrid rice: Genetic variation and molecular improvement//Xie F M, Hardy B. editors.(ISBN 978-971-22- 0252-0). Los Ba?os (Philippines): International Rice Research Institute. 2009: 345-356.
[58] 朱霽暉, 張昌泉, 顧銘洪, 劉巧泉. 水稻基因的等位變異及育種利用研究進展. 中國水稻科學, 2015, 29(4): 431-438.
Zhu J H, Zhang C Q, Gu M H, Liu Q Q. Progress in the allelic variation ofgene and it’s application in rice breeding., 2015, 29(4): 431-438. (in Chinese)
[59] Wanchana S, Toojinda T, Tragoonrung S, Vanavichit A. Duplicated coding sequence in theallele of tropical glutinous rice (L.)., 2003, 165(6): 1193-1199.
[60] Tran N A, Daygon V D, Resurreccion A P, Cuevas R P, Corpuz H M, Fitzgerald M A. A single nucleotide polymorphism in thegene explains a signi?cant component of gel consistency.,2011, 123(4): 519-525.
[61] Hoai T T T, Matsusaka H, Toyosawa Y, Suu T D, Satoh H, Kumamaru T. Influence of single-nucleotide polymorphisms in the gene encoding granule-bound starch synthase I on amylose content in Vietnamese rice cultivars., 2014, 64(2): 142-148.
[62] Zhang C Q, Zhu L J, Shao K, Gu M H, Liu Q Q. Toward underlying reasons for rice starches having low viscosity and high amylose: physiochemical and structural characteristics., 2013, 93(7): 1543-1551.
[63] Mikami I, Uwatoko N, Ikeda Y, Yamaguchi J, Hirano H Y, Suzuki Y, Sano Y. Allelic diversification at thelocus in landraces of Asian rice., 2008, 116(7): 979-989.
[64] Sato H, Suzuki Y, Okumo K, Hirano H, Imbe T. Genetic analysis of low-amylose content in a rice variety, ‘Milky Queen’., 2001, 3: 13-19.
[65] Yang J, Wang J, Fan F J, Zhu J Y, Chen T, Wang C L, Zheng T Q, Zhang J, Zhong W G, Xu J L. Development of AS-PCR marker based on a key mutation confirmed by resequencing ofin Milky Princess and its application insoft rice (L.) breeding., 2013, 132(6): 595-603.
[66] Han Y P, Xu M L, Liu X Y, Yan C J, Korban S S, Chen X L, Gu M H. Genes coding for starch branching enzymes are major contribution to starch viscosity characteristics in waxy rice (L.)., 2004, 166(2): 357-364.
[67] Zhu L J, Liu Q Q, Sang Y J, Gu M H, Shi Y C. Underlying reasons for waxy rice flours having different pasting properties., 2010, 120(1): 94-100.
[68] Gao Z Y, Zeng D L, Cheng F M, Tian Z X, Guo L B, Su Y, Yan M X, Jiang H, Dong G J, Huang Y C, BinHan, Li J Y, Qian Q., the key gene for gelatinization temperature is a modi?er gene for gel consistency in rice., 2011, 53(9): 756-765.
[69] Zhang G Y, Cheng Z J, Zhang X, Guo X P, Su N, Jiang L, Mao L, Wan J M. Double repression of soluble starch synthase genesandin rice (L.) uncovers interactive effects on the physicochemical properties of starch., 2011, 54(6): 448-459.
[70] Fujita N, Yoshida M, Kondo T, Saito K, Utsumi Y, To-kunaga T, Nishi A, Satoh H, Park J H, Jane J L, Miyao A, Hirochika H, Nakamura Y. Characterization of-deficient mutants of rice: The function ofand pleiotropic effects bydeficiency in the rice endosperm., 2007, 144(4): 2009-2023.
[71] Fujita N, Satoh R, Hayashi A, Kodama M, Itoh R, AiharaS, Nakamura Y. Starch biosynthesis in rice endosperm requires the presence of either starch synthase I or IIIa., 2011, 62(14): 4819-4831.
[72] Gámez-Arjona F M, Li J, Raynaud S, Baroja- Fernández E, Mu?oz F J, Ovecka M, Rage P, Bahaji A, Pozueta-Romero J, Mérida á. Enhancing the expression of starch synthase class IV results in increased levels of both transitory and long-term storage starch., 2011, 9(9): 1049-1060.
[73] Satoh H, Nishi A, Yamashita K, Takemoto Y, Tanaka Y, Hosaka Y, Sakurai A, Fujita N, Nakamura Y. Starch- branching enzyme I-de?cient mutation speci?cally affects the structure and properties of starch in rice endosperm., 2003, 133(3): 1111-1121.
[74] Li C, Wu A C, Go R M, Malouf J, Turner M S, Malde A K, Mark A E, Gilbert R G. The characterization of modified starch branching enzymes: toward the control of starch chain-length distributions., 2015, 10(4): e0125507.
[75] Zhu L J, Gu M H, Meng X L, Cheung S C K, Yu H X, Huang J, Sun Y, Shi Y C, Liu Q Q. High-amylose rice improves indices of animal health in normal and diabetic rats., 2012, 10(3): 353-362.
[76] Fujita N, Toyosawa Y, Utsumi Y, Utsumi Y, Higuchi T, Hanashiro I, Ikegami A, Akuzawa S, Yoshida M, Mori A, Inomata1 K, Itoh R, Miyao A, Hirochika H, Satoh H, Nakamura Y. Characterization of pillulanase (PUL)-deficient mutants of rice (L.) and the function of PUL on starch biosynthesis in the developing rice endosperm., 2008, 60(13): 1009-1023.
[77] Peng C, Wang Y H, Liu F, Ren Y L, Zhou K N, Lv J, Zheng M, Zhao S L, Zhang L, Wang C M, Jiang L, Zhang X, Guo X P, Bao Y, Wan J M.encodes a CBM48 domain-containing protein involved in compound granule formation and starch synthesis in rice endosperm.,2014, 77(6): 917-930.
[78] Silver D M, K?tting O, Moorhead G B G. Phosphoglucan phosphatase function sheds light on starch degradation., 2014, 19(7): 471-478.
[79] 趙華, 王俊敏, 張其芳, 趙倩, 梅淑芳, 劉向蕾, 程方民. 水稻糖質胚乳突變體籽粒灌漿過程的淀粉合成關鍵酶活性及其與淀粉理化特性關系. 中國水稻科學, 2015, 29(1): 73-81.
Zhao H, Wang J M, Zhang Q F, Zhao Q, Mei S F, Liu X L, Cheng F M. Activities of several starch synthesis enzymes in filling grains for rice sugary endosperm mutant () and it’s relation to starch quality., 2015, 29(1): 73-81. (in Chinese)
[80] Satoh H, Shibahara K, Tokunaga T, Nishi A, Tasaki M, Hwang S K, Okita T W, Kaneko N, Fujita N, Yoshida M, Hosaka Y, Sato A, Utsumi Y, Ohdan T, Nakamura Y. Mutation of the plastidial α-glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm., 2008, 20(7): 1833-1849.
[81] DONG X B, ZHANG D, LIU J, LIU Q Q, LIU H L, TIAN L H, JIANG L, QU L Q. Plastidial disproportionating enzyme participates in starch synthesis in rice endosperm by transferring maltooligosyl groups from amylose and amylopectin to amylopectin., 2015, 169(4): 2496-2512.
[82] Hwang S K, Koper K, Satoh H, Okita T W. Rice endosperm starch phosphorylase (Pho1) assembles with disproportionating enzyme (Dpe1) to form a protein complex that enhances synthesis of malto-oligosaccharides., 2016, 291(38): 19994-20007.
[83] Sun W Q, Zhou Q L, Yao Y, Qiu X J, Xie K, Yu S B. Identification of genomic regions and the isoamylase gene for reduced grain chalkiness in rice.,2015, 10(3): e0122013.
[84] Yan C J, Tian Z X, Fang Y W, Yang Y C, Li J, Zeng S Y, Gu S L, Tang S Z, Gu M H. Genetic analysis of starch paste viscosity parameters in glutinous rice (L.)., 2011, 122(1): 63-76.
[85] 劉鑫燕, 朱孔志, 張昌泉, 洪燃, 孫鵬, 湯述翥, 顧銘洪, 劉巧泉. 利用9311來源的粳稻染色體片段代換系定位控制稻米糊化溫度的微效QTL. 作物學報, 2014, 40(10): 1740-1747.
Liu X Y, Zhu K Z, Zhang C Q, Hong R, Sun P, Tang S Z, Gu M H, Liu Q Q. Mapping of minor QTLs for rice gelatinization temperature using chromosome segment substitution lines from9311 in thebackground., 2014, 40(10): 1740-1747. (in Chinese)
[86] Kiswara G, Lee J H, Hur Y J, Cho J H, Lee J Y, Kim S Y, Sohn Y B, Song Y C, Nam M H, Yun B W, Kim K M. Genetic analysis and molecular mapping of low amylose gene(t) in rice (L.)., 2014, 127(1): 51-57.
[87] Zhu Y, Cai X L, Wang Z Y, Hong M M. An interaction between a MYC protein and an EREBP protein is involved in transcriptional regulation of the ricegene., 2003, 278(48): 47803-47811.
[88] Liu D R, Huang W X, Cai X L. Oligomerization of rice granule-bound starch synthase 1 modulates its activity regulation., 2013, 210: 141-150.
[89] Zhang H, Duan L, Dai J S, Zhang C Q, Li J, Gu M H, Liu Q Q, Zhu Y. Major QTLs reduce the deleterious effects of high temperature on rice amylose content by increasing splicing efficiency ofpre-mRNA., 2013, 127(2): 273-282.
[90] Fu F F, Xue H W. Coexpression analysis identifies rice starch regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator., 2010, 154(2): 927-938.
[91] Wang J C, Xu H, Zhu Y, Liu Q Q, Cai X L. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm., 2013, 64(11): 3453-3466.
[92] Wu J H, Zhu C F, Pang J H, Zhang X R, Yang C L, Xia G X, Tian Y C, He C Z. OsLOL1, a C2C2-type zinc finger protein, interacts with OsbZIP58 to promote seed germination through the modulation of gibberellin biosynthesis in., 2014, 80(6): 1118-1130.
[93] Ahn S N, Bollich C N, McClung A M, Tanksley S D. RFLP analysis of genomic regions associated with cooked-kernel elongation in rice., 1993, 87(1/2): 27-32.
[94] Amarawathi Y, Singh R, Singh A K, Singh V P, Mohapatra T, Sharma T R, Singh N K. Mapping of quantitative trait loci for basmati quality traits in rice (L.)., 2008, 21(1): 49-65.
[95] 何予卿, 邢永忠, 葛小佳, 李香花, 徐才國. 水稻米飯延伸指數相關性狀的基因定位研究. 分子植物育種, 2003, 1(5/6): 613-619.
He Y Q, Xing Y Z, Ge X J, Li X H, Xu C G. Gene mapping for elongation index related traits on cooked rice grain quality., 2003, 1(5/6): 613-619. (in Chinese)
[96] Ge X J, Xing Y Z, Xu C G, He Y Q. QTL analysis of cooked rice grain elongation, volume expansion, and water absorption using a recombinant inbred population., 2005, 124(2): 121-126.
[97] Liu L L, Yan X Y, Jiang L, Zhang W W, Wang M Q, Zhou S R, Shen Y, Shen Y Y, Liu S J, Chen L M, Wang J K, Wan J M. Identification of stably expressed quantitative trait loci for cooked rice elongation in non-Basmati varieties., 2008, 51(2): 104-112.
[98] Rathi S, Pathak K, Yadav R N S, Kumar B, Sarma R N. Association studies of dormancy and cooking quality traits in direct-seededrice., 2014, 93(1): 3-12.
[99] 周麗慧, 劉巧泉, 張昌泉, 徐勇, 湯述翥, 顧銘洪. 水稻種子蛋白質含量及組分在品種間的變異與分布. 作物學報, 2009, 35(5): 884-891.
Zhou L H, Liu Q Q, Zhang C Q, Xu Y, Tang S Z, Gu M H. Variation and distribution of seed storage protein content and composition among different rice varieties., 2009, 35(5): 884-891. (in Chinese)
[100] 周麗慧, 劉巧泉, 顧銘洪. 不同粒型稻米碾磨特性及蛋白質分布的比較. 作物學報, 2009, 35(2): 317-323.
Zhou L H, Liu Q Q, Gu M H. Milling characteristics and distribution of seed storage proteins in rice with various grain shapes., 2009, 35(2): 317-323. (in Chinese)
[101] Vitale A, Hinz G. Sorting of proteins to storage vacuoles: how many mechanisms?, 2005, 10(7): 316-323.
[102] Kawakatsu T, YAMAMOTO M P, Hirose S, YANO M, TAKAIWA F. Characterization of a new rice glutelin geneexpressed in the starchy endosperm., 2008, 59(15): 4233-4245.
[103] Liu F, Ren Y L, Wang Y H, Peng C, Zhou K N, Lv J, Guo X P, Zhang X, Zhong M S, Zhao S L, Jiang L, Wang H Y, Bao Y Q, Wan J M. OsVPS9A functions cooperatively with OsRAB5A to regulate post-Golgi dense vesicle-mediated storage protein trafficking to the protein storage vacuole in rice endosperm cells., 2013, 6(6): 1918-1932.
[104] Kawakatsu T, Yamamoto M P, Touno S M, Yasuda H, Takaiwa F. Compensation and interaction between RISBZ1 and RPBF during grain ?lling in rice., 2009, 59(6): 908-920.
[105] Wen L, Fukuda M, Sunada M, Ishino S, Ishino Y, Okita T W, Ogawa M, Ueda T, Kumamaruet T. Guanine nucleotide exchange factor 2 for rab5 proteins coordinated with glup6/gef regulates the intracellular transport of the proglutelin from the golgi apparatus to the protein storage vacuole in rice endosperm., 2015, 66(20): 6137-6147.
[106] Tian L H, Dai L L, Yin Z J, Fukuda M, Kumamaru T, Dong X B, Xu X P, Qu L Q. Small GTPase Sar1 is crucial for proglutelin and α-globulin export from the endoplasmic reticulum in rice endosperm., 2013, 64(10): 2831-2845.
[107] Peng B, Kong H L, Li Y B, Wang L Q, Zhong M, Sun L, GaoG J, Zhang Q L, Luo L J, Wang G W, Xie W B, Chen J X, Yao W, Peng Y, Lei L, Lian X M, Xiao J H, Xu C G, Li X H, He Y Q.functions as an important regulator of grain protein content and nutritional quality in rice., 2014, 5: 4847.
[108] Galili G, Amir R. Fortifying plants with the essential amino acids lysine and methionine to improve nutritional quality., 2013, 11(2): 211-222.
[109] Wong H W, Liu Q Q, Sun S S. Biofortification of rice with lysine using endogenous histones., 2015, 87(3): 235-248.
[110] Liu X, Zhang C C, Wang X R, Liu Q Q, Yuan D Y, Pan G, Sun S S, Tu J M. Development of high-lysine rice via endosperm-specific expression of a foreign lysine rich protein, gene., 2016, 16(1): 1-13.
[111] Yang Q Q, Zhang C Q, Chan M L, Zhao D S, Chen J Z, Wang Q, Li Q F, Yu H X, Gu M H, Sun S S, Liu Q Q. Biofortification of rice with the essential amino acid lysine: molecular characterization, nutritional evaluation, and field performance., 2016, 67(14): 4285-4296.
[112] Griglione A, Liberto E, Cordero C, Bressanello D, Cagliero C, Rubiolo P, Bicchi C, Sgorbini B. High-quality Italian rice cultivars: Chemical indices of ageing and aroma quality., 2015, 172: 305-313.
[113] Bradbury L, Fitzgerald T, Henry R, Jin Q, Waters D. The gene for fragrance in rice., 2005, 3(3): 363-370.
[114] Chen S H, Yang Y, Shi W W, Ji Q, He F, Zhang Z D, Cheng Z K, Liu X N, Xu M L., encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-Acetyl-1-Pyrroline, a major component in rice fragrance., 2008, 20(7): 1850-1861.
[115] Kovach M, Calingacion M, Fitzgerald M, McCouch S. The origin and evolution of fragrance in rice (L.)., 2009, 106(34): 14444-14449.
[116] Hinge V R, Patil H B, Nadaf A B. Aroma volatile analyses and 2AP characterization at various developmental stages in Basmati and Non-Basmati scented rice (L.) cultivars., 2016, 9(1): 38.
[117] Keyghobad K, Kad T D, Zanan R L, Nadaf A B. 2-Acetyl-1-pyrroline augmentation in scented indica rice (L.) varieties through Δ1-pyrroline-5-carboxylate synthetase () gene transformation., 2015,177(7): 1466-1479.
[118] Mo Z W, Huang J X, Xiao D, Ashraf U, Duan M Y, Pan S G, Tian H, Xiao L Z, Zhong K Y, Tang X R. Supplementation of 2-AP, zn and la improves 2-acetyl-1-pyrroline concentrations in detached aromatic rice panicles in vitro., 2016, 11(2): e0149523.
[119] Wakte K, Zanan R, Hinge V, Khandagale K, Nadaf A, Henry R. Thirty-three years of 2-acetyl-1-pyrroline, a principal basmati aroma compound in scented rice (L.): a status review., 2016, doi: 10.1002/jsfa.7875.
[120] Goufo P, Trindade H. Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid., 2014, 2(2): 75-104.
[121] Lei L, Waters D L, Rose T J, Bao J S, King G J. Phospholipids in rice: Signi?cance in grain quality and health bene?ts: a review., 2013, 139(1/4): 1133-1145.
[122] Long Q Z, Zhang W W, Wang P, Shen W B, Zhou T, Liu N N, Wang R, Jiang L, Huang J X, Wang Y H, Liu Y Q, Wan J M. Molecular genetic characterization of rice seed lipoxygenase 3 and assessment of its effects on seed longevity., 2013, 56(4): 232-242.
[123] Huang J X, Cai M H, Long Q Z, Liu L L, Lin Q Y, Jiang L, Chen S H, Wan J M. OsLOX2, a rice type I lipoxygenase, confers opposite effects on seed germination and longevity., 2014, 23(4): 643-655.
[124] Zhou G X, Ren N, Qi J F, Lu J, Xiang C Y, Ju H P, Cheng J A, Lou Y G. The 9-lipoxygenase osr9-lox1 interacts with the 13- lipoxygenase-mediated pathway to regulate resistance to chewing and piercing-sucking herbivores in rice., 2014, 152(1): 59-69.
[125] Gayen D, Ali N, Sarkar S N, Datta S K, Datta K. Down-regulation of lipoxygenase, gene reduces degradation of carotenoids of golden rice during storage., 2015, 242(1): 353-363.
[126] Misra B B. The black-box of plant apoplast lipidomes., 2016, 7: 323.
[127] Wang X, Zhou W, Lu Z, Ouyang Y, Chol S O, Yao J. A lipid transfer protein, OsLTPL36, is essential for seed development and seed quality in rice., 2015, 239: 200-208.
[128] Chaudhary N, Khurana P. Vitamin E biosynthesis genes in rice: molecular characterization, expression profiling and comparative phylogenetic analysis., 2009, 177(5): 479-491.
[129] Wang X, Song Y E, Li J Y. High expression of tocochromanol biosynthesis genes increases the vitamin E level in a new line of giant embryo rice., 2013, 61(24): 5860-5869.
[130] Hwang J E, Ahn J W, Kwon S J, Kim J B, Kim S H, Kang S Y, Kim D S. Selection and molecular characterization of a high tocopherol accumulation rice mutant line induced by gamma irradiation., 2014, 41(11): 7671-7681.
[131] 張桂云, 劉如如, 張鵬, 徐勇, 朱姜, 顧銘洪, 梁國華, 劉巧泉. 水稻籽粒維生素 E 及組分在品種間的變異與分布. 作物學報, 2012, 38(1): 55-61.
Zhang G Y, Liu R R, Zhang P, Xu Y, Zhu Ji, Gu M H, Liang G H, Liu Q Q. Variation and distribution of vitamin E and composition in the seeds among different rice varieties., 2012, 38(1): 55-61. (in Chinese)
[132] Zhang G Y, Liu R R, Zhang P, Li Y, Tang K X, Liang G H, Liu Q Q. Increased alpha-tocotrienol content in seeds of transgenic rice overexpressingγ-tocopherol methyltransferase., 2013, 22(1): 88-99.
[133] Wang X Q, Yoon M Y, Qiang H, Kim T S, Wei T, Choi B W, Lee Y S, Park Y J. Natural variations in, contribute to diversity of the α-tocopherol content in rice., 2015, 290(6): 2121-2135.
[134] Zhang G Y, Liu R R, Zhang C Q, Tang K X, Sun M F, Yan G H, Liu Q Q. Manipulation of the rice L-Galactose pathway: evaluation of the effects of transgene overexpression on ascorbate accumulation and abiotic stress tolerance., 2015, 10(5): e0125870.
[135] Furukawa T, Maekawa M, Oki T, Suda I, Iida S, Shimada H, Takamure I, Kadowaki K. Theandgenes are involved in proanthocyanidin synthesis in rice pericarp., 2007, 49(1): 91-102.
[136] Maeda H, Yamaguchi T, Omoteno M, Takarada T, Fujita K, Murata K, Iyama Y, Kojima Y, Morikawa M, Ozaki H, Mukaino N, Kidani Y, Ebitani T. Genetic dissection of black grain rice by the development of a near isogenic line., 2014, 64(2): 134-141.
[137] Oikawa T, Maeda H, Oguchi T, Yamaguchi T, Tanabe N, Ebana K, Yano M, Ebitani T, Izawa T. The birth of a black rice gene and its local spread by introgression., 2015, 27(9): 2401-2414.
[138] Hefferon K L. Nutritionally enhanced food crops; progress and perspectives., 2015, 16(2): 3895-3914.
[139] Sperotto R A, Boff T, Duarte G L, Santos L S, Grusak M A, Fett J P. Identification of putative target genes to manipulate Fe and Zn concentrations in rice grains., 2010, 167(17): 1500-1506.
[140] Wang M, Gruissem W, Bhullar N K. Nicotianamine synthase overexpression positively modulates iron homeostasis-related genes in high iron rice., 2013, 4: 156.
[141] Boonyaves K, Gruissem W, Bhullar N K. Nod, promoter-controlled, expression functions synergistically with, and, genes to increase iron in rice grains., 2015, 90(3): 1-9.
[142] Masuda H, Usuda K, Kobayashi T, Ishimaru Y, Kakei Y, Takahashi M, Higuchi K, Nakanishi H, Mori S, Nishizawa K N. Overexpression of the barley nicotianamine synthase geneincreases iron and zinc concentrations in rice grains., 2009, 2: 155-166.
[143] Yoneyama T, Ishikawa S, Shu F. Route and regulation of zinc, cadmium, and iron transport in rice plants (L.) during vegetative growth and grain filling: metal transporters, metal speciation, grain cd reduction and Zn and Fe biofortification., 2015, 16(8): 19111-19129.
[144] Sreenivasulu N, Jr B V, Misra G, Cuevas R P, Anacleto R, Kavi Kishor P B. Designing climate-resilient rice with ideal grain quality suited for high-temperature stress., 2015, 66(7): 1737-1748.
[145] Ao Y, Xu C W, Cui X F, Xu Y, Wang A, Qiao Z Y, Liu Q Q. A genetic diversity assessment of starch quality traits in rice landraces from the Taihu basin, China., 2016, 15(3): 493-501.
[146] Lau W C P, Latif M A, Rafii Y R, Ismail M R, Puteh A. Advances to improve the eating and cooking qualities of rice by marker-assisted breeding., 2016, 36(1): 1-12.
[147] Ye X D, Al-Babili S, Kl?ti A, Zhang J, Lucca P, Beyer P, Potrykus I. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm., 2002, 87(2): 303-305.
[148] Wirth J, Poletti S, Aeschlimann B, Yakandawala N, Drosse B, Osorio S, Tohge T, Fernie A R, Günther D, Gruissem W, Sautter C. Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin., 2009, 7(7): 631-644.
[149] Lau E. Breaking Mendelian inheritance with CRISPR-Cas.,2015, 16(5): 258-259.
(責任編輯 李莉)
Progresses in Research on Cloning and Functional Analysis of Key Genes Involving in Rice Grain Quality
Zhang Chang-quan, Zhao Dong-sheng, Li Qian-feng, Gu Ming-hong, Liu Qiao-quan
(Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University/ Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, Jiangsu)
Rice (L.) is one of the most important cereal crops in worldwide and also a major stable food in China, thus it is very important to breed novel rice cultivars with high yield as well as good grain quality. Rice grain quality is a complex trait, and usually means rice or rice products meeting the demand of end-users. Therefore, the concept of rice grain quality covers multiple features revealed by the physical and chemical characteristics, including milled rice ratio, grain shape, appearance, cooking time, aroma and its retention after cooking, eating palatability, and nutrition. In general, rice grain quality includes as milling quality, apparent quality, eating and cooking quality (ECQ), and nutritional value. The grain shape is not only the factors associated with yield but also crucial aspects of grain quality. In the past decade, there were rapid and great achievements in the cloning and functional analyses of the genes involving in rice grain qualities. For grain size and shape, numerous QTLs and genes have been cloned and characterized. These cloned genes could be divided into three groups based on the phenotypes of the mutants. The first group is associated with not only grain shape but also plant phenotype, such as,,,and. The second group appears to specifically affect grain trait, including,,,,,,,,,,and, which are well valuable for improvement of grain yield and quality. The third group is called small and round seed, such as thegene. Chalkiness is associated with both grain appearance and milling property, and only few such QTLs have been finely mapped and cloned, including,,,,and. The starch comprises about 90% of the dry matter of rice endosperm, and thus the grain quality is greatly affected by starch composition and structure. Therefore, the starch biosynthesis plays a crucial role in the formation of rice quality, especially the eating and cooking quality. Recent studies had made deep understanding of the regulation network of starch biosynthesis related enzymes, and several transcriptional regulators had also been proven for involving in starch biosynthesis, such as Dull, OsEBP89, OsEBP5, OsRSR1 and OsbZIP58. For seed protein content, most of the genes for seed storage proteins have been well characterized, and some other genes, such as,,,,,,andhave also been identified associating with protein sorting and transporting. The aroma of cooked rice contributes to consumer sensory acceptance, and recent studies have confirmed that theandgenes are responsible for the synthesis of fragrance material 2-AP. As for the other nutritional factors, such as the contents of essential amino acid lysine, vitamins, anthocyanin and minerals, also many functional genes have been cloned or elucidated. Taken together, all of the above traits are known to be genetically controlled by multiple genes, and also interact with each other. In present review, the genetic networks involving in regulation of rice grain quality in the last decade were summarized and updated. It will give a better understanding of the genes that contribute to the overall grain quality as well as lay a foundation for development of new strategies for grain quality improvement with high yield in rice.
rice grain quality; gene cloning; quantitative trait locus (QTL); allelic variation; functional analysis
2016-08-12;接受日期:2016-09-18
國家轉基因生物新品種培育重大專項(2016ZX08009003-004、2014ZX08009-024B)、國家自然科學基金(31561143008、31401354)、教育部博士點基金(20133250120001)
張昌泉,Tel:0514-87937537;E-mail:cqzhang@yzu.edu.cn。通信作者劉巧泉,Tel:0514-87979242;E-mail:qqliu@yzu.edu.cn