楊 君,馬峙英,王省芬
?
棉花纖維品質改良相關基因研究進展
楊 君,馬峙英,王省芬
(河北農業大學農學院/教育部華北作物種質資源研究與利用重點實驗室/河北省作物種質資源重點實驗室,河北保定071001)
棉纖維是優良的、使用最為廣泛的天然纖維。隨著人們生活水平的提高,對天然純棉織物的需求不斷增加,同時對品質的要求也愈來愈高。因此,提高棉纖維產量和品質成為當前棉花遺傳育種的重要目標,對棉纖維發育相關基因的克隆與功能研究是實現這一目標的重要基礎。棉纖維發育由4個明顯但又重疊的時期組成,包括纖維細胞的起始、伸長(初生壁合成)、次生壁合成和脫水成熟。起始是影響纖維細胞數量的重要時期,而纖維長度和強度的決定發生在次生壁合成期和脫水成熟期。棉纖維發育是一個復雜而有序的過程,由大量的基因參與調控。目前,已經有一些在棉纖維發育過程中發揮重要作用的基因被報道,包括各種轉錄因子、參與激素代謝基因、編碼細胞壁蛋白和細胞骨架蛋白基因、活性氧代謝相關基因、以及參與糖和脂類代謝的基因等。文中對已報道的這些與棉花纖維發育相關基因的克隆和功能分析進行了系統總結,以期為棉花纖維發育及品質改良研究提供參考。
棉花;纖維;基因;品質改良
棉花(spp.)是全球重要的經濟作物,每年產值近120億美元[1]。伴隨生活水平的提高,人們越來越注重追求綠色和健康,天然純棉制品像綠色食品一樣受到越來越多消費者的青睞。但是,中國棉花產量卻不斷下降,“缺口”逐年加大。2002年,中國進口原棉69萬噸,到2007年,進口猛增至543萬噸,占當年紡織用棉的41.6%。更為嚴峻的是中國優質棉產量嚴重不足,適紡60支以上高檔棉紗的優質原棉95%依賴進口。因而,為了保證中國棉花產業可持續發展、維護中國棉花生產安全、滿足棉紡織業迅猛發展和國人生活水平提高之需要,提高棉花產量和改良纖維品質成為中國棉花育種的重要目標,而棉纖維發育相關基因的克隆與功能分析是實現這一目標的基礎。中國科學家對于棉花纖維發育機制,特別是關鍵基因的克隆與功能研究方面取得了豐富的成果,已使中國關于棉花纖維發育的研究躋身世界領先行列。
關于棉纖維發育基因的報道最早見于1992年[2]。隨著科學技術的迅猛發展,棉纖維發育相關基因的克隆與功能研究獲得了長足進步。棉纖維是由胚珠表皮細胞分化而成,其發育過程可分為4個階段:起始分化(initiation)(-3—3 days post anthesis,DPA)、細胞伸長(cell elongation)或稱為初生壁合成(primary cell wall deposition)(2—20 DPA)、次生壁合成(secondary cell wall deposition)(15—45 DPA)以及脫水成熟(dehydration and maturation)(45—50 DPA)[3-5]。棉花的產量和質量主要取決于前幾個階段:決定每個胚珠上纖維數量的分化起始期與決定纖維長度與強度的初生壁和次生壁形成期[5-6]。因而,目前關于棉纖維發育基因的研究主要集中在這幾個時期。本文按照基因編碼蛋白的生物學功能進行了分類總結(電子附表1),并綜述了這些基因在棉纖維發育中的功能研究進展。
轉錄因子(transcription factors)在棉纖維細胞發育過程中起重要的調控作用。近年來報道的與棉纖維發育相關的轉錄因子主要包括MYB(v-myb avian myeloblastosis viral oncogene homolog)、HD-ZIP(homeodomain-leucine zipper)、MADS(MCM1- AGAMOUS-DEFICIENS-SRF)、KNOX(knotted related homeobox)、TCP(teosinte branched1/cycloidea/PCF)等家族成員。擬南芥()是目前基因功能解析最為全面的模式植物,其他植物的許多基因功能研究多源于擬南芥同源基因,棉花功能基因的研究也不例外。棉纖維細胞與擬南芥表皮毛一樣是高度伸長的單細胞,兩者具有表皮毛發育調控的相似機制[7]。在擬南芥中,研究較為深入的表皮毛發育相關的轉錄因子如R2R3-MYB家族的GLABRA1 (GL1)[8]、R3-MYB家族的CAPRICE(CPC)[9]、GLABRA2(GL2)[10]等,它們的同源基因在棉花中已被成功克隆。
MYB轉錄因子家族在植物內數量龐大,而R2R3類型基因不僅在MYB家族中數量最多,而且關于它們參與棉纖維細胞發育的研究也最為深入。Loguerico等[11]從陸地棉()開花前3 d的胚珠cDNA文庫中篩選到6個R2R3-MYB類型轉錄因子基因(–),它們在棉纖維發育的不同時期表達水平有不同的變化,暗示其在調控棉纖維細胞發育中具有不同的功能特異性。之后,Wang等[7]通過酵母單雜交(yeast one hybrid)技術證明其中的MYB2能夠調控棉花纖維發育基因()[12]的轉錄。Suo等[13]從棉纖維起始早期胚珠分離到55個包含不同MYB保守域的基因片段,并克隆其中一個R2R3-MYB類型基因,其在初始分化和伸長期的棉纖維細胞中特異表達。通過RNAi和掃描電鏡技術進一步證明參與纖維細胞起始與分化[14],其可能調控的與棉纖維發育相關基因包括、[6]、[15]和[16]。通過比較無纖維棉突變體與野生型(wild-type,WT)轉錄組,Machado等[17]分離了另一R2R3-MYB—。通過RNAi和過表達正反向驗證,表明不僅參與調控棉纖維伸長,還能夠調控纖維起始分化數量和時間。GhMYB25-like與GhMYB25有69%氨基酸序列相似性,并且二者在棉纖維中的轉錄水平變化和趨勢一樣。RNAi研究進一步證明對棉纖維發育具有重要的調節功能,很可能在和上游發揮作用[18]。最近,Wan等[19]首次通過圖位克隆獲得了一個調控棉花短絨發育的關鍵基因(MYBMIXTA-like transcription factor 3/GhMYB25-like in chromosome A12)。在光子突變體N1中的表達極低,這與其反義啟動子驅動產生的NAT(natural antisense transcripts)密切相關。小RNA深度測序結果進一步表明的雙向轉錄可能會形成dsRNA,進而產生21—22 nt的小RNA。可能通過這些小RNA進行自我剪切而實現表達下調,從而影響棉纖維發育[19]。此外,其他報道的參與棉纖維發育調控的R2R3類型MYB基因如和,它們在棉纖維伸長期優勢表達并潛在調控脂轉移蛋白LTP3(lipid transfer protein)[20],以及和[21]等。
在擬南芥中,GL1、bHLH(basic helix-loop-helix)蛋白GL3(GLABRA3)、TTG1(TRANSPARENT TESTA GLABRA1)三者能夠結合,形成的復合體正向調控表皮毛發育[22]。CPC是一個含不完全重復區域R3類型的MYB,與GL1之間存在互作競爭,可阻止復合體形成,從而負向調控表皮毛發育[9]。Liu等[19]從陸地棉中克隆一個,其過表達不僅導致棉纖維起始分化發生延遲,而且導致纖維長度顯著降低。酵母雙雜交(yeast two-hybrid,Y2H)試驗表明,棉花GhCPC同樣與GhTTG1/4、GhMYC1(GL3)之間存在互作。由此可推測擬南芥CPC與GL1-GL3-TTG復合體之間互作調控表皮毛發育的模式在棉花纖維調控中同樣存在。GhMYC1能夠與啟動子中的順式元件E-box結合,因而推測這個互作調控的下游基因可能為[19]。
擬南芥GL2是HD-ZIP IV家族轉錄因子。已報道的參與棉纖維發育的同源性基因包括(meristem layer 1)[23]、[24]及[25-26]。在棉纖維發育中不僅具有與相似的表達方式,而且過量表達使擬南芥葉片和莖上的表皮毛數量顯著增加。能夠結合L-box順式元件,因而具有調控其他棉纖維發育基因的可能,如[12,27]。GbML1與GhMYB25之間通過START- domain(GbML1)和SAD-domain(GhMYB25)可以形成物理互作,因此,GbML1可能作為伴侶分子增強GhMYB25對棉纖維發育的調控[23]。與具有較高同源性,其沉默不僅使棉纖維細胞起始分化數量減少,而且時間延后。超表達顯著增加棉纖維細胞起始分化的數量。GhHD1可能作用于GhMYB25-like調控的下游過程,但不在GhMYB25和GhMYB109調控的下游。利用基因芯片(microarray)對GhHD1沉默和超表達棉株進行分析,表明GhHD1可能通過WRKY和鈣離子信號通路(calcium-signaling pathway)改變乙烯(ethylene,ETH)和活性氧(reactive oxidation species,ROS)水平,進而影響其他參與細胞擴張與伸長基因的表達[24]。中國科學院上海生命科學研究院陳曉亞院士團隊先后在棉花中克隆了3個GL2同源基因—、、。其中,和顯示出與棉花纖維發育相關[25-26]。來自于亞洲棉()的與擬南芥具有較高同源性,主要在發育早期的棉纖維細胞中表達??苫パa擬南芥突變體缺陷,即使其重新長出表皮毛[26]。超表達能夠使棉纖維變得更長,而將該基因沉默則導致棉纖維長度縮短超過80%。通過數字化基因表達分析(digital gene expression analysis),發現了300多個可能受GhHOX3調控表達的差異基因[25]。在擬南芥中,L1-box被證明是HD-ZIP類轉錄因子結合的順式元件[28]。據此,18個啟動子中具有該元件的基因被推測是受GhHOX3調控的下游基因,其中,包括2個具有使細胞壁松弛功能的基因—[12,27]和[29]。GhHOX3不僅與GhHD1存在互作,還與受赤霉素(gibberellin,GA)調控的DELLA蛋白GhSLR1存在互作[30]。因而,總結出GhHOX3介導的棉纖維發育的機制為棉纖維細胞內GA水平正?;蜉^低時,HOX3與其阻遏蛋白GhSLR1結合;當GA水平升高后,GhSLR1被蛋白酶降解,使HOX3構象改變,并與調控增強子GhHD1結合,進而調控啟動子序列含有L1-box的棉纖維發育相關基因表達,最終使棉纖維變長[25]。
MADS蛋白家族都含有一個保守的MADS-box結構域,是植物內另外一個大的轉錄因子家族[31]。在棉花中已經發現幾個,其中與棉纖維發育相關的如[32]、[33]、[34]、[35]、[36]等。除在轉錄水平表明這些基因參與棉纖維的發育外,進一步的超表達試驗表明可促進酵母細胞伸長[35],但則使擬南芥下胚軸長度顯著降低,且GA相關合成基因的表達量顯著下降,表明可能通過調控GA合成參與棉纖維發育[36]。
Gong等[37]克隆了一個棉花KNOX(knotted related homeobox)Ⅱ型轉錄因子—KNL1(KNOTTED1- LIKE),它在纖維次生壁加厚期優勢表達。顯著抑制棉株的纖維長度和細胞壁厚度,比WT顯著降低。在擬南芥中,過量表達和基因抑制都可導致植株莖基部細胞壁厚度降低。具有轉錄因子的序列特征和互補擬南芥轉錄因子KNAT7的功能,卻不具有轉錄激活功能。然而,GhKNL1能夠與其他參與細胞壁形成相關的轉錄因子如OFP4(OVATE FAMILY PROTEIN4)[38]和MYB75[39]等發生互作,所以其可能是通過調節其他轉錄因子活力而影響棉纖維的發育[37]。
Hao等[40]克隆了一個海島棉Ⅰ型TCP基因—,它在棉纖維伸長期優勢表達。沉默后,棉纖維長度和品質顯著降低。Solexa測序、Affymetrix基因芯片分析及JA含量測定等試驗結果表明,正向調控JA合成,進而影響其他下游基因參與棉纖維伸長。之后Wang等[41]從陸地棉中也克隆了一個TCP家族Ⅰ型基因—,該基因主要在起始及伸長階段的纖維細胞中高表達。在擬南芥中異源表達促進了莖和花序等部位表皮毛以及根毛的起始和伸長,以及改變了生長素在擬南芥體內的分布。進一步的凝膠阻滯電泳(electrophoretic mobility shift assay,EMSA)試驗顯示,GhTCP14蛋白能夠直接與AUX1、IAA3和PIN2等生長素途徑關鍵基因的啟動子結合。這些結果表明是通過激素調控棉纖維發育的。
激素在調節植物生長發育和抗逆過程中具有核心重要性。目前,可作為植物激素的共有10種結構不相關的小分子[42]。其中,被報道對棉纖維發育具有明顯影響的有ETH、油菜素內酯(brassinosteroid,BR)、GA、細胞激動素(cytokinin,CK)、生長素(auxin,AUX)及脫落酸(abscisic acid,ABA)。
2.1 ETH
在棉花胚珠培養中,外源添加乙烯能夠顯著促進棉纖維細胞伸長,而添加乙烯合成抑制劑硫代硫酸銀則顯著抑制棉纖維伸長。此外,棉纖維cDNA文庫測序和基因芯片分析等分子試驗結果也證明乙烯及其代謝途徑在棉花纖維細胞伸長過程中發揮非常重要的作用[6]。Shi等[6]從陸地棉纖維cDNA文庫中克隆到編碼乙烯合成途徑的最后一個酶ACO(1-aminocyclopropane-1-carboxylic acid oxidase,1-氨基環丙烷-1-羧酸氧化酶)的3個同源基因,它們在纖維快速伸長期特異高效表達。特別是在體外試驗中,胚珠釋放乙烯量、表達水平、纖維伸長速度三者保持一致,進一步表明ACO是通過控制乙烯合成參與調控棉纖維細胞發育。雖然ACS(1-aminocyclopropane-1-carboxylicacid synthase,1-氨基環丙烷-1-羧酸合酶)是乙烯合成的限速酶,但其并不像ACO一樣通過上調轉錄參與乙烯合成進而影響棉纖維發育。ACS活力增強可能是由于轉錄后修飾,即受CPK1(Ca2+-dependent protein kinase 1)作用而發生磷酸化[43]。
2.2 BR
體外試驗中,應用濃度非常低的BR能顯著促進棉纖維細胞的生長,而添加BR合成抑制則導致纖維細胞的發育受到抑制[44],這表明BR在棉花纖維細胞伸長過程中發揮重要的作用。類固醇5α還原酶(steroid 5α-reductase)是BR合成中的主要限速酶。Luo等[45]從陸地棉中克隆到一個具有編碼類固醇5α還原酶活力的基因—,它在棉纖維細胞起始分化和伸長階段高表達。反義RNA抑制的表達和類固醇5α還原酶抑制劑處理胚珠的結果一致,均導致纖維細胞伸長受到抑制。種皮特異表達GhDET2能夠使棉纖維數量和長度顯著增加。編碼棉花BR受體蛋白BRI1(brassinosteroid insensitive 1)的基因早在2004年就已經被克隆,并在轉錄水平初步證明其參與棉纖維發育[44, 46]。近來,Sun等[47]通過過表達和基因沉默進一步分析了在棉纖維發育中的功能。過表達對纖維長度幾乎沒有影響,但卻使纖維素顯著積累。沉默使細胞次生壁的發育受到強烈抑制,導致纖維成熟度降低。這表明介導的BR信號是通過調控纖維素在次生壁中的沉積,進而影響棉纖維的成熟度。Yang等[48]從棉花中克隆到一個編碼細胞色素P450的基因—,其編碼蛋白與擬南芥CYP734A1同源。突變體不僅導致棉株表現BR缺少的典型癥狀,即植株矮小和葉片黑綠,而且棉纖維長度顯著變短。應用RNA-Seq分析,推測PAG1可能是通過調控BR信號通路而影響乙烯信號、鈣離子信號、及細胞壁和細胞骨架相關基因表達,進而影響棉纖維發育。
2.3 GA
外施GA確實能夠促進棉纖維細胞的伸長[49]。檢測表明,棉花開花當天胚珠中的內源GA濃度有一個顯著提升,并在纖維細胞伸長過程中保持較高含量;而葉片中的GA濃度無明顯變化[50],說明GA在棉花纖維細胞伸長過程中發揮重要的正向調控作用。GA-20氧化酶是重要的GA生物合成和調控酶。Xiao等[51]從陸地棉中克隆到3個GA-20氧化酶同源基因,即、和。主要在正在伸長的棉纖維細胞中表達,而和的轉錄更多是發生在胚珠中。過量表達的轉基因棉,不但表現為棉纖維和胚珠中GA含量的增加,而且每個胚珠上棉纖維的初始數量和纖維長度顯著增加。DELLA作為阻遏蛋白,是GA信號傳導途徑中重要的負調控因子[52]。目前,在棉花中共有8個含有DELLA保守域的編碼基因被報道,包括[50]、、、、[53]、[54]、和[55]。雖然轉錄水平上的變化初步表明這些DELLA基因參與棉纖維的發育,但還需進一步在轉基因棉花中進行功能驗證與機制解析。
2.4 CK
CK能促進體外培養的胚珠發育,但阻礙纖維細胞的發育[49]。開花前,CK能夠刺激纖維起始發育,而開花后CK對棉纖維發育產生抑制作用[56]。細胞激動素脫氫酶(cytokinin dehydrogenase,CKX)是植物內源CK合成的關鍵負調控因子。Zeng等[57]成功克隆了一個具有CKX活力的陸地棉基因,其在胚珠表皮中特異表達;超表達能使棉花胚珠內CK含量顯著降低,從而導致棉纖維起始分化數量明顯減少。該實驗室進一步研究發現,抑制表達可使棉纖維細胞內CK含量提高,其中CK含量提高20.4%和55.5%的轉基因棉株表現出葉片衰老推遲、光合作用升高、果枝增加、棉鈴和棉籽增大,從而使皮棉產量相應提高了15.4%和20.0%,但CKX表達變化導致CK含量的變化對棉纖維品質沒有產生顯著影響[58]。
2.5 AUX
外施吲哚-3-乙酸(indole-3-acetic acid,IAA,AUX)或利用FBP7表皮特異啟動子將外源IAA合成基因(如來源于農桿菌的)轉入棉花,不僅能夠推動棉纖維起始,還能增加纖維數量[59-60]。Yang等[61]對來源于棉花胚珠的32 798個ESTs進行了表達分析,并富集了許多與IAA合成(、、和)、信號傳導(、、和)及轉運(和)相關的ESTs。雖然IAA對棉纖維發育的調控具有重要作用,但目前還未見關于這些基因的克隆與調控棉纖維發育功能等方面的深入報道。
2.6 ABA
目前,雖然關于ABA在棉纖維發育中的研究還不夠深入,但其參與棉纖維發育調控的重要作用早已被證實[62]。隨著棉鈴發育,ABA的含量從10 DPA開始增加,到20 DPA逐漸降低,而到30—50 DPA時含量又有所增加[62]。高濃度的ABA對棉纖維發育具有明顯的抑制作用。在不同棉種中的研究發現,內源ABA含量高的品種其棉纖維會較短[63]。
在植物細胞生長過程中,許多蛋白在細胞壁中積累,如各種結構蛋白,包括富含脯氨酸蛋白(proline- rich protein,PRP)、阿拉伯半乳聚糖蛋白(arabinogalactan protein,AGP)、伸展蛋白(extensin,EXT),還有與多糖作用的擴展蛋白(expansin,EXPA或Exp)及各種酶[64]。Feng等[65]利用抑制性消減雜交(suppression subtractive hybridization,SSH)方法在快速伸長的棉纖維細胞中分離到5個基因家族,其中就包括PRP、AGP和EXPA。許文亮等[66]從棉花cDNA文庫中分離了5個PRP基因,其中和表達受纖維發育調節。進一步分析顯示,抑制導致棉纖維發育相關基因表達發生了顯著變化,并促進棉花纖維細胞伸長。據此推測是棉纖維發育的負向調控因子[67]。Huang等[68]在陸地棉中克隆到19個類成束阿拉伯半乳聚糖蛋白(Fasciclin-like arabinogalactan protein,FLA)基因,、和特異性的或主要在10 DPA棉纖維細胞中表達,而、、和雖不僅僅在纖維中表達,但其水平也相對較高。Liu等[69]從海島棉中也克隆到一個FLA基因—,轉錄水平上的變化表明其參與棉纖維發育。過量表達能夠促進棉纖維細胞伸長,并促進其他初生細胞壁合成基因的表達顯著升高。相反,抑制表達則顯著降低棉纖維起始分化和伸長,且導致其他初生細胞壁合成基因表達顯著降低。不僅如此,的過表達和沉默還影響棉纖維初生細胞壁中葡萄糖(glucose)、阿拉伯糖(arabinose)及半乳糖(galactose)含量。由此表明可能通過影響初生細胞壁中AGP組成和完整度參與棉纖維起始分化與伸長[70]。Harmer等[29]從陸地棉中克隆到6個-expansin基因(–),其中和在纖維中特異性表達,暗示它們參與棉纖維發育。此外,還有一些其他參與棉纖維發育的蛋白定位于細胞壁,如,其編碼蛋白含有BURP(BNM2/USP-like/RD22/PG1b)域,主要在伸長的棉纖維細胞中表達[12, 27]。過量表達不僅顯著提高了棉纖維長度,還可使棉花種子明顯增大。GhRDL1與另一個參與棉纖維發育的細胞壁蛋白GhEXPA1之間存在蛋白互作。將這兩個基因共同超表達,除了能夠使棉鈴顯著增大及棉產量明顯提高外,還能顯著改善棉纖維品質,包括纖維長度、強度和馬克隆值(micronaire)[27]。
植物細胞骨架主要由微管(microtubule)和肌動蛋白微絲(actin filament)組成[71]。在高等植物中,微管能夠指導纖維素微纖絲在細胞壁中的沉積方向,從而參與細胞形態的建成。早在20世紀90年代,微管就已經被證實參與棉纖維發育[72-74]。微管的主要結構組成是一種異源二聚體蛋白——微管蛋白(tubulin,TUB),它由和2個保守的亞基組成。Whittaker等[75]通過基因特異性探針檢測到5個-TUB基因在棉纖維細胞中的表達發生積累。Li等[15]克隆到一個編碼亞基的陸地棉基因——,其在棉纖維中優勢表達。He等[76]在陸地棉中鑒定到795個微管蛋白ESTs(expressed sequence tags),其中19個-TUB基因被克隆。通過比較WT和無絨無絮突變體(fuzzless-lintless,)轉錄組,明確其中9個-TUB基因參與棉花纖維發育。肌動蛋白微絲由肌動蛋白(actin)分子螺旋狀聚合成。Li等[16]在陸地棉中發現了15個編碼肌動蛋白的基因——,其中主要在棉纖維細胞中表達。抑制表達會破壞棉纖維細胞骨架網絡,進而影響棉纖維伸長。通過酵母雙雜交和體外F-actin結合試驗,一些肌動蛋白結合蛋白(actin binding protein,ABP)被鑒定,如GhPLIM1[77]、GhWLIM5[78]、GhCFE1A[79]、GhPFN2[80]、ADF1(actin depolymerizing factor)[81-82]、WLIM1a[83]等。轉錄水平上的顯著變化表明它們參與棉纖維發育,且可能通過與肌動蛋白互作參與調節棉纖維細胞骨架。體外試驗表明GhPLIM1與GhWLIM5能夠保護F-actin不被微絲解聚素B(Latrunculin B)解聚[77-78]。過量表達GhCFE1A或GhPFN2能夠顯著抑制棉纖維細胞伸長,可能是ABPs的過量表達打亂了肌動蛋白骨架網絡,從而導致纖維細胞伸長的終止[79-80]。下調表達顯著增加了棉纖維細胞中肌動蛋白微絲的豐度、細胞壁厚度和纖維素含量,使棉纖維長度和強度顯著提高[81],而在煙草中過表達則顯著降低其下胚軸長度和根毛數量,這表明可能在棉纖維發育中起重要的負調控作用。但過量表達,棉纖維細胞壁變得更薄和緊密,纖維長度、強度和細度得到改善。這可能與在陸地棉纖維發育中的雙重作用有關。WLIM1a不僅是肌動蛋白的成束者,還可作為轉錄因子激活苯丙氨酸脫氨酶-box(Phe ammonia lyase-box)類基因的表達,通過苯丙烷合成途徑參與棉纖維細胞壁木質素(lignin)的合成[83]。
木聚糖(xylan)是棉纖維細胞壁的一種重要的半纖維素(hemicellulose)組成成分。Li等[84]在棉纖維中鑒定了2個編碼糖基轉移酶(glycosyltransferases)的基因—和,其中在15 DPA和20 DPA棉纖維中特異表達。在擬南芥中分別過量表達這兩個基因,均能顯著增加木聚糖的積累,表明這兩個糖基轉移酶基因可能通過調節棉纖維細胞壁中木聚糖積累來影響棉纖維發育。尿苷二磷酸木糖(uridine diphosphatexylose,UDP-Xyl)是合成半纖維素(hemicellulose)和果膠多糖(pectic polysaccharide)等非纖維素物質的重要底物。在陸地棉中,Pan等[85-86]成功克隆了3個合成UDP-Xyl的重要基因—(UDP-glucuronate decarboxylase,尿苷二磷酸葡萄醛酸脫羧酶),轉錄水平上的變化表明它們參與棉纖維發育,但功能分析與調節機制還有待進一步的研究。木葡聚糖內轉糖苷酶/水解酶(xyloglucan endotransglucosylase/hydrolase,XTH)是植物細胞壁重構過程中的關鍵酶,擁有使細胞壁松弛的功能,因而具有通過調節棉纖維細胞壁的可塑性參與棉纖維發育的潛在性[87-89]。Michailidis等[87]在陸地棉中發現2個,但只有在棉纖維伸長期特異表達。Lee等[88]通過將在棉花中超表達進一步證實了該基因參與棉纖維伸長。Shao等[89]通過短纖維棉突變體(11)進一步明確9—15DPA是XTH活力增加和上調棉纖維伸長的關鍵時期。
通過轉基因的方法,Ruan等[90]證明了蔗糖合酶(sucrose synthase,Sus)在棉纖維細胞起始和伸長過程中發揮重要作用。之后,Jiang等[91]從陸地棉中克隆了一個Sus基因,發現過量表達能夠改善棉纖維長度和強度,這可能與其增加了棉纖維細胞壁的厚度相關。另外,半乳糖醛酸轉移酶(galacturonosyltransferase)[92]、果膠裂解酶(pectate lyase)[93]、磷脂酰肌醇4-激酶(phosphatidylinositol 4-kinase)[94]等也被報道參與棉纖維的發育。
脂肪酸不僅是棉籽作為油料作物的主要成分,其代謝也影響著棉纖維的發育,特別是極長鏈脂肪酸(very long-chain fatty acid,VLCFA),它具有顯著促進棉纖維發育的作用[95]。通過應用乙烯合成抑制劑和檢測轉錄水平,Qin等[95]初步推測VLCFA合成在乙烯合成的上游,意味著VLCFA是通過調控乙烯合成促進棉纖維伸長。Wang等[96]通過同位素標記相對和絕對定量(isobaric tag for relative and absolute quantitation,iTRAQ)技術和RNA-Seq技術,在陸地棉胚珠蛋白組中發現2 005個蛋白參與花期棉纖維發育過程,其中很多基因/蛋白富集到脂肪酸代謝路徑。目前,已經有幾個參與棉纖維發育的脂肪酸合成基因被報道,如VLCFA合成第3步反應的(3-hydroxyacyl-CoA dehydratase,3-酮酯酰-CoA脫水酶)[96]、脂肪酸延長第4步反應的(-2- enoyl-CoA reductase,反式烯脂酰-CoA還原酶)[97]、(3-ketoacyl-CoA synthase,3-酮酯酰乙酰輔酶A合成酶)[6, 98-99]及(3-ketoacyl-CoA reductase,3-酮酯酰乙酰輔酶A還原酶)[100]等。利用酵母遺傳互補法很好地確定了這些棉花基因的脂肪酸合成功能,但關于這些基因參與棉纖維發育的研究還僅限于轉錄水平。因而,關于脂肪酸代謝及其相關基因調控棉纖維發育的機制還有待進一步研究。
活性氧(reactive oxygen species,ROS)是氧分子的活躍形態,包括羥自由基(HO-)、超氧陰離子(O2·-)、過氧化氫(H2O2)、單態氧(1O2)[101],其在棉纖維發育過程中具有重要作用。1999年,Potikha等[102]首次發現H2O2在棉纖維次生細胞壁分化過程中可作為發育信號分子。Mei等[103]從陸地棉中克隆到一個編碼第三類過氧化物酶(peroxidase)的基因,其主要在快速伸長的棉纖維細胞中表達,可能通過影響ROS的產生參與調節棉纖維伸長。APX(ascorbate peroxidase)是另一種重要的ROS清除酶。GhAPX1A/D在棉纖維伸長期優勢表達[104]GhAPX1A/D,其對H2O2含量的調節被認為是棉花纖維伸長發育的關鍵調控機制之一[105]。最近,Zhang等[106]發現,的表達與棉花纖維品質顯著相關,并證明了能夠通過調控Ca2+流、ROS穩態等影響棉纖維的伸長及次生細胞壁的合成。
8.1 水通道蛋白(aquaporin)
Naoumkina等[107]利用RNA-seq技術對陸地棉單基因顯性突變體(Ligon lintless-1)和(Ligon lintless-2)的研究中發現,水通道蛋白是這兩個突變體中下調表達最顯著的基因家族之一,由此表明該家族在棉纖維發育過程中發揮重要作用。陸地棉中至少包含71個編碼水通道蛋白的基因[108],但目前被進一步證明與棉纖維發育相關的有5個PIPs(plasma- membrane intrinsic proteins)基因,其中屬于亞組[109],其余4個屬于亞組[110],根據在棉纖維中的優先或特異表達推測它們參與棉纖維的發育。在棉花中敲除GhPIP2亞組基因能夠顯著抑制棉纖維的伸長,而在酵母中過量表達這些基因則可使宿主細胞縱向顯著伸長。酵母雙雜交等試驗表明,GhPIP2;3能夠與GhPIP2;4和GhPIP2;6相互作用,推測這些棉花PIP2組蛋白通過選擇性地形成異源寡聚體參與棉纖維的快速伸長[110]。
8.2 14-3-3蛋白
在植物中,14-3-3蛋白是一種能夠與其他蛋白發生互作的、具有調節功能的酸性蛋白。目前,已報道的與棉纖維發育相關的編碼14-3-3蛋白的基因共6個,分別是[111]、、、、和[112]。Q-PCR表明它們在棉纖維快速伸長期高水平表達。在裂殖酵母()中分別表達、和3個基因,均能促進酵母細胞縱向生長[112]。在棉花中過表達能夠促進棉纖維伸長,而抑制、和則導致棉纖維細胞起始分化和伸長減緩[113]。這進一步表明在棉纖維細胞發育中發揮重要作用。此外,在轉(、和)棉花內,、、、、和等基因的表達也受到了顯著影響。蛋白互作試驗證明Gh14-3-3L與GhBZR1間能夠互作,并且GhBIN2對GhBZR1的磷酸化可增強這種作用。酵母單雜交表明GhBZR1能夠與和啟動子發生結合。綜合這些結果,推測Gh14-3-3可能通過作用于GhBZR1使其調控下游基因轉錄而參與棉纖維細胞發育[113]。
目前,中國科研工作者已經率先完成了A、D 2個二倍體棉,四倍體陸地棉和海島棉的基因組測序工作[114-119]。如果把基因比作一個個文字,那么基因組就像一本厚厚的字典,今后的工作就是為這些“字”加上注釋,并最終付諸于育種應用。全基因組生物信息學分析和轉錄組測序技術可以更快和更系統地發現目的基因,但棉花的轉基因不僅費時費力,而且許多基因型并不適合遺傳轉化,這使得棉花基因功能的驗證工作進展緩慢。雖然模式生物酵母細胞的伸長和擬南芥表皮毛的發育模型使研究棉纖維發育相關基因變得簡單,但這畢竟不能替代在棉花上進行基因功能驗證,而VIGS技術的出現為快速驗證棉纖維發育基因功能帶來了希望,因為該技術不需要棉花遺傳轉化,而且似乎不受棉種的基因型影響[120]。雖然在棉纖維發育相關基因的研究方面已經取得了可喜的成績,但與轉基因抗蟲棉相比,棉纖維品質遺傳改良還需要更扎實的理論積累和技術開發。
[1] Wilkins T A, Rajasekaran K, Anderson D M. Cotton biotechnology., 2000, 19(6): 511-550.
[2] John M E, Crow L J. Gene expression in cotton (L.) fiber: cloning of the mRNAs., 1992, 89(13): 5769-5773.
[3] Basra A S, Malik C P. Development of the cotton fiber., 1984, 89: 65-113.
[4] Kim H J, Triplett B A. Cotton fiber growth in planta and. Models for plant cell elongation and cell wall biogenesis., 2001, 127(4): 1361-1366.
[5] 潘玉欣, 馬峙英, 方宣鈞. 棉花纖維發育的遺傳機制及分子標記. 河北農業大學學報, 2005, 28(3): 6-11.
Pan Y X, Ma Z Y, Fang X J. The genetic mechanism of cotton f ibre developmentand its molecular tagging., 2005, 28(3): 6-11. (in Chinese)
[6] Shi Y H, Zhu S W, Mao X Z, Feng J X, Qin Y M, Zhang L, Cheng J, Wei L P, Wang Z Y, Zhu Y X. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation., 2006, 18(3): 651-664.
[7] Wang S, Wang J W, Yu N, Li C H, Luo B, Gou J Y, Wang L J, Chen X Y. Control of plant trichome development by a cotton fiber MYB gene., 2004, 16(9): 2323-2334.
[8] Oppenheimer D G, Herman P L, Sivakumaran S, Esch J, Marks M D. Agene required for leaf trichome differentiation inis expressed in stipules., 1991, 67(3): 483-493.
[9] Wada T, Tachibana T, Shimura Y, Okada K. Epidermal cell differentiation indetermined by ahomolog,., 1997, 277(5329): 1113-1116.
崗位巡檢,他給自己加碼,不僅增加頻次而且擴大檢查范圍,甚至連每個設備附件都不放過,即使是令人畏懼的超高壓反應釜前、高壓管道架上也絕不馬虎。一次,上夜班,董松江查到反應壩前。突然,他發現儀表指針急劇擺動,壓力上升到1560公斤!他當機立斷,采取了緊急停車措施,從而避免了放炮。
[10] Rerie W G, Feldmann K A, Marks M D. Thegene encodes a homeo domain protein required for normal trichome development in., 1994, 8(12): 1388-1399.
[11] Loguercio L L, Zhang J Q, Wilkins T A. Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (L.)., 1999, 261(4/5): 660-671.
[12] Li C H, Zhu Y Q, Meng Y L, Wang J W, Xu K X, Zhang T Z, Chen X Y. Isolation of genes preferentially expressed in cotton fibers by cDNA filter arrays and RT-PCR., 2002, 163(6): 1113-1120.
[13] Suo J F, Liang X O, Pu L, Zhang Y S, Xue Y B. Identification ofencoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (L.)., 2003, 1630(1): 25-34.
[14] Pu L, Li Q, Fan X P, Yang W C, Xue Y B. The R2R3 MYB transcription factoris required for cotton fiber development., 2008, 180(2): 811-820.
[15] Li X B, Cai L, Cheng N H, Liu J W. Molecular characterization of the cottongene that is preferentially expressed in fiber., 2002, 130(2): 666-674.
[16] Li X B, Fan X P, Wang X L, Cai L, Yang W C. The cottongene is functionally expressed in fibers and participates in fiber elongation., 2005, 17(3): 859-875.
[17] Machado A, Wu Y R, Yang Y M, Llewellyn D J, Dennis E S. The MYB transcription factorregulates early fibre and trichome development., 2009, 59(1): 52-62.
[18] Walford S A, Wu Y R, Llewellyn D J, Dennis E S. GhMYB25-like: a key factor in early cotton fibre development., 2011, 65(5): 785-797.
[19] WAN Q, GUAN X Y, YANG N N, WU H T, PAN M Q, LIU B L, FANG L, YANG S P, HU Y, YE W X, ZHANG H, MA P Y, CHEN J D, WANG Q, MEI G F, CAI C P, YANG D L, WANG J W, GUO W Z, ZHANG W H, CHEN X Y, ZHANG T Z. Small interfering RNAs from bidirectional transcripts ofregulate cotton fiber development., 2016, 210(4): 1298-1310.
[20] Hsu C Y, Jenkins J N, Saha S, Ma D P. Transcriptional regulation of the lipid transfer protein gene, 2005, 168(1): 167-181.
[21] Hsu C Y, An C, Saha S, Ma D P, Jenkins J N, Scheffler B, Stelly D M. Molecular and SNP characterization of two genome specific transcription factor genesand, 2008, 159(1/2): 259-273.
[22] Zhao M Z, Morohashi K, Hatlestad G, Grotewold E, Lloyd A. The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci., 2008, 135(11): 1991-1999.
[23] Zhang F, Zuo K J, Zhang J Q, Liu X A, Zhang L D, Sun X F, Tang K X. An L1 box binding protein, GbML1, interacts with GbMYB25 to control cotton fibre development., 2010, 61(13): 3599-3613.
[24] Walford S A, Wu Y R, Llewellyn D J, Dennis E S. Epidermal cell differentiation in cotton mediated by the homeodomain leucine zipper gene,., 2012, 71(3): 464-478.
[25] Shan C M, Shangguan X X, Zhao B, Zhang X F, Chao L M, Yang C Q, Wang L J, Zhu H Y, Zeng Y D, Guo W Z, Zhou B L, Hu G J, Guan X Y, Chen Z J, Wendel J F, Zhang T Z, Chen X Y. Control of cotton fibre elongation by a homeodomain transcription factor., 2014, 5: 5519.
[26] Guan X Y, Li Q J, Shan C M, Wang S, Mao Y B, Wang L J, Chen X Y. The HD-Zip IV genefrom cotton is a functional homologue of the., 2008, 134(1): 174-182.
[27] Xu B, Gou J Y, Li F G, Shangguan X X, Zhao B, Yang C Q, Wang L J, Yuan S, Liu C J, Chen X Y. A cotton BURP domain protein interacts with-expansin and their co-expression promotes plant growth and fruit production., 2013, 6(3): 945-958.
[28] Nakamura M, Katsumata H, Abe M, Yabe N, Komeda Y, Yamamoto K T, Takahashi T. Characterization of the class IV homeodomain-leucine zipper gene family in., 2006, 141(4): 1363-1375.
[29] Harmer S E, Orford S J, Timmis J N. Characterisation of six alpha-expansin genes in(upland cotton)., 2002, 268(1): 1-9.
[30] de Lucas M, Daviere J M, Rodriguez Falcon M, Pontin M, Iglesias Pedraz J M, Lorrain S, Fankhauser C, Blazquez M A, Titarenko E, Prat S. A molecular framework for light and gibberellin control of cell elongation., 2008, 451(7177): 480-484.
[31] Kaufmann K, Melzer R, Theissen G. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants., 2005, 347(2): 183-198.
[32] 鄭尚永, 郭余龍, 肖月華, 羅明, 侯磊, 羅小英, 裴炎. 棉花MADS框蛋白基因(GhMADS1)的克隆. 遺傳學報, 2004, 31(10): 1136-1141.
Zheng S Y, Guo Y L, Xiao Y H, Luo M, Hou L, Luo X Y, Pei Y. Cloning of a MADS box protein gene () from cotton (L.)., 2004, 31(10): 1136-1141. (in Chinese)
[33] Lightfoot D, Malone K, Timmis J, Orford S. Evidence for alternative splicing of MADS-box transcripts in developing cotton fibre cells., 2008, 279(1): 75-85.
[34] Shao S Q, Li B Y, Zhang Z T, Zhou Y, Jiang J, Li X B. Expression of a cotton MADS-box gene is regulated in anther development and in response to phytohormone signaling., 2010, 37(12): 805-816.
[35] Li Y, Ning H, Zhang Z T, Wu Y, Jiang J, Su S Y, Tian F Y, Li X B. A cotton gene encoding novel MADS-box protein is preferentially expressed in fibers and functions in cell elongation., 2011, 43(8): 607-617.
[36] Zhou Y, Li B Y, Li M, Li X J, Zhang Z T, Li Y, Li X B. A MADS-box gene is specifically expressed in fibers of cotton () and influences plant growth of transgenicin a GA-dependent manner., 2014, 75: 70-79.
[37] Gong S Y, Huang G Q, Sun X, Qin L X, Li Y, Zhou L, Li X B. Cotton, encoding a class II KNOX transcription factor, is involved in regulation of fibre development., 2014, 65(15): 4133-4147.
[38] Li E, Wang S, Liu Y, Chen J G, Douglas C J. OVATE FAMILY PROTEIN4 (OFP4) interaction with KNAT7 regulates secondary cell wall formation in., 2011, 67(2): 328-341.
[39] Bhargava A, Ahad A, Wang S, Mansfield S, Haughn G, Douglas C, Ellis B. The interacting MYB75 and KNAT7 transcription factors modulate secondary cell wall deposition both in stems and seed coat in., 2013, 237(5): 1199-1211.
[40] Hao J, Tu L L, Hu H Y, Tan J F, Deng F L, Tang W X, Nie Y C, Zhang X L. GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system., 2012, 63(17): 6267-6281.
[41] Wang M Y, Zhao P M, Cheng H Q, Han L B, Wu X M, Gao P, Wang H Y, Yang C L, Zhong N Q, Zuo J R, Xia G X. The cotton transcription factor TCP14 functions in auxin-mediated epidermal cell differentiation and elongation., 2013, 162(3): 1669-1680.
[42] Santner A, Estelle M. Recent advances and emerging trends in plant hormone signalling., 2009, 459(7250): 1071-1078.
[43] Wang H, Mei W Q, Qin Y M, Zhu Y X. 1-Aminocyclopropane- 1-carboxylic acid synthase 2 is phosphorylated by calcium-dependent protein kinase 1 during cotton fiber elongation., 2011, 43(8): 654-661.
[44] Sun Y, Veerabomma S, Abdel-Mageed H A, Fokar M, Asami T, Yoshida S, Allen R D. Brassinosteroid regulates fiber development on cultured cotton ovules., 2005, 46(8): 1384-1391.
[45] Luo M, Xiao Y H, Li X B, Lu X F, Deng W, Li D M, Hou L, Hu M Y, Li Y, Pei Y. GhDET2, a steroid 5α-reductase, plays an important role in cotton fiber cell initiation and elongation., 2007, 51(3): 419-430.
[46] Sun Y, Fokar M, Asami T, Yoshida S, Allen R D. Characterization of the brassinosteroid insensitive 1 genes of cotton., 2004, 54(2): 221-232.
[47] Sun Y, Veerabomma S, Fokar M, Abidi N, Hequet E, Payton P, Allen R D. Brassinosteroid signaling affects secondary cell wall deposition in cotton fibers., 2015, 65: 334-342.
[48] Yang Z R, Zhang C J, Yang X J, Liu K, Wu Z X, Zhang X Y, Zheng W, Xun Q Q, Liu C L, Lu L L, Yang Z E, Qian Y Y, Xu Z Z, Li C F, Li J, Li F G., a cotton brassinosteroid catabolism gene, modulates fiber elongation., 2014, 203(2): 437-448.
[49] Beasley C A, Ting I P. Effects of plant growth substances on in vitro fiber development from unfertilized cotton ovules., 1974, 61(2): 188-194.
[50] Yu X L, Cui B M, Ruan M B, Wen W, Wang S C, Di R, Peng M. Cloning and characterization of, a DELLA-like gene from cotton ()., 2015, 75(1): 235-244.
[51] Xiao Y H, Li D M, Yin M H, Li X B, Zhang M, Wang Y J, Dong J, Zhao J, Luo M, Luo X Y. Gibberellin 20-oxidase promotes initiation and elongation of cotton fibers by regulating gibberellin synthesis., 2010, 167(10): 829-837.
[52] Richards D E, King K E, Ait-ali T, Harberd N P. How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling., 2001, 52(1): 67-88.
[53] Wen W, Cui B M, Yu X L, Chen Q, Zheng Y Y, Xia Y J, Peng M. Functional analysis of cotton DELLA-Like genes that are differentially regulated during fiber development., 2012, 30(4): 1014-1024.
[54] Liao W B, Ruan M B, Cui B M, Xu N F, Lu J J, Peng M. Isolation and characterization of a GAI/RGA-like gene from., 2009, 58(1): 35-45.
[55] Aleman L, Kitamura J, Abdel-mageed H, Lee J, Sun Y, Nakajima M, Ueguchi-Tanaka M, Matsuoka M, Allen R. Functional analysis of cotton orthologs of GA signal transduction factors GID1 and SLR1., 2008, 68(1/2): 1-16.
[56] Chen J G, Du X M, Zhou X, Zhao H Y. Levels of cytokinins in the ovules of cotton mutants with altered fiber development., 1997, 16(3): 181-185.
[57] Zeng Q W, Qin S, Song S Q, Zhang M, Xiao Y H, Luo M, Hou L, Pei Y. Molecular cloning and characterization of a cytokinin dehydrogenase gene from upland cotton (L.)., 2012, 30(1): 1-9.
[58] Zhao J, Bai W Q, Zeng Q W, Song S Q, Zhang M, Li X B, Hou L, Xiao Y H, Luo M, Li D M, Luo X Y, Pei Y. Moderately enhancing cytokinin level by down-regulation ofexpression in cotton concurrently increases fiber and seed yield., 2015, 35: 60.
[59] Gialvalis S, Seagull R W. Plant hormones alter fiber initiation in unfertilized, cultured ovules of., 2001(5): 252-258.
[60] Zhang M, Zheng X L, Song S Q, Zeng Q W, Hou L, Li D M, Zhao J, Wei Y, Li X B, Luo M, Xiao Y H, Luo X Y, Zhang J F, Xiang C B, Pei Y. Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality., 2011, 29(5): 453-458.
[61] Samuel Yang S, Cheung F, Lee J J, Ha M, Wei N E, Sze S H, Stelly D M, Thaxton P, Triplett B, Town C D, Jeffrey Chen Z. Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton., 2006, 47(5): 761-775.
[62] Addicott F T. Abscisic Acid: correlations with abscission and with development in the cotton fruit., 1972, 49(4): 644-648.
[63] Gokani S J, Kumar R, Thaker V S. Potential role of abscisic acid in cotton fiber and ovule development., 1998, 17(1): 1-5.
[64] Jamet E, Canut H, Boudart G, Pont-Lezica R F. Cell wall proteins: a new insight through proteomics., 2006, 11(1): 33-39.
[65] Feng J X, Ji S J, Shi Y H, Xu Y, Wei G, Zhu Y X. Analysis of five differentially expressed gene families in fast elongating cotton fiber., 2004, 36(1): 51-56.
[66] 許文亮, 黃耿青, 王秀蘭, 汪虹, 李學寶. 一類新的編碼PRPs基因的分離及其在棉花纖維等組織細胞中的表達. 生物化學與生物物理進展, 2007, 34(5): 509-517.
Xu W L, Huang G Q, Wang X L, Wang H, Li X B. Molecular characterization and expression analysis offive novel genes encoding proline-rich proteinsin cotton ()., 2007, 34(5): 509-517. (in Chinese)
[67] Xu W L, Zhang D J, Wu Y F, Qin L X, Huang G Q, Li J, Li L, Li X B. Cottongene encoding a proline-rich protein is involved in fiber development., 2013, 82(4/5): 353-365.
[68] Huang G Q, Xu W L, Gong S Y, Li B, Wang X L, Xu D, Li X B. Characterization of 19 novel cottongenes and their expression profiling in fiber development and in response to phytohormones and salt stress., 2008, 134(2): 348-359.
[69] Liu H W, Shi R F, Wang X F, Pan Y X, Li Z K, Yang X L, Zhang G Y, Ma Z Y. Characterization and expression analysis of a fiber differentially expressed Fasciclin-like arabinogalactan protein gene in sea island cotton fibers., 2013, 8(7): e70185.
[70] Huang G Q, Gong S Y, Xu W L, Li W, Li P, Zhang C J, Li D D, Zheng Y, Li F G, Li X B. A fasciclin-like arabinogalactan protein, GhFLA1, is involved in fiber initiation and elongation of cotton., 2013, 161(3): 1278-1290.
[71] Kost B, Chua N H. The plant cytoskeleton: vacuoles and cell walls make the difference., 2002, 108(1): 9-12.
[72] SEAGULL R W. A quantitative electron microscopic study of changes in microtubule arrays and wall microfibril orientation during incotton fiber development., 1992, 101(3): 561-577.
[73] Seagull R W. The effects of microtubule and microfilament disrupting agents on cytoskeletal arrays and wall deposition in developing cotton fibers., 1990, 159(1): 44-59.
[74] Dixon D C, Seagull R W, Triplett B A. Changes in the accumulation of- and-tubulin isotypes during cotton fiber development., 1994, 105(4): 1347-1353.
[75] Whittaker D J, Triplett B A. Gene-specific changes in alpha-tubulin transcript accumulation in developing cotton fibers., 1999, 121(1): 181-188.
[76] He X C, Qin Y M, Xu Y, Hu C Y, Zhu Y X. Molecular cloning, expression profiling, and yeast complementation of 19 beta-tubulin cDNAs from developing cotton ovules., 2008, 59(10): 2687-2695.
[77] Li L, Li Y, Wang N N, Li Y, Lu R, Li X B. Cotton LIM domain-containing protein GhPLIM1 is specifically expressed in anthers and participates in modulating F-actin., 2015, 17(2): 528-534.
[78] Li Y, Jiang J, Li L, Wang X L, Wang N N, Li D D, Li X B. A cotton LIM domain-containing protein (GhWLIM5) is involved in bundling actin filaments., 2013, 66(0): 34-40.
[79] Lü F, Wang H H, Wang X Y, Han L B, Ma Y P, Wang S, Feng Z D, Niu X W, Cai C P, Kong Z S, Zhang T Z, Guo W Z. GhCFE1A, a dynamic linker between the ER network and actin cytoskeleton, plays an important role in cotton fibre cell initiation and elongation., 2015, 66(7): 1877-1889.
[80] Wang J, Wang H Y, Zhao P M, Han L B, Jiao G L, Zheng Y Y, Huang S J, Xia G X. Overexpression of a profilin () promotes the progression of developmental phases in cotton fibers., 2010, 51(8): 1276-1290.
[81] Wang H Y, Wang J, Gao P, Jiao G L, Zhao P M, Li Y, Wang G L, Xia G X. Down-regulation ofgene expression affects cotton fibre properties., 2009, 7(1): 13-23.
[82] Chi J N, Han Y C, Wang X F, Wu L Z, Zhang G Y, Ma Z Y. Overexpression of theactin-depolymerizing factor 1 gene mediates biological changes in transgenic tobacco., 2013, 31(4): 833-839.
[83] Han L B, Li Y B, Wang H Y, Wu X M, Li C L, Luo M, Wu S J, Kong Z S, Pei Y, Jiao G L, Xia G X. The dual functions ofin cell elongation and secondary wall formation in developing cotton fibers., 2013, 25(11): 4421-4438.
[84] Li L, Huang J F, Qin L X, Huang Y Y, Zeng W, Rao Y, Li J, Li X B, Xu W L. Two cotton fiber-associated glycosyltransferases, GhGT43A1 and GhGT43C1, function in hemicellulose glucuronoxylan biosynthesis during plant development., 2014, 152(2): 367-379.
[85] Pan Y X, Wang X F, Liu H W, Zhang G Y, Ma Z Y. Molecular cloning of three UDP-glucuronate decarboxylase genes that are preferentially expressed infibers from elongation to secondary cell wall synthesis., 2010, 53(5): 367-373.
[86] Pan Y X, Ma J, Zhang G Y, Han G Y, Wang X F, Ma Z Y. cDNA-AFLP profiling for the fiber development stage of secondary cell wall synthesis and transcriptome mapping in cotton., 2007, 52(17): 2358-2364.
[87] Michailidis G, Argiriou A, Darzentas N, Tsaftaris A. Analysis of xyloglucan endotransglycosylase/hydrolase (XTH) genes from allotetraploid () cotton and its diploid progenitors expressed during fiber elongation., 2009, 166(4): 403-416.
[88] Lee J, Burns T H, Light G, Sun Y, Fokar M, Kasukabe Y, Fujisawa K, Maekawa Y, Allen R D. Xyloglucan endotransglycosylase/hydrolase genes in cotton and their role in fiber elongation., 2010, 232(5): 1191-1205.
[89] Shao M Y, Wang X D, Ni M, Bibi N, Yuan S N, Malik W, Zhang H P, Liu Y X, Hua S J. Regulation of cotton fiber elongation by xyloglucan endotransglycosylase/hydrolase genes., 2011, 10(4): 3771-3782.
[90] Ruan Y L, Llewellyn D J, Furbank R T. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development., 2003, 15(4): 952-964.
[91] Jiang Y J, Guo W Z, Zhu H Y, Ruan Y L, Zhang T Z. Overexpression ofincreases plant biomass and improves cotton fiber yield and quality., 2011, 10(3): 301-312.
[92] Chi J N, Han G Y, Wang F X, Zhang G Y, XiangSun Y, Ma Z Y. Isolation and molecular characterization of a novel homogalacturonan galacturonosyl- transferase gene () from., 2009, 8(19): 4755-4764.
[93] Wang H H, Guo Y, Lv F, Zhu H Y, Wu S J, Jiang Y J, Li F F, Zhou B L, Guo W Z, Zhang T Z. The essential role ofgene, encoding a pectate lyase, in cell wall loosening by depolymerization of the de-esterified pectin during fiber elongation in cotton., 2010, 72(4/5): 397-406.
[94] Liu H W, Shi R F, Wang X F, Pan Y X, Zang G Y, Ma Z Y. Cloning of a phosphatidylinositol 4-kinase gene based on fiber strength transcriptome QTL mapping in the cotton species., 2012, 11(3): 3367-3378.
[95] Qin Y M, Hu C Y, Pang Y, Kastaniotis A J, Hiltunen J K, Zhu Y X. Saturated very-long-chain fatty acids promote cotton fiber andcell elongation by activating ethylene biosynthesis., 2007, 19(11): 3692-3704.
[96] Wang X C, Li Q, Jin X, Xiao G H, Liu G J, Liu N J, Qin Y M. Quantitative proteomics and transcriptomics reveal key metabolic processes associated with cotton fiber initiation., 2015, 114: 16-27.
[97] Song W Q, Qin Y M, Saito M, Shirai T, Pujol F M, Kastaniotis A J, Hiltunen J K, Zhu Y X. Characterization of two cotton cDNAs encoding trans-2-enoyl-CoA reductase reveals a putative novel NADPH-binding motif., 2009, 60(6): 1839-1848.
[98] Ji S J, Lu Y C, Feng J X, Wei G, Li J, Shi Y H, Fu Q, Liu D, Luo J C, Zhu Y X. Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array., 2003, 31(10): 2534-2543.
[99] Qin Y M, Pujol F M, Hu C Y, Feng J X, Kastaniotis A J, Hiltunen J K, Zhu Y X. Genetic and biochemical studies in yeast reveal that the cotton fibre-specificgene functions in fatty acid elongation., 2007, 58(3): 473-481.
[100] Qin Y M, Pujol F M A, Shi Y H, Feng J X, Liu Y M, Kastaniotis A J, Hiltunen J K, Zhu Y X. Cloning and functional characterization of two cDNAs encoding NADPH- dependent 3-ketoacyl-CoA reductased from developing cotton fibers., 2005, 15(6): 465-473.
[101] Shapiguzov A, Vainonen J P, Wrzaczek M, Kangasjarvi J. ROS-talk-how the apoplast, the chloroplast, and the nucleus get the message through., 2012, 3: 292.
[102] Potikha T, Johnson D, Delmer D A, Collins C. The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers., 1999, 119(3): 849-858.
[103] Mei W Q, Qin Y M, Song W Q, Li J, Zhu Y X. Cottonencoding plant class III peroxidase may be responsible for the high level of reactive oxygen species production that is related to cotton fiber elongation., 2009, 36(3): 141-150.
[104] Li H B, Qin Y M, Pang Y, Song W Q, Mei W Q, Zhu Y X. A cotton ascorbate peroxidase is involved in hydrogen peroxide homeostasis during fibre cell development., 2007, 175(3): 462-471.
[105] Guo K, Du X Q, Tu L L, Tang W X, Wang P C, Wang M J, Liu Z, Zhang X L. Fibre elongation requires normal redox homeostasis modulated by cytosolic ascorbate peroxidase in cotton ()., 2016, 67(11): 3289-3301.
[106] Zhang F, Jin X X, Wang L K, Li S F, Wu S, Cheng C Z, Zhang T Z, Guo W Z. A cotton annexin affects fiber elongation and secondary cell wall biosynthesis associated with Ca2+influx, ROS homeostasis, and actin filament reorganization., 2016, 171(3): 1750-1770.
[107] Naoumkina M, Thyssen G N, Fang D D. RNA-seq analysis of short fiber mutants Ligon-lintless-1 () and-2 () revealed important role of aquaporins in cotton (L.) fiber elongation., 2015, 15: 14.
[108] Park W, Scheffler B E, Bauer P J, Campbell B T. Identification of the family of aquaporin genes and their expression in upland cotton (L.)., 2010, 10: 142.
[109] Liu D Q, Tu L L, Wang L, Li Y J, Zhu L F, Zhang X L. Characterization and expression of plasma and tonoplast membrane aquaporins in elongating cotton fibers., 2008, 27(8): 1385-1394.
[110] Li D D, Ruan X M, Zhang J, Wu Y J, Wang X L, Li X B. Cotton plasma membrane intrinsic protein 2s (PIP2s) selectively interact to regulate their water channel activities and are required for fibre development., 2013, 199(3): 695-707.
[111] Shi H, Wang X, Li D, Tang W, Wang H, Xu W, Li X. Molecular characterization of cottongene preferentially expressed during fiber elongation., 2007, 34(2): 151-159.
[112] Zhang Z T, Zhou Y, Li Y, Shao S Q, Li B Y, Shi H Y, Li X B. Interactome analysis of the six cotton 14-3-3s that are preferentially expressed in fibres and involved in cell elongation., 2010, 61(12): 3331-3344.
[113] Zhou Y, Zhang Z T, Li M, Wei X Z, Li X J, Li B Y, Li X B. Cotton () 14-3-3 proteins participate in regulation of fibre initiation and elongation by modulating brassinosteroid signalling., 2015, 13(2): 269-280.
[114] Wang K B, Wang Z W, Li F G, Ye W W, Wang J Y, Song G L, Yue Z, Cong L, Shang H H, Zhu S L, Zou C S, Li Q, Yuan Y L, Lu C R, Wei H L, Gou C Y, Zheng Z Q, Yin Y, Zhang X Y, Liu K, Wang B, Song C, Shi N, Kohel R J, Percy R G, Yu J Z, Zhu Y X, Wang J, Yu S X. The draft genome of a diploid cotton., 2012, 44(10): 1098-1103.
[115] Li F G, Fan G Y, Wang K B, Sun F M, Yuan Y L, Song G L, Li Q, Ma Z Y, Lu C R, Zou C S, Chen W B, Liang X M, Shang H H, Liu W Q, Shi C C, Xiao G H, Gou C Y, Ye W W, Xu X, Zhang X Y, Wei H L, Li Z F, Zhang G Y, Wang J Y, Liu K, Kohel R J, Percy R G, Yu J Z, Zhu Y X, Wang J, Yu S X. Genome sequence of the cultivated cotton., 2014, 46: 567-572.
[116] Li F G, Fan G Y, Lu C R, Xiao G H, Zou C S, Kohel R J, Ma Z Y, Shang H H, Ma X F, Wu J Y, Liang X M, Huang G, Percy R G, Liu K, Yang W H, Chen W B, Du X M, Shi C C, Yuan Y L, Ye W W, Liu X, Zhang X Y, Liu W Q, Wei H L, Wei S J, Huang G D, Zhang X L, Zhu S J, Zhang H, Sun F M, Wang X F, Liang J, Wang J H, He Q, Huang L H, Wang J, Cui J J, Song G L, Wang K B, Xu X, Yu J Z, Zhu Y X, Yu S X. Genome sequence of cultivated Upland cotton (TM-1) provides insights into genome evolution., 2015, 33(5): 524-530.
[117] Zhang T Z, Hu Y, Jiang W K, Fang L, Guan X Y, Chen J D, Zhang J B, Saski C A, Scheffler B E, Stelly D M, Hulse-Kemp A M, Wan Q, Liu B L, Liu C X, Wang S, Pan M Q, Wang Y K, Wang D W, Ye W X, Chang L J, Zhang W P, Song Q X, Kirkbride R C, Chen X Y, Dennis E, Llewellyn D J, Peterson D G, Thaxton P, Jones D C, Wang Q, Xu X Y, Zhang H, Wu H T, Zhou L, Mei G F, Chen S Q, Tian Y, Xiang D, Li X H, Ding J, Zuo Q Y, Tao L N, Liu Y C, Li J, Lin Y, Hui Y Y, Cao Z S, Cai C P, Zhu X F, Jiang Z, Zhou B L, Guo W Z, Li R Q, Chen Z J. Sequencing of allotetraploid cotton (L. acc. TM-1) provides a resource for fiber improvement., 2015, 33(5): 531-537.
[118] Liu X, Zhao B, Zheng H J, Hu Y, Lu G, Yang C Q, Chen J D, Chen J J, Chen D Y, Zhang L.genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites., 2015, 5: 14139.
[119] Yuan D J, Tang Z H, Wang M J, Gao W H, Tu L L, Xin J, Chen L L, He Y H, Lin Z, Zhu L F. The genome sequence of Sea-Island cotton () provides insights into the allopolyploidization and development of superior spinnable fibres., 2015, 5: 17662.
[120] Qu J, Ye J, Geng Y F, Sun Y W, Gao S Q, Zhang B P, Chen W, Chua N H. Dissecting functions of KATANIN and WRINKLED1 in cotton fiber development by virus-induced gene silencing., 2012, 160(2): 738-748.
(責任編輯 李莉)
附表1 棉花纖維品質改良相關基因

Table 1 Major genes related to fiber quality improvement of cotton
Progress in Studies on Genes Related to Fiber Quality Improvement of Cotton
YANG Jun, MA Zhi-ying, WANG Xing-fen
(College of Agronomy, Hebei Agricultural University/North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Key Laboratory for Crop Germplasm Resources of Hebei, Baoding 071001, Hebei)
Cotton is an excellent and the most widely used natural fiber. With the improvement of living standards of people, the demand for more and better natural cotton fabrics is increasing continuously. Therefore, improving fiber yield and quality has become an important objective of cotton genetic breeding. To achieve this goal, cloning and functionally identifying cotton fiber development-related genes is the main foundation. Cotton fiber development consists of four distinct but overlapping stages, including fiber initiation, elongation (primary cell wall synthesis), secondary cell wall biosynthesis, and drying and maturation. The number of fibre cells per ovule is established at the initiation stage, and the length and strength of fibres are determined mainly at the stages of elongation and secondary cell wall synthesis. Cotton fiber development is a complicated and ordered process regulated by a large number of genes. To date, it has been reported that some genes play important roles in cotton fibre development, including various transcription factors, genes controlling the metabolism of plant hormones, cell wall and cytoskeleton-associated proteins, gene involving in the release or consumption of ROS, and lipid- and sugar- metabolism genes, etc. In order to provide reference for the future study of cotton fiber development and quality improvement, advances in the cloning and functional analysis of genes related to cotton fiber development were systematically summarized in this paper.
cotton; fiber; gene; quality improvement
2016-08-12;接受日期:2016-10-08
國家轉基因生物新品種培育科技重大專項(2014ZX08009-003)、國家“863”計劃(2013AA102601)
楊君,E-mail:yang22181@163.com。通信作者王省芬,E-mail:cotton@hebau.edu.cn