謝鐘波 杜紅祥 黃永德
【摘 要】 在互聯網金融迅猛發展的背景下,風險控制問題已然成為行業焦點,基于大數據的風控模型正在成為互聯網金融領域的熱門戰場。那么,大數據風控到底是怎么一回事呢?與傳統風控相比,它又是怎樣來進行風險識別的呢?本論文將對此進行了探討。
【關鍵詞】 互聯網金融 風險控制手段
金融的本質是風險管理,風控是所有金融業務的核心。典型的金融借貸業務例如抵押貸款、消費貸款、P2P、供應鏈金融、以及票據融資都需要數據風控識別欺詐用戶及評估用戶信用等級。傳統金融的風控主要利用了信用屬性強大的金融數據,一般采用20個緯度左右的數據,利用評分來識別客戶的還款能力和還款意愿。
互聯網金融公司利用大數據進行風控時,都是利用多維度數據來識別借款人風險。同信用相關的數據越多地被用于借款人風險評估,借款人的信用風險就被揭示的更充分,信用評分就會更加客觀,接近借款人實際風險。常用的互聯網金融大數據風控方式有以下幾種:
1 驗證借款人身份
驗證借款人身份的五因素認證是姓名、手機號、身份證號、銀行卡號、家庭地址。企業可以借助國政通的數據來驗證姓名、身份證號,借助銀聯數據來驗證銀行卡號和姓名,利用運營商數據來驗證手機號、姓名、身份證號、家庭住址。
如果借款人是欺詐用戶,這五個信息都可以買到。這個時候就需要進行人臉識別了,人臉識別等原理是調用國政通/公安局API接口,將申請人實時拍攝的照片/視頻同客戶預留在公安的身份證進行識別,通過人臉識別技術驗證申請人是否是借款人本人。
2 分析提交的信息來識別欺詐
線上申請時,申請人會按照貸款公司的要求填寫多維度信息例如戶籍地址,居住地址,工作單位,單位電話,單位名稱等。如果是欺詐用戶,其填寫的信息往往會出現一些規律,企業可根據異常填寫記錄來識別欺詐。例如填寫不同城市居住小區名字相同、填寫的不同城市,不同單位的電話相同、不同單位的地址街道相同、單位名稱相同、甚至居住的樓層和號碼都相同。還有一些填寫假的小區、地址和單位名稱以及電話等。
如果企業發現一些重復的信息和電話號碼,申請人欺詐的可能性就會很高。
3 分析客戶線上申請行為來識別欺詐
欺詐用戶往往事先準備好用戶基本信息,在申請過程中,快速進行填寫,批量作業,在多家網站進行申請,通過提高申請量來獲得更多的貸款。
企業可以借助于SDK或JS來采集申請人在各個環節的行為,計算客戶閱讀條款的時間,填寫信息的時間,申請貸款的時間等,如果這些申請時間大大小于正常客戶申請時間,例如填寫地址信息小于2秒,閱讀條款少于3秒鐘,申請貸款低于20秒等。用戶申請的時間也很關鍵,一般晚上11點以后申請貸款的申請人,欺詐比例和違約比例較高。
這些異常申請行為可能揭示申請人具有欺詐傾向,企業可以結合其他的信息來判斷客戶是否為欺詐用戶。
4 利用黑名單和灰名單識別風險
互聯網金融公司面臨的主要風險為惡意欺詐,70%左右的信貸損失來源于申請人的惡意欺詐。客戶逾期或者違約貸款中至少有30%左右可以收回,另外的一些可以通過催收公司進行催收,M2逾期的回收率在20%左右。
市場上有近百家的公司從事個人征信相關工作,其主要的商業模式是反欺詐識別,灰名單識別,以及客戶征信評分。反欺詐識別中,重要的一個參考就是黑名單,市場上領先的大數據風控公司擁有將近1000萬左右的黑名單,大部分黑名單是過去十多年積累下來的老賴名單。
5 利用移動設備數據識別欺詐
行為數據中一個比較特殊的就是移動設備數據反欺詐,公司可以利用移動設備的位置信息來驗證客戶提交的工作地和生活地是否真實,另外來可以根據設備安裝的應用活躍來識別多頭借貸風險。
欺詐用戶一般會使用模擬器進行貸款申請,移動大數據可以識別出貸款人是否使用模擬器。欺詐用戶也有一些典型特征,例如很多設備聚集在一個區域,一起申請貸款。欺詐用戶還有可能不停更換SIM卡和手機,利用SIM卡和手機綁定時間和頻次可以識別出部分欺詐用戶。
6 利用司法信息評估風險
涉毒涉賭以及涉嫌治安處罰的人,其信用情況不是太好,特別是涉賭和涉毒人員,這些人是高風險人群,一旦獲得貸款,其貸款用途不可控,貸款有可能不會得到償還。尋找這些涉毒涉賭的嫌疑人,可以利用當地的公安數據,但是難度較大。也可以采用移動設備的位置信息來進行一定程度的識別。如果設備經常在半夜出現在賭博場所或賭博區域例如澳門,其申請人涉賭的風險就較高。
總結:總之,互聯網金融的大數據風控采用了用戶社會行為和社會屬性數據,在一定程度上補充了傳統風控數據維度不足的缺點,能夠更加全面識別出欺詐客戶,評價客戶的風險水平。互聯網金融企業通過分析申請人的社會行為數據來控制信用風險,將資金借給合格貸款人,保證資金的安全。
【參考文獻】
[1] 葉蔚.網絡金融概論.[M]北京大學出版社.2006.
[2] 韓壯飛.互聯網金融發展研究[D].河南大學.2013.