999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

缺血性卒中后免疫機制及免疫調節治療進展

2017-01-11 12:01:39趙博王佳偉
中國卒中雜志 2017年5期

趙博,王佳偉

缺血性卒中是世界范圍內致死和致殘的主要原因之一[1],免疫因素及炎癥反應在缺血性卒中的病理生理過程中起重要作用[2]。卒中介導損傷可能對免疫系統產生影響,反之,免疫和炎癥也參與急性腦損傷和康復[3-4]。炎癥因子[如損傷相關模式分子(damage-associated molecular patterns,DAMPs)、C-反應蛋白(C-reaction protein,CRP)、白細胞介素(interleukin,IL)-1、IL-6、腫瘤壞死因子(tumor necrosis factor,TNF)、干擾素(interferon,IFN)等]和細胞信號通路(如CD3+T細胞、CD3+CD4+T細胞、CD3+CD8+T細胞及CD4+CD25+FoxP3+Tregs細胞等)通過多種途徑來調節機體免疫反應,這為腦缺血性損害的治療提供了廣闊的前景[5]。近幾年,免疫調節劑作為卒中后治療的輔助用藥,其對卒中后免疫系統的影響逐漸被重視。多項研究發現,缺血性卒中后針對免疫通路的治療可以延長溶栓時間窗,并且改善患者的遠期預后。本文主要對近幾年缺血性卒中后免疫機制及免疫調節劑應用的相關研究進展進行綜述。

1 缺血性卒中后免疫系統變化機制

1.1 固有免疫反應 缺血性卒中可使補體激活以及發生氧化應激反應,直接損害局部的血管系統,導致血管內皮下抗原的暴露、血管內皮細胞死亡和血腦屏障(blood brain barrier,BBB)完整性的破壞。機體調動固有免疫系統,使免疫細胞附著于血管壁,上調趨化因子和黏附分子的表達,使其滲透入腦實質。中性粒細胞、單核細胞和巨噬細胞等固有免疫細胞進一步導致血管損傷和炎癥反應。免疫細胞通過釋放基質金屬蛋白酶(matrix metallo-proteinases,MMP)-9等炎性介質,導致BBB的破壞和梗死面積的擴大[6]。在腦實質中,星形膠質細胞和小膠質細胞也被炎癥和死亡神經元釋放的DAMPs激活。DAMPs與免疫細胞表面的Toll樣受體(toll-like receptors,TLRs)結合激活和放大固有免疫反應,加重缺血性損傷,但短暫激活TLRs可以誘導免疫耐受[7-8]。這些反應性星形膠質細胞和小膠質細胞進一步刺激白細胞的聚集,釋放促炎趨化因子,形成一個血管損傷、炎癥和細胞死亡的惡性循環[9]。

1.2 適應性免疫反應 適應性免疫反應主要由效應T細胞介導,后者是由死亡的神經元釋放的DAMPs和腦組織特異性的抗原刺激產生[10]。這些T細胞聚集到缺血性損傷的大腦區域,穿過受損的BBB后,于腦實質內釋放炎性細胞因子,包括CRP、IL-1、IL-6、TNF、IFN等,導致遲發性神經毒性反應[11-12]。最終炎癥過程結束是通過調節性T細胞(Tregs)和巨噬細胞產生的IL-10及轉化生長因子-β(transforming growth factor-β,TGF-β)聯合作用,抑制輔助T細胞介導的炎癥反應,促進神經元的修復[13-14]。Tregs主要起免疫負調節作用,有抑制抗原特異性T細胞增殖及抗原呈遞細胞的功能,在免疫耐受中發揮重要作用。動物試驗觀察到,在缺血性卒中后的3 d,Tregs在缺血側大腦半球累積,脾臟T淋巴細胞中Tregs百分比升高[15]。Tregs在病程后期(14~30 d)在缺血側大腦半球明顯累積和擴散[16]。在Tregs治療腦梗死動物的研究中觀察到,Tregs可使腦梗死體積減小且減輕大腦炎癥反應[17]。擴增體內Tregs可減輕炎癥反應和改善預后[18]。

1.3 卒中后免疫抑制綜合征 2005年,Meisel等[19]提出了卒中誘導的免疫抑制綜合征(strokeinduced immunodepression syndrome,SIDS),其特征是急性卒中后出現快速和持續的細胞免疫反應抑制,主要表現為廣泛的淋巴細胞凋亡和功能障礙。SIDS實質為神經-內分泌-免疫調節機制:①缺血性卒中→應激→下丘腦-垂體-腎上腺軸活動增強→腎上腺皮質激素分泌增加→外周血T淋巴細胞數下降;②缺血性卒中→交感神經系統活動增強→腎上腺及交感神經末梢釋放兒茶酚胺類激素增加→外周血、肝臟、脾臟T淋巴細胞數下降[20]。

SIDS對于機體具有雙向調節作用。一方面,卒中后免疫抑制是一種適應性反應,阻止中樞神經系統不必要的自身免疫抗體,從而起到神經保護作用[21]。動物試驗及臨床試驗證明,削弱固有免疫和適應性免疫反應可改善卒中預后。動物實驗表明,抑制性CD8+及CD4+T細胞遷移到中樞神經系統和直接破壞細胞毒性CD8+T細胞可使梗死體積減小及缺血后炎癥反應減弱[22]。Zierath等[23]在大鼠實驗中發現,在再灌注時分別給予細菌脂多糖(lipopoly-saccharide,LPS)能模擬炎癥刺激,與其他各組比較,卒中后感染組大鼠死亡率更高,神經功能評分更差,表明炎性反應可使卒中結局惡化,還會增加腦梗死后腦萎縮程度。另一方面,卒中后免疫抑制將會導致感染如肺炎和尿路感染等發病率的增加[21]。卒中發病后7 d內發生的感染為卒中相關性感染(strokeassociated infection,SAI)[24]。亞急性皮質醇增多癥與卒中后24 h不良預后[25]及死亡率增高相關[26]。Vogelgesang等[27]發現,腦梗死后外周血淋巴細胞、CD3+T細胞、CD3+CD4+T細胞、CD3+CD8+T細胞絕對值在發病當天即下降,之后逐漸上升,于發病后14 d恢復至與健康對照組無差異,卒中后感染者的T淋巴細胞亞群下降較非感染者下降更為明顯。Urra等[28]通過觀察46例急性缺血性卒中及腦出血患者發現,外周血中淋巴細胞、CD3+T細胞、CD3+CD4+T細胞、CD3+CD8+T細胞及CD4+CD25+FoxP3+Tregs細胞在發病后當天開始下降,第2天降至最低,后逐漸回升;肺部感染者細胞數明顯低于非感染者。T淋巴細胞減少可能作為卒中后感染的一個預測因素,通過檢測T淋巴細胞亞群的變化,可以輔助判斷卒中患者的免疫狀態,用于指導治療和判斷預后[29]。

2 免疫調節劑在卒中后的應用

對固有免疫與適應性免疫以及炎癥的調節可以促使免疫反應由組織損傷向神經保護轉換[5]。卒中后針對免疫通路的治療可能延長溶栓時間窗,并且改善遠期預后。免疫調節劑作為輔助用藥,為卒中的治療開辟了一條新思路。

2.1 芬戈莫德(Fingolimod,FTY720) 芬戈莫德作為目前受到廣泛關注的免疫調節劑之一,2010年成為首個通過美國食品及藥物管理局(Food and Drug Administration,FDA)批準的治療多發性硬化(multiple sclerosis,MS)的口服生物有效性藥物。其活性形式FTY720-磷酸是1-磷酸-鞘氨醇(sphingosine 1-phosphate,S1P)類似物,與細胞膜S1P受體結合。

F T Y 720的主要作用有:①免疫調節:FTY720與T淋巴細胞和B淋巴細胞S1P受體結合,抑制淋巴細胞再循環從初級淋巴器官排出[30-31]。通過減少中樞神經系統淋巴細胞浸潤的數量,有效地降低適應性免疫反應對中樞神經系統的直接神經毒性作用,降低細胞因子誘導的微循環系統周圍的缺血繼發的炎性損傷[32-34]。②血管保護作用:FTY720可誘導星形膠質細胞釋放粒細胞/巨噬細胞集落刺激因子(granulocyte-macrophage colony stimulating factor,GM-CSF),減少與TNF-α和IFN-γ接觸的內皮細胞的死亡[35]。GMCSF也可降低白細胞在血管壁的黏附和局部血小板的激活,抑制血栓形成和炎癥反應,改善微血管功能[32,36]。此外,S1P受體也表達于血管內皮細胞,FTY720與之結合可以直接提高BBB的完整性[37]。③直接神經保護作用:FTY720通過直接與神經元受體相互作用,促進抗凋亡因子的產生,且增加缺血性損傷的恢復力,從而起到神經保護作用[38]。

Liu等[39]回顧總結了2013年之前的9項關于FTY720對缺血性卒中治療的動物試驗,其中8項研究結果均顯示FTY720能減少腦梗死體積且改善功能預后。2014年天津市神經病學研究所進行了一項臨床試驗,發現急性缺血性卒中患者發病72 h內口服FTY720可限制腦缺血繼發損傷,降低微血管通透性,減輕神經損傷,并且促進神經功能恢復[40-41]。鑒于FTY720對內皮屏障的保護功能,重組組織型纖溶酶原激活物(recombinant tissue plasminogen activator,rt-PA)聯合FTY720療法為溶栓時間窗內的缺血性卒中開辟了一條新的治療思路[42]。在血栓栓塞性腦梗死小鼠模型中觀察到,FTY720可減低rt-PA治療所致的出血轉換并促進神經功能恢復[43]。臨床試驗發現,在急性缺血性卒中患者溶栓后第1天,FTY720聯合rt-PA治療與單獨rt-PA治療組相比,可以抑制病灶的擴大,減少出血和提高神經功能評分[44]。

2.2 他汀類藥物 除了調節血脂代謝的作用,他汀類藥物在缺血性卒中中的抗炎作用逐漸被重視。動物實驗發現,預防性他汀治療可以減輕缺血性腦損傷,促進腦灌注及神經功恢復,并且可以延長rt-PA治療缺血性卒中的時間窗[45-46]。

臨床試驗觀察到,缺血性卒中發病24 h內應用辛伐他汀治療的患者較發病7 d后加用辛伐他汀治療的患者,血清中的TNF-α水平輕度降低[47]。一項對臨床前研究的薈萃分析顯示,服用他汀類藥物后大腦中動脈阻塞所致腦梗死體積平均減小11.2%[48]。他汀類藥物減慢動脈粥樣化形成的作用一部分源于調節脂質代謝,但在低動脈硬化風險患者中也發現其可降低心肌梗死和缺血性卒中風險[49]。臨床試驗觀察到,在無高脂血癥但高敏C-反應蛋白水平升高的健康人群中,瑞舒伐他汀也可顯著降低主要心血管事件的發生率[50]。

綜上所述,免疫系統在缺血性卒中病理過程中發揮的重要作用正逐漸得到揭示,但其機制復雜,還有待更加深入的研究。卒中會打破神經系統與免疫系統之間的平衡,造成內穩態失衡。因此,適當的免疫調節治療是需要的。未來需要更多的大樣本臨床試驗,進一步闡明免疫調節劑對于缺血性卒中的有效性及安全性。相信在不久的將來可以看到免疫調節劑在臨床中的廣泛應用。

1 Sacco RL,Chong JY,Prabhakaran S,et al.Experimental treatments for acute ischemic stroke[J].Lancet,2007,369:331-341.

2 Matthew D. Hammond,Youxi Ai,et al. Gr1+macrophages and dendritic cells dominate the in fl ammatory in fi ltrate 12 h after experimental intracerebral hemorrhage[J]. Transl Stroke Res,2012,3:125-131.

3 Emsley HC,Hopkins SJ. Post-stroke immunodepression and infection:an emerging concept[J]. Infect Disord Drug Targets,2010,10:91-97.

4 Fathali N,Ostrowski RP,Hasegawa Y,et al. Splenic immune cells in experimental neonatal hypoxiaischemia[J]. Transl Stroke Res,2013,4:208-219.

5 Picascia A,Grimaldi V,Iannone C,et al. Innate and adaptive immune response in stroke:Focus on epigenetic regulation[J]. J Neuroimmunol,2015,289:111-120.

6 Chaturvedi M,Kaczmarek L. MMP-9 inhibition:a therapeutic strategy in ischemic stroke[J]. Mol Neurobiol,2014,49:563-573.

7 Famakin BM,Mou Y,Johnson K,et al. A new role for downstream Toll-like receptor signaling in mediating immediate early gene expression during focal cerebral ischemia[J]. J Cereb Blood Flow Metab,2014,34:258-267.

8 Fadakar K,Dadkhahfar S,Esmaeili A,et al. The role of Toll-like receptors (TLRs) in stroke[J]. Rev Neurosci,2014,25:699-712.

9 Iadecola C,Anrather J. The immunology of stroke:from mechanisms to translation[J]. Nat Med,2011,17:796-808.

10 Chamorro A,Meisel A,Planas AM,et al. The immunology of acute stroke[J]. Nat Rev Neurol,2012,8:401-410.

11 Yilmaz G,Arumugam TV,Stokes KY,et al. Role of T lymphocytes and interferon-gamma in ischemic stroke[J]. Circulation,2006,113:2105-2112.

12 Planas AM,Gomez-Choco M,Urra X,et al. Brainderived antigens in lymphoid tissue of patients with acute stroke[J]. J Immunol,2012,188:2156-2163.

13 Kamel H,Iadecola C. Brain-immune interactions and ischemic stroke:clinical implications[J]. Arch Neurol,2012,69:576-581.

14 Ziv Y,Ron N,Butovsky O,et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood[J]. Nat Neurosci,2006,9:268-275.

15 Gelderblom M,Leypoldt F,Steinbach K,et al.Temporal and spatial dynamics of cerebral immune cell accumulation in stroke[J]. Stroke,2009,40:1849-1857.

16 Stubbe T,Ebner F,Richter D,et al. Regulatory T cells accumulate and proliferate in the ischemic hemisphere for up to 30 days after MCAO[J]. J Cereb Blood Flow Metab,2013,33:37-47.

17 Brea D,Agulla J,Rodriguez-Yanez M,et al.Regulatory T cells modulate in fl ammation and reduce infarct volume in experimental brain ischaemia[J]. J Cell Mol Med,2014,18:1571-1579.

18 Na SY,Mracsko E,Liesz A,et al. Ampli fi cation of regulatory T cells using a CD28 superagonist reduces brain damage after ischemic stroke in mice[J]. Stroke,2015,46:212-220.

19 Meisel C,Schwab JM,Prass K,et al. Central nervous system injury-induced immune de fi ciency syndrome[J].Nat Rev Neurosci,2005,6:775-786.

20 Gill D,Veltkamp R. Dynamics of T cell responses after stroke[J]. Curr Opin Pharmacol,2016,26:26-32.

21 Famakin BM. The immune response to acute focal cerebral ischemia and associated post-stroke immunodepression:a focused review[J]. Aging Dis,2014,5:307-326.

22 Liesz A,Zhou W,Mracsko E,et al. Inhibition of lymphocyte traf fi cking shields the brain against deleterious neuroin fl ammation after stroke[J]. Brain,2011,134:704-720.

23 Zierath D,Thullbery M,Hadwin J,et al. CNS immune responses following experimental stroke[J].Neurocrit Care,2010,12:274-284.

24 Vargas M,Horcajada JP,Obach V,et al. Clinical consequences of infection in patients with acute stroke:is it prime time for further antibiotic trials?[J]. Stroke,2006,37:461-465.

25 Weidenfeld J,Leker RR,Gai N,et al. The function of the adrenocortical axis in permanent middle cerebral artery occlusion:effect of glucocorticoids on the neurological outcome[J]. Brain Res,2011,1407:90-96.

26 Marklund N,Peltonen M,Nilsson TK,et al. Low and high circulating cortisol levels predict mortality and cognitive dysfunction early after stroke[J]. J Intern Med,2004,256:15-21.

27 Vogelgesang A,Grunwald U,Langner S,et al.Analysis of lymphocyte subsets in patients with stroke and their in fl uence on infection after stroke[J]. Stroke,2008,39:237-241.

28 Urra X,Cervera A,Villamor N,et al. Harms and bene fi ts of lymphocyte subpopulations in patients with acute stroke[J]. Neuroscience,2009,158:1174-1183.

29 Shim R,Wong CH. Ischemia,immunosuppression and infection--tackling the predicaments of post-stroke complications[J]. Int J Mol Sci,2016,17.

30 Thangada S,Khanna KM,Blaho VA,et al. Cellsurface residence of sphingosine 1-phosphate receptor 1 on lymphocytes determines lymphocyte egress kinetics[J]. J Exp Med,2010,207:1475-1483.

31 Hunter SF,Bowen JD,Reder AT. The direct effects of fi ngolimod in the central nervous system:implications for relapsing multiple sclerosis[J]. CNS Drugs,2016,30:135-147.

32 Kraft P,G?b E,Schuhmann MK,et al. FTY720 ameliorates acute ischemic stroke in mice by reducing thrombo-in fl ammation but not by direct neuroprotection[J]. Stroke,2013,44:3202-3210.

33 Czech B,Pfeilschifter W,Mazaheri-Omrani N,et al. The immunomodulatory sphingosine 1-phosphate analog FTY720 reduces lesion size and improves neurological outcome in a mouse model of cerebral ischemia[J]. Biochem Biophys Res Commun,2009,389:251-256.

34 Wei Y,Yemisci M,Kim HH,et al. Fingolimod provides long-term protection in rodent models of cerebral ischemia[J]. Ann Neurol,2011,69:119-129.

35 Spampinato SF,Obermeier B,Cotleur A,et al.Sphingosine 1 phosphate at the blood brain barrier:can the modulation of S1P receptor 1 in fl uence the response of endothelial cells and astrocytes to in fl ammatory stimuli?[J]. PLoS One,2015,10:e0133392.

36 Kleinschnitz C,Kraft P,Dreykluft A,et al. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature[J]. Blood,2013,121:679-691.

37 Prager B,Spampinato SF,Ransohoff RM. Sphingosine 1-phosphate signaling at the blood-brain barrier[J].Trends Mol Med,2015,21:354-363.

38 Hasegawa Y,Suzuki H,Sozen T,et al. Activation of sphingosine 1-phosphate receptor-1 by FTY720 is neuroprotective after ischemic stroke in rats[J]. Stroke,2010,41:368-374.

39 Liu J1,Zhang C,Tao W,Liu M. Systematic review and meta-analysis of the ef fi cacy of sphingosine-1-phosphate (S1P) receptor agonist FTY720 ( fi ngolimod)in animal models of stroke[J]. Int J Neurosci,2013,123:163-169.

40 Fu Y,Zhang N,Ren L,et al. Impact of an immune modulator fi ngolimod on acute ischemic stroke[J]. Proc Natl Acad Sci,2014,111:18 315-18 320.

41 Aoki T,Sumii T,Mori T,et al. Blood-brain barrier disruption and matrix metalloproteinase-9 expression during reperfusion injury:mechanical versus embolic focal ischemia in spontaneously hypertensive rats[J].Stroke,2002,33:2711-2717.

42 Cai A,Schlunk F,Bohmann F,et al. Coadministration of FTY720 and rt-PA in an experimental model of large hemispheric stroke-no in fl uence on functional outcome and blood-brain barrier disruption[J]. Exp Transl Stroke Med,2013,5:11.

43 Campos F,Qin T,Castillo J,et al. Fingolimod reduces hemorrhagic transformation associated with delayed tissue plasminogen activator treatment in a mouse thromboembolic model[J]. Stroke,2013,44:505-511.

44 Zhu Z,Fu Y,Tian D,et al. Combination of the immune modulator fi ngolimod with alteplase in acute ischemic stroke:a pilot trial[J]. Circulation,2015,132:1104-1112.

45 Kawashima S,Yamashita T,Miwa Y,et al. HMG-CoA reductase inhibitor has protective effects against stroke events in stroke-prone spontaneously hypertensive rats[J]. Stroke,2003,34:157-163.

46 Chen J,Zhang ZG,Li Y,et al. Statins induce angiogenesis,neurogenesis,and synaptogenesis after stroke[J]. Ann Neurol,2003,53:743-751.

47 Szczepanska-Szerej A,Kurzepa J,Wojczal J,et al. Simvastatin-induced prevention of the increase in TNF-alpha level in the acute phase of ischemic stroke[J]. Pharmacol Rep,2007,59:94-97.

48 Baryan HK,Allan SM,Vail A,et al. Systematic review and meta-analysis of the ef fi cacy of statins in experimental stroke[J]. Int J Stroke,2012,7:150-156.

49 Smith CJ,Denes A,Tyrrell PJ,et al. Phase II antiin fl ammatory and immune-modulating drugs for acute ischaemic stroke[J]. Expert Opin Investig Drugs,2015,24:623-643.

50 Ridker PM,Danielson E,Fonseca FA,et al.Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein[J]. N Engl J Med,2008,359:2195-207.

【點睛】缺血性卒中后免疫反應激活或抑制的機制復雜,針對性的免疫調節劑臨床研究結果尚不確定,但前景較廣。

主站蜘蛛池模板: 91系列在线观看| 欧美自慰一级看片免费| 国产全黄a一级毛片| 中文字幕av一区二区三区欲色| 黄色网页在线播放| 国外欧美一区另类中文字幕| 久久精品aⅴ无码中文字幕| 黄色网在线免费观看| 真实国产乱子伦视频| 国内精品免费| 1024国产在线| 日韩精品一区二区三区swag| 国产精品微拍| 97国产在线观看| 国产微拍一区二区三区四区| 99国产精品免费观看视频| 国产福利一区二区在线观看| 精品日韩亚洲欧美高清a| 亚洲美女一级毛片| 久久精品中文无码资源站| 久久久久人妻一区精品| 国产a v无码专区亚洲av| av一区二区三区在线观看 | 国产理论最新国产精品视频| 人人澡人人爽欧美一区| 国产色网站| 欧美精品一区在线看| 久久久久亚洲精品无码网站| 97在线观看视频免费| 国产亚洲精品yxsp| 国产精品无码AV片在线观看播放| 国产流白浆视频| 久久久受www免费人成| 国产精品护士| 在线欧美日韩国产| 伊人中文网| A级全黄试看30分钟小视频| 天堂岛国av无码免费无禁网站| 欧美不卡视频在线观看| 亚洲综合九九| 久久婷婷六月| 91青青在线视频| 亚洲熟女偷拍| 国产精品一区二区久久精品无码| 国产精品无码影视久久久久久久 | 亚洲高清免费在线观看| 国产对白刺激真实精品91| 亚洲中字无码AV电影在线观看| 日本成人在线不卡视频| www.91在线播放| 天天综合网站| 欧美日韩一区二区三| 亚洲欧洲日韩综合| 亚洲精品男人天堂| 好吊色妇女免费视频免费| 狠狠久久综合伊人不卡| 精品综合久久久久久97超人| 亚洲欧美另类专区| 国产激情无码一区二区三区免费| 久久99久久无码毛片一区二区| 久久香蕉国产线看观看精品蕉| 亚洲欧洲日产国产无码AV| 久久久久亚洲精品无码网站| 久久久精品无码一二三区| 26uuu国产精品视频| 草草线在成年免费视频2| 91系列在线观看| 国产欧美成人不卡视频| 欧美国产日韩在线| 欧美精品成人一区二区视频一| 影音先锋丝袜制服| 亚洲香蕉在线| a级毛片一区二区免费视频| 2020最新国产精品视频| 国产人妖视频一区在线观看| 高清久久精品亚洲日韩Av| 5388国产亚洲欧美在线观看| 亚洲精品视频免费| a级毛片一区二区免费视频| 有专无码视频| 99精品高清在线播放| 日韩欧美中文在线|