王 梓, 呂遷洲, 李曉燁
復旦大學附屬中山醫院藥劑科,上海 200032
·綜述·
MicroRNA在心肌梗死臨床診療中的應用進展
王 梓, 呂遷洲, 李曉燁*
復旦大學附屬中山醫院藥劑科,上海 200032
微小RNA(micro-ribonucleic acid, microRNA/miRNA)是一種小的非編碼RNA,在調控基因的轉錄過程中起著重要作用。近年來研究發現,miRNA參與心肌細胞發育、增殖、凋亡等進程,可作為一種新型的生物標志物,在急性心肌梗死的早期診斷、預后甚至治療等方面扮演重要角色。然而,目前miRNA在檢測技術、機制研究及臨床試驗方面仍面臨諸多問題和挑戰。本文就上述系列內容作一綜述。
microRNA;急性心肌梗死;心血管疾病;生物標志物
微小RNA(micro-ribonucleic acid, microRNA/miRNA)是一種包含約20~23個核苷酸的短鏈非編碼RNA,在調控基因轉錄的過程中扮演著重要角色。1993年,Victor Ambros和Gary Ruvkin實驗室最早在線蟲中證實了miRNA的存在[1]。miRNA通常由細胞外轉運體(如脂蛋白等)轉運,也可以微泡或微囊的形式包裹起來,因此miRNA能夠穩定地存在于血液循環中。據估計,人類基因組編碼了1 000多種miRNA,這些miRNA調控著約1/3的基因[2]。近年來研究[3]發現,這些miRNA調控著許多細胞進程,如細胞增殖、分化、發育和凋亡。同時,在臨床上,miRNA不僅在腫瘤中扮演生物標志物的角色,也能發揮對心血管疾病的診療作用[4-5]。
急性心肌梗死(acute myocardial infarction, AMI)是死亡率最高的心血管疾病之一,明確的早期診斷在AMI的治療中至關重要。長期以來,心肌肌鈣蛋白T(cardiac troponin T, cTnT)或高敏心肌肌鈣蛋白T(high-sensitivity cardiac troponin, hs-cTnT)是診斷AMI的金標準[6]。然而,cTnT或hs-cTnT的特異性較低,一些其他疾病(如高血壓危象、腎衰、心衰等)也會引起cTnT升高,容易誤診。另外,cTnT或hs-cTnT的升高往往出現在AMI發生后3~6 h,可能延誤診斷[7]。因此,尋找更加敏感、更加特異的生物標志物,盡早診斷AMI,能夠降低患者死亡率。近年來的研究[8-9]顯示,一些miRNA在AMI中會發生改變,提示其可作為新型的生物標志物。
1.1 miRNA在心肌梗死早期診斷中的價值 研究[10-11]表明,多種miRNA水平在心肌梗死早期階段出現明顯變化,其中4種心源性和肌源性的miRNA研究最為廣泛:miRNA-1(miR-1)、miRNA-133(miR-133)、miRNA-208(miR-208)、miRNA-499(miR-499)。
miR-1主要在心肌及骨骼肌中表達,包括2種亞型,miR-1-1和miR-1-2,分別由染色體18和染色體20的不同基因編碼。miR-1通過抑制間隙連接蛋白(gap junction alpha-1 protein, GJA 1)和鉀內向整流通道超家族J成員2(potassium inwardly rectifying channel subfamily J member 2, KCNJ 2)調節心肌再生和分化[12]。在心肌細胞壞死模型中,miR-1可以穩定地維持至少24 h。而在大鼠AMI模型中,miR-1迅速釋放入血,并在AMI后6 h達到峰值[13]。在一項包含56例AMI患者和28例非AMI患者的研究中,AMI患者血漿中miR-1明顯增高,并且在第14天回到基線[14]。另外,Ai等[15]在對159例患者的研究中發現,AMI組患者血漿中miR-1水平顯著高于非AMI組,且該指標與年齡、性別、血壓等無關,與QRS波相關。同時,在非AMI患者和AMI患者血漿中,miR-1的受試者工作特征曲線(receiver operating characteristic curve, ROC)下面積(area under curve,AUC)為0.774 0。這提示在臨床上可以將miR-1作為一種獨立的生物標志物,通過檢測血漿中的miR-1含量,能及早并且較準確地提示AMI,有助于對AMI患者進行早期治療。
miR-133在心肌、骨骼肌及平滑肌中都有表達,包括miR-133a和miR-133b 兩種,其中miR-133a與miR-1處于相同的染色體位點,并對平滑肌細胞的調節起著關鍵作用[16]。在對斑馬魚的研究中,Yin等[17]發現,miR-133可能通過作用于靶點GJA 1進而抑制心肌增殖。在小鼠的AMI模型中,血漿中的miR-133水平明顯增高并且在6 h即達到峰值[11]。在1項包含了13例AMI患者、176例心絞痛患者及127例對照組中,AMI患者血漿中的miR-133a呈時間依賴性地增加到72.1倍。同時,研究發現miR-133a在冠脈狹窄程度不同的患者中含量存在顯著差別,提示臨床上可以通過測量miR-133a水平來預測冠脈阻塞的嚴重性[18]。Peng等[19]研究了186例患者,其中包括76例AMI患者,也發現患者血漿中的miR-133與AMI的發生相關,并指出其可能改善AMI預測風險的分層效果。由于miR-1和miR-133a在心肌和骨骼肌中均高表達,因此相比于miR-208,這2種miRNA在診斷心肌損傷的特異性方面具有一定局限性。因此,在利用miR-1和miR-133a診斷AMI時,應排除骨骼肌損傷[20]。
miR-208主要在心肌中表達,由α肌球蛋白重鏈(myosin heavy light, MYH)編碼。miR-208包括miR-208a和miR-208b,分別由MYH6和MYH7編碼[21]。miR-208a在心肌梗死模型的組織和血清中的高表達可能是由cAMP/PKA信號通路介導的[22]。在小鼠AMI模型中,miR-208a在心梗后4 h和24 h分別升高36倍和51倍[23]。同時,AMI患者血漿中的miR-208水平也比正常人明顯升高[24]。除此之外,Han等[25]還發現在發生2~3處血管狹窄的AMI患者中,血漿miR-208水平明顯高于僅發生1處血管狹窄的患者。另外,AMI患者在PCI術后,miR-208水平也會明顯降低。Wang等[10]研究發現,非AMI患者血漿中幾乎測不到miR-208a,但在90.9%的AMI患者中都能檢測到該指標。同時,用miR-208a診斷AMI時,AUC為0.965,而傳統標志物cTnI的AUC為0.987,說明miR-208a能夠準確地診斷AMI。這些研究都表明血漿中miR-208與心肌梗死程度密切相關,可能作為新型的AMI生物標志物。
miR-499也是一種心肌特異性的miRNA,由MYH7B基因編碼[26]。在大鼠心梗模型中,血漿中miR-499水平顯著升高。同時,AMI患者出現胸痛癥狀12 h后,miR-499可達到峰值,相比于miR-1和miR-133較延緩[11]。在一項包含142例AMI患者、85例非AMI的胸痛患者以及100例健康者的研究中,AMI患者血漿中miR-499也明顯升高[27]。有研究[28]表明,在老年非ST段升高心肌梗死(non-ST-elevation myocardial infarction, NSTEMI)患者中,hs-cTnT的AUC為0.70,而miR-499-5p的AUC為0.86。這說明血液中升高的miR-499-5p比hs-cTnT能夠更準確地預測患者1年內的死亡風險。
除了miR-1、miR-133、miR-208和miR-499之外,研究顯示其他的miRNA也可作為心肌梗死的生物標志物:如miR-19[29]、miR-122-5p[30]、miR-19b-3p[1]、miR-134-5p[1]、miR186-5p[1]、miR-221-3p[31]、miR-30d-5p[32]、miR-125b-5p[32]、miR-486[33]、miR-150[33]、miR-10a[34]、miR-328[35]、miR-134[35]、miR-22-5p[36]、miR-93-5p[37]、miR-145[38]等。同時,研究也表明,聯合2種或多種miRNA能夠增加AUC值,可能會有助于提高診斷敏感性和特異性[39-40]。隨著基因芯片技術的發展及miRNA含量檢測技術的優化,miRNA作為心肌梗死生物標志物的前景值得期待。
1.2 microRNA在心肌梗死預后中的價值 miRNA除了在AMI的早期診斷方面具有一定價值外,在AMI的預后預測上也能發揮作用。在一項對359例AMI患者的6個月隨訪中發現,心室重構患者血漿中miR-208b和miR-34a水平明顯升高[41]。另外,Dong等[42]證實,miR-145是一種獨立的心血管事件預測因子,能夠作為心肌梗死長期預后的生物標志物。另外一項研究[43]中,研究人員對424例心肌梗死的患者進行30 d隨訪,同時,用左心室射血分數(left ventricular ejection fraction, LVEF)評估左心室收縮功能。結果顯示血漿中增加的miR-208b和miR-499與增加的死亡風險和心衰風險密切相關。然而,一些研究者也對miRNA與AMI預后的相關性表示質疑。Gidl?f等[43]和Widera等[44]認為,將這些miRNA作為預后指標仍有待商榷。因為在利用cTnT進行調整后,miRNA與預后指標喪失相關性,這表明miRNA并不能提高對預后預測的準確性。同時,在一項長達6年、包括510例AMI患者的隨訪中,Goretti等[45]也得出相似結論,認為miR-208b、miR499以及cTnT都不能準確預測6年的AMI患者死亡率。這些結果提示miRNA可作為AMI的預后指標這一猜想仍需要進一步的研究。
miRNA與心血管疾病的發展密切相關,尤其在調控心肌細胞凋亡和增殖[46-47]、血管再生[48]、祖細胞和干細胞功能修復[49]等方面都扮演著重要的角色。
由于miRNA對心肌的生長發育及凋亡都起著重要作用,將miRNA應用于心肌梗死的治療成為目前研究的熱點。其中,miR-34家族在心肌的發育中尤為重要。在小鼠模型中,通過抑制miR-34能夠改善心臟功能,改善心肌重構及心肌纖維化。心肌纖維化是心肌梗死后心臟衰竭發展的關鍵因素,因此,改善心肌纖維化對于延緩心肌梗死進程和改善心衰具有重要作用[50-51]。而miR-24通過抑制B細胞慢性淋巴細胞白血病/淋巴瘤-2樣11(B-cell lymphoma 2 like 11, BCL2L11)實現促心肌凋亡作用。因此,miR-24的抑制也能起到治療心肌梗死的作用[52]。除此之外,miR-15家族[53]、miR-214[54]、miR-155[55]、miR-320[56]等都相繼被報道在心肌纖維化的調控及血管再生方面扮演重要角色。miR-15家族能夠通過下調煙酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide, NAD)依賴的沉默信息調節因子1(silent information regulator 1, SIRT 1)蛋白誘導心肌細胞凋亡[57];同時,抑制miR-15能夠誘導細胞周期檢測點激酶基因1,(checkpoint kinase 1, Chk 1)的形成進而促進心肌細胞增殖[58]。miR-15還能通過抑制內皮細胞功能發揮抗血管生成作用[59]。但也有研究[57]認為,miRNA治療存在諸多問題,如miRNA在治療心肌梗死時,有可能促進其他疾病(如癌癥等)的發展進程;同時,miRNA的療法也可能引起不良反應。盡管多項研究揭示miRNA在AMI進程中發揮調控作用,miRNA治療仍需要進一步的機制研究和動物實驗來證實。
miRNA可作為新型的AMI生物標志物,但目前仍有以下問題需要解決:(1)檢測技術問題。miRNA在血清和血漿中水平低、易受蛋白質等雜質影響、檢測時標準化方法的選擇不確定,這些因素使miRNA不易被準確測量[60]。(2)在miRNA的臨床研究中,通常使用 ROC來評估miRNA的準確度、特異度和靈敏度。然而,ROC曲線在小樣本的研究中可能并不具有說服力,因此需要更大樣本的研究來證實[61]。(3)若要將miRNA作為一種新型的生物標志物,有必要嚴格地定義該指標相應時間內具體的濃度范圍來作為正常值或閾值。然而,miRNA在AMI患者中釋放入血的確切時間尚無定論[7]。同時,由于miRNA含量太低、相對分子質量太小,不易測得其絕對濃度[62]。(4)肝素以及一些抗血小板藥物的使用可能會影響PCR及某些特定miRNA表達,進而影響這些miRNA的測定。(5)與傳統標志物cTnT相比,miRNA的測量更加耗時,同時費用也更加昂貴[63]。(6)研究[64]提示,有時候1種miRNA準確性并不高;而與單一miRNA相比,多種miRNA聯合使用,對于AMI的診斷可能會更加準確。這些問題都給miRNA的實用性帶來挑戰,miRNA的研究仍然需要從檢測技術、機制實驗以及臨床研究等多方面考量。
綜上所述,無論在動物模型還是臨床研究中都發現,miRNA可以作為一種新型的生物標志物,用來診斷AMI。同時,miRNA還顯示出與AMI預后相關的特性。miRNA在調控心肌細胞增殖、凋亡、血管再生等方面的重要作用為治療AMI提供了新的途徑。然而,目前對miRNA的研究尚不全面,仍然存在諸多問題,這也提示需要更多的基礎和臨床研究支持。
[ 1 ] WANG K J, ZHAO X, LIU Y Z, et al. Circulating miR-19b-3p, miR-134-5p and miR-186-5p are promising novel biomarkers for early diagnosis of acute myocardial infarction[J]. Cell Physiol Biochem, 2016,38(3):1015-1029.
[ 2 ] AHLIN F, ARFVIDSSON J, VARGAS K G, et al. MicroRNAs as circulating biomarkers in acute coronary syndromes: A review[J].Vascul Pharmacol, 2016,81: 15-21.
[ 3 ] AMBROS V. The functions of animal microRNAs[J]. Nature, 2004,431(7006):350-355.
[ 4 ] MITCHELL P S, PARKIN R K, KROH E M, et al. Circulating microRNAs as stable blood-based markers for cancer detection[J]. Proc Natl Acad Sci U S A, 2008,105(30):10513-10518.
[ 5 ] LIANG J, BAI S, SU L, et al. A subset of circulating microRNAs is expressed differently in patients with myocardial infarction[J]. Mol Med Rep, 2015,12(1):243-247.
[ 6 ] JAFFE A S, RAVKILDE J, ROBERTS R, et al. It's time for a change to a troponin standard[J]. Circulation, 2000,102(11):1216-1220.
[ 7 ] OLIVIERI F, ANTONICELLI R, CAPOGROSSI M C, et al. Circulating microRNAs (miRs) for diagnosing acute myocardial infarction: an exciting challenge[J]. Int J Cardiol, 2013,167(6):3028-3029.
[ 8 ] ADACHI T, NAKANISHI M, OTSUKA Y, et al. Plasma microRNA 499 as a biomarker of acute myocardial infarction[J]. Clin Chem, 2010,56(7):1183-1185.
[ 9 ] LONG G, WANG F, DUAN Q, et al. Human circulating microRNA-1 and microRNA-126 as potential novel indicators for acute myocardial infarction[J]. Int J Biol Sci, 2012,8(6):811-818.
[10] WANG G K, ZHU J Q, ZHANG J T, et al. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans[J]. Eur Heart J, 2010,31(6):659-666.
[11] D'ALESSANDRA Y, DEVANNA P, LIMANA F, et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction[J]. Eur Heart J, 2010,31(22):2765-2773.
[12] YANG B, LIN H, XIAO J, et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2[J]. Nat Med, 2007,13(4):486-491.
[13] CHENG Y, TAN N, YANG J, et al. A translational study of circulating cell-free microRNA-1 in acute myocardial infarction[J]. Clin Sci (Lond), 2010,119(2):87-95.
[14] LI L M, CAI W B, YE Q, et al. Comparison of plasma microRNA-1 and cardiac troponin T in early diagnosis of patients with acute myocardial infarction[J]. World J Emerg Med, 2014,5(3):182-186.
[15] AI J, ZHANG R, LI Y, et al. Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction[J]. Biochem Biophys Res Commun, 2010,391(1):73-77.
[16] TORELLA D, IACONETTI C, CATALUCCI D, et al. MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo[J]. Circ Res, 2011,109(8):880-893.
[17] YIN V P, LEPILINA A, SMITH A, et al. Regulation of zebrafish heart regeneration by miR-133[J]. Dev Biol, 2012,365(2):319-327.
[18] WANG F, LONG G, ZHAO C, et al. Plasma microRNA-133a is a new marker for both acute myocardial infarction and underlying coronary artery stenosis[J]. J Transl Med, 2013,11:222.
[19] PENG L, CHUN-GUANG Q, BEI-FANG L, et al. Clinical impact of circulating miR-133, miR-1291 and miR-663b in plasma of patients with acute myocardial infarction[J]. Diagn Pathol, 2014,9:89.
[20] SALIC K, DE WINDT L J. MicroRNAs as biomarkers for myocardial infarction[J]. Curr Atheroscler Rep, 2012,14(3):193-200.
[21] VAN ROOIJ E, SUTHERLAND L B, QI X, et al. Control of stress-dependent cardiac growth and gene expression by a microRNA[J]. Science, 2007,316(5824):575-579.
[22] FENG G, YAN Z, LI C, et al. microRNA-208a in an early stage myocardial infarction rat model and the effect on cAMP-PKA signaling pathway[J]. Mol Med Rep, 2016,14(2):1631-1635.
[23] XIAO J, SHEN B, LI J, et al. Serum microRNA-499 and microRNA-208a as biomarkers of acute myocardial infarction[J]. Int J Clin Exp Med, 2014,7(1):136-141.
[24] LIU X, FAN Z, ZHAO T, et al. Plasma miR-1, miR-208, miR-499 as potential predictive biomarkers for acute myocardial infarction: an independent study of Han population[J]. Exp Gerontol, 2015,72:230-238.
[25] HAN Z, ZHANG L, YUAN L, et al. Change of plasma microRNA-208 level in acute myocardial infarction patients and its clinical significance[J]. Ann Transl Med, 2015,3(20):307.
[26] SHIEH J T, HUANG Y, GILMORE J, et al. Elevated miR-499 levels blunt the cardiac stress response[J]. PLoS One, 2011,6(5):e19481.
[27] ZHANG L, CHEN X, SU T, et al. Circulating miR-499 are novel and sensitive biomarker of acute myocardial infarction[J]. J Thorac Dis, 2015,7(3):303-308.
[28] OLIVIERI F, ANTONICELLI R, SPAZZAFUMO L, et al. Admission levels of circulating miR-499-5p and risk of death in elderly patients after acute non-ST elevation myocardial infarction[J]. Int J Cardiol, 2014,172(2):e276-e278.
[29] ZHONG J, HE Y, CHEN W, et al. Circulating microRNA-19a as a potential novel biomarker for diagnosis of acute myocardial infarction[J]. Int J Mol Sci, 2014,15(11):20355-20364.
[30] YAO X L, LU X L, YAN C Y, et al. Circulating miR-122-5p as a potential novel biomarker for diagnosis of acute myocardial infarction[J]. Int J Clin Exp Pathol, 2015,8(12):16014-16019.
[31] COSKUNPINAR E, CAKMAK H A, KALKAN A K, et al. Circulating miR-221-3p as a novel marker for early prediction of acute myocardial infarction[J]. Gene, 2016,591(1):90-96.
[32] JIA K, SHI P, HAN X, et al. Diagnostic value of miR-30d-5p and miR-125b-5p in acute myocardial infarction[J]. Mol Med Rep, 2016,14(1):184-194.
[33] ZHANG R, LAN C, PEI H, et al. Expression of circulating miR-486 and miR-150 in patients with acute myocardial infarction[J]. BMC Cardiovasc Disord, 2015,15:51.
[34] LUO L, CHEN B, LI S, et al. Plasma miR-10a: a potential biomarker for coronary artery disease[J]. Dis Markers, 2016,2016:3841927.
[35] HE F, LV P, ZHAO X, et al. Predictive value of circulating miR-328 and miR-134 for acute myocardial infarction[J]. Mol Cell Biochem, 2014,394(1-2): 137-144.
[36] MACIEJAK A, KILISZEK M, OPOLSKI G, et al. MiR-22-5p revealed as a potential biomarker involved in the acute phase of myocardial infarction via profiling of circulating microRNAs[J]. Mol Med Rep, 2016,14(3):2867-2875.
[37] O’ SULLIVAN J F, NEYLON A, MCGORRIAN C, et al. MiRNA-93-5p and other miRNAs as predictors of coronary artery disease and STEMI[J]. Int J Cardiol, 2016,224:310-316.
[38] GAO H, GUDDETI R R, MATSUZAWA Y, et al. Plasma levels of microRNA-145 are associated with severity of coronary artery disease[J]. PLoS One, 2015,10(5):e0123477.
[39] MEDER B, KELLER A, VOGEL B, et al. MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction[J]. Basic Res Cardiol, 2011,106(1):13-23.
[40] LI C, FANG Z, JIANG T, et al. Serum microRNAs profile from genome-wide serves as a fingerprint for diagnosis of acute myocardial infarction and angina pectoris[J]. BMC Med Genomics, 2013,6:16.
[41] LV P, ZHOU M, HE J, et al. Circulating miR-208b and miR-34a are associated with left ventricular remodeling after acute myocardial infarction[J]. Int J Mol Sci, 2014,15(4):5774-5788.
[42] DONG Y M, LIU X X, WEI G Q, et al. Prediction of long-term outcome after acute myocardial infarction using circulating miR-145[J]. Scand J Clin Lab Invest, 2015,75(1):85-91.
[43] GIDL?F O, SMITH J G, MIYAZU K, et al. Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction[J]. BMC Cardiovasc Disord, 2013,13:12.
[44] WIDERA C, GUPTA S K, LORENZEN J M, et al. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome[J]. J Mol Cell Cardiol, 2011,51(5):872-875.
[45] GORETTI E, VAUSORT M, WAGNER D R, et al. Association between circulating microRNAs, cardiovascular risk factors and outcome in patients with acute myocardial infarction[J]. Int J Cardiol, 2013,168(4):4548-4550.
[46] HUANG X, HUANG F, YANG D, et al. Expression of microRNA-122 contributes to apoptosis in H9C2 myocytes[J]. J Cell Mol Med, 2012,16(11): 2637- 2646.
[47] LIU N, BEZPROZVANNAYA S, WILLIAMS A H, et al. MicroRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart[J]. Genes Dev, 2008,22(23):3242-3254.
[48] CHISTIAKOV D A, OREKHOV A N, BOBRYSHEV Y V. The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease[J]. J Mol Cell Cardiol, 2016,97:47-55.
[49] ZHANG H W, LI H, YAN H, et al. MicroRNA-142 promotes the expression of eNOS in human peripheral blood-derived endothelial progenitor cellsinvitro[J]. Eur Rev Med Pharmacol Sci, 2016,20(19):4167-4175.
[50] BOON R A, IEKUSHI K, LECHNER S, et al. MicroRNA-34a regulates cardiac ageing and function[J]. Nature, 2013,495(7439):107-110.
[51] BERNARDO B C, GAO X M, WINBANKS C E, et al. Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function[J]. Proc Natl Acad Sci U S A, 2012,109(43):17615-17620.
[52] LI D F, TIAN J, GUO X, et al. Induction of microRNA-24 by HIF-1 protects against ischemic injury in rat cardiomyocytes[J]. Physiol Res, 2012,61(6):555-565.
[53] HULLINGER T G, MONTGOMERY R L, SETO A G, et al. Inhibition of miR-15 protects against cardiac ischemic injury[J]. Circ Res, 2012,110(1):71-81.
[54] YANG X, QIN Y, SHAO S, et al. MicroRNA-214 inhibits left ventricular remodeling in an acute myocardial infarction rat model by suppressing cellular apoptosisviathe phosphatase and tensin homolog (PTEN)[J]. Int Heart J, 2016,57(2):247-250.
[55] LIU J, VAN MIL A, VRIJSEN K, et al. MicroRNA-155 prevents necrotic cell death in human cardiomyocyte progenitor cellsviatargeting RIP1[J]. J Cell Mol Med, 2011,15(7):1474-1482.
[56] REN X P, WU J, WANG X, et al. MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20[J]. Circulation, 2009,119(17):2357-2366.
[57] BOON R A, DIMMELER S. MicroRNAs in myocardial infarction[J]. Nat Rev Cardiol, 2015,12(3):135-142.
[58] P PORRELLO E R, MAHMOUD A I, SIMPSON E, et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family[J]. Proc Natl Acad Sci U S A, 2013,110(1):187-192.
[59] YIN K J, OLSEN K, HAMBLIN M, et al. Vascular endothelial cell-specific microRNA-15a inhibits angiogenesis in hindlimb ischemia[J]. J Biol Chem, 2012,287(32):27055-27064.
[60] SAYED A S, XIA K, YANG T L, et al. Circulating microRNAs: a potential role in diagnosis and prognosis of acute myocardial infarction[J]. Dis Markers, 2013,35(5):561-566.
[61] HUANG F, HUANG J P, YIN R X, et al. Circulating microRNAs as potential biomarkers for the early diagnosis of acute myocardial infarction: promises and challenges[J]. Int J Cardiol, 2013,168(4):4510-4511.
[62] ANGELINI T G, EMANUELI C. MicroRNAs as clinical biomarkers?[J]. Front Genet, 2015,6:240.
[63] MAYR M, LEE R, KAUDEWITZ D, et al. Effects of heparin on temporal microRNA proles[J]. J Am Coll Cardiol, 2014,63(9):940-941.
[64] ZELLER T, KELLER T, OJEDA F, et al. Assessment of microRNAs in patients with unstable angina pectoris[J]. Eur Heart J, 2014,35(31):2106-2114.
Recent progress on microRNA in diagnosis and treatment of myocardial infarction
WANG Zi, Lü Qian-zhou, LI Xiao-ye*
Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai 200032, China
MicroRNAs (micro-ribonucleic acid, miRNAs) are small non-coding RNA molecules, which play an important role in regulating gene transcription. Recent research has found that miRNAs can be used as a new biomarker because of being involved in the progresses of cardiomyocyte development, proliferation and apoptosis. They play an important role in the early diagnosis, prognosis and treatment of acute myocardial infarction. However, there are still many problems and challenges in detection technology, mechanism research and clinical trials of miRNAs.
microRNA; acute myocardial infarction; cardiovascular diseases; biomarkers
2017-02-28接受日期2017-04-26
王 梓,博士生. E-mail: 332654052@qq.com
*通信作者(Corresponding author). Tel: 021-64041990, E-mail: 13916088938@163.com
10.12025/j.issn.1008-6358.2017.20170153
R 542.2+2
A
[本文編輯] 廖曉瑜, 賈澤軍