詹紀春,趙明一,李 柳,Idris Ahmed Sheikh,趙玲玲
(1新疆醫科大學,新疆烏魯木齊830000;2中南大學湘雅三醫院,湖南長沙410013)
·專家述評·
氫氣對腦損傷保護機制的研究進展
詹紀春1,2,趙明一2,李 柳2,Idris Ahmed Sheikh2,趙玲玲2
(1新疆醫科大學,新疆烏魯木齊830000;2中南大學湘雅三醫院,湖南長沙410013)
氫氣是一種治療腦損傷的醫用氣體,因其具有易制備、成本低、起效快、強滲透力、無毒、無殘留等特點,在臨床應用中有很大的前景.腦損傷是指由自身腦血管因素、外部力量直接或間接作用所造成的顱內組織結構、功能被破壞的一類疾病的總稱,其發病機制與許多因素有關.本文綜述了氫氣對腦損傷保護機制的研究進展,主要包括了氫氣對炎癥、凋亡、自噬、線粒體能量變化、氧化應激、內質網應激的調節作用.
氫氣;腦損傷;保護機制
Ohsawa等[1]指出,吸入2%氫氣(hydrogen,H2)可以顯著改善急性大鼠模型中局灶性腦缺血再灌注損傷誘導的氧化應激,這與其選擇性清除羥自由基(?OH)和過氧亞硝基陰離子(ONOO?)作用有關.氫氣的醫學價值自此即引起了廣泛關注.在我國,腦損傷疾病已成為繼心血管疾病、惡性腫瘤之后的第三位死亡原因.由于氫氣具有易制備、成本低、起效快、強滲透力、無毒、無殘留等特點,因此在腦損傷的臨床應用中具有很大的前景[2].
氫氣在空氣中的濃度為0.00006%,是最小的氣體分子,易擴散,4%~75%濃度的氫氣還具有易燃性.人類和大多數哺乳動物沒有產生氫氣的內源性細胞,而大腸中大量的厭氧細菌可以通過分解植物纖維和碳水化合物從多糖片段產生氫氣.目前,氫氣的應用主要包括以下幾種方式:氫氣吸入、口服富氫鹽、氫氣浴、富氫鹽注射等.
氫氣作為一種治療腦損傷的醫用氣體,其抗氧化作用與NO和CO等氣體及其他藥物相比,起效較快,可轉化為水(H2+·OH→H2O+·H);其產物對機體無毒副作用;且可以通過其他多種保護機制發揮作用.由于氫氣是電中性的小分子,因此可以很容易地進入細胞和細胞內膜,而水溶性抗氧化劑進入細胞和細胞器則通常會被阻止,如活性氧的主要來源線粒體[3].Cai等[4]首次提出含有0.2~1.0 mmol/L氫氣的含氫注射液是一種新型的治療腦損傷的抗氧化劑.氫氣通過選擇性抗氧化作用治療腦缺血再灌注損傷的效果較依達拉奉和他克莫司(FK506)更為明顯[1].
腦損傷(brain injury,BI)是指由于自身腦血管因素、外部力量直接或間接作用所造成的顱內組織結構、功能被破壞的一類疾病的總稱.
外傷性腦損傷的病理改變為腦水腫等,這些病理改變的關鍵因素是氧化應激[5].神經膜與血管富含不飽和脂肪酸,腦損傷后產生的大量自由基會廣泛攻擊這些結構,引發脂質過氧化瀑布效應(oxygenburst),使蛋白質變性,多核苷酸鏈斷裂,堿基重新修飾,破壞細胞結構的完整性、膜通透性、離子轉運及膜屏障功能,進而導致細胞死亡[6].可見,氧化應激在腦損傷過程中發揮了重要的作用[7-8].
腦損傷與炎癥的發生有關.有研究[9]指出,星形膠質細胞(astrocyte cells,AC)及小膠質細胞(microglia cells,MC)在急性腦出血數分鐘內即可被激活,激活后的AC及MC分泌大量IL?6.IL?6可直接誘導神經細胞凋亡,加重腦組織損傷程度.同時,IL?6可增加白細胞與內皮細胞的黏附性,使血管內皮細胞受損,血腦屏障通透性增加,并且釋放大量氧自由基,加重腦水腫形成及神經細胞的凋亡[10-11].
急性一氧化碳中毒(acute carbon monoxide poisoning,ACMP)主要表現為中樞神經系統損傷,且可經過“假愈期”再次出現嚴重的遲發性腦病.3%~30%的患者可發生這種情況.ACMP及遲發性腦病與免疫損傷、氧化應激及細胞凋亡等密切相關[12].
氫氣可以降低海馬區神經膠質酸性蛋白(glial fibrillary acidic protein,GFAP)及人嗜中性粒細胞彈性蛋白酶(human neutrophil elastase,HNE)水平,抑制氧化應激水平及膠質細胞的活化[13],還可以使過氧化脂質水平降低,超氧化物歧化酶活性增加,促炎因子水平降低[14].氫氣可減少神經元死亡,抑制氧化應激反應[15].氫氣還能改善多巴胺能細胞功能,防止黑質紋狀體變性[16].可見,氫氣對腦損傷的保護機制涉及多個方面,主要包括氫氣對炎癥、凋亡、自噬、線粒體能量變化、氧化應激、內質網應激的調節作用.
3.1 抗炎作用氫氣具有抗炎作用[17].氫氣可減少促炎性細胞因子的mRNA的表達,包括脂多糖(lipopolysaccharide,LPS)誘導成年小鼠炎癥因子IL?6 mRNA的增加[18].氫氣還可通過在大鼠阿爾茨海默病模型腦組織中IL?6表達的抑制作用提高記憶力[19].
炎性細胞因子包括早期炎性細胞因子如促炎細胞因子TNF?a、IL?6和抗炎細胞因子IL?10,以及晚期炎性細胞因子如高遷移率族蛋白1(high mobility group box?1 protein,HMGB1).缺血細胞釋放的HMGB1可以激活炎癥通路[20-21].早期和晚期促炎細胞因子還可相互作用加重腦損傷.在腦卒中早期,肥大細胞的浸潤和激活促進了炎癥反應.腦出血(intracerebral hemorrhage,ICH)促進了肥大細胞(如肥大細胞脫顆粒、類胰蛋白酶等)激活,而氫氣可以抑制肥大細胞激活,減輕炎癥反應,從而保護血腦屏障,減輕腦水腫[22].
在大鼠一過性大腦中動脈阻塞模型中,氫氣可使炎性介質腫瘤壞死因子α活性降低,說明氫氣可以通過緩解炎性反應而減少細胞凋亡[23].
核轉錄因子?κB(nuclear factor?κB,NF?κB)可通過誘導多種細胞因子表達促進炎癥反應,進而促進腦缺血后細胞死亡.研究[24]表明,氫氣可抑制c?Jun氨基末端蛋白激酶及NF?κB而發揮抗炎癥作用.
T淋巴細胞是缺血性腦損傷的重要介質,但不同的T細胞亞群的貢獻尚不明確,Li等[25]證實富氫鹽可能是通過上調調節性T細胞(regulatory T cells,Tregs)影響腦復蘇.
3.2 抗凋亡作用PI3K/Akt信號通路參與了腦缺血再灌注損傷后的損傷過程,腦損傷后神經細胞凋亡,氫氣可通過激活PI3K/Akt信號通路使Akt活化,p?Akt水平增加,抑制下游caspase?3蛋白的表達,從而減輕神經細胞凋亡,保護缺血腦組織[26].
Wang C等[24]研究發現在β?淀粉樣蛋白誘導的大鼠神經炎癥和氧化應激模型中,腹腔注射氫鹽水后可明顯降低腦組織中IL?1β、8?OHdG水平,減少細胞凋亡.
miRNA與細胞低氧應答以及缺血、低氧預適應的發生發展過程有關,如miR?21和miR?210.miR?210是低氧應答的主要miRNA,可降低缺血性細胞死亡[27].目前發現在所有細胞和組織中,低氧均會使miR?210上調.在缺氧情況下,HIF?1α降解受阻,表達水平上升,轉錄活性增強,miR?210同樣會上調.Lei等[28]發現HIF?1α在外傷性腦損傷中可發生反應性上調.HIF?1α活化后可誘導miR?210表達,miR?210通過靶向作用于Bcl?2,介導低氧誘導的神經元調亡[29].腦缺血再灌注損傷后低氧相關的miR?210和凋亡相關的miR?21的表達上調,富氫液可使miR?210和miR?21表達下調,說明富氫液可能對腦缺血再灌注損傷的治療具有抗凋亡作用.
3.3 調節自噬很多神經退行性疾病的發病過程中均會出現變性蛋白質的聚集.自噬可以在蛋白質聚集體發揮毒性作用前將其清除而發揮有利的作用,同時也可因自噬?溶酶體的過度激活而損傷正常的細胞器,導致神經元的功能異常或最終導致神經元細胞的死亡.Bai等[30]證實氫氣可以通過增加LC3B和Bec?lin?1的表達,降低mTOR、STAT3及ERK的磷酸化水平誘導自噬.Nagatani等[31]證實氫氣可以通過阻斷細胞自噬減少細胞凋亡.
富氫鹽可減少神經元壞死[32].研究[33]表明,在早期階段,一氧化碳中毒可增加自噬而保護神經元.但隨著自噬程度的逐漸加重,其對神經元則有相反的影響.而在后期,富氫鹽可降低一氧化碳中毒后期階段的自噬水平,從而維持體內平衡、提高神經元的存活率.
3.4 線粒體能量變化活性氧是線粒體滲透性轉換孔的主要激活物[34],該通道開放引起線粒體膜電位的損失、線粒體腫脹及膜破裂、細胞色素C的釋放和凋亡細胞死亡.線粒體電子傳遞鏈缺血性損傷后可激活超氧化物酶,如黃嘌呤氧化酶和NADPH氧化酶,使缺血再灌注損傷后產生更高水平的過氧化物.活性氧在再灌注損傷的核心作用表明,線粒呼吸配合物Ⅰ和Ⅲ的抑制劑可阻止缺血再灌注損傷后活性氧的生成、提高細胞生存能力.
Ohta[35]開始觀察氫氣是否可以通過線粒體抗氧化改善缺血再灌注損傷后的氧化應激,發現氧化損傷后,細胞發生病理線粒體去極化、ATP耗竭、DNA氧化、脂質過氧化和細胞壞死及細胞凋亡.在媒介中溶解時,氫氣劑量依賴性阻止這些事件和提高細胞的生存能力.
miR?210可影響電子轉移鏈、鐵硫簇裝配蛋白(iron?sulfur cluster assembly protein,ISCU)的活性及三羧酸循環(tricarboxylic acid cycle,TCA cycle)過程,從而有效抑制線粒體代謝和線粒體能量生成,減少氧耗量,改變線粒體膜電位及破壞線粒體結構.而富氫液可使miR?210表達下調,改善氧化應激從而保護細胞.
3.5 選擇性抗氧化作用氫氣可以有效地中和羥自由基.富氫鹽能抑制膜脂質過氧化反應終產物丙二醛(MDA)的生成.蛋白質羰基是蛋白質氧化的指標,富氫鹽水可降低蛋白質羰基水平[36].在深低溫停循環(deep hypothermia circulatory arrest,DHCA)模型中,富氫鹽可顯著降低IL?1β,TNF?α,8?OHdG和MDA產物水平抑制NOS活性,同時增加了最重要的抗氧化酶之一——超氧化物歧化酶(superoxide dis?mutase,SOD)的活性.說明富氫鹽可以通過改善氧化應激減輕腦損傷[37].還有研究[38]表明,水電解產生的高濃度(66.7%)氫氣吸入在大鼠大腦中動脈閉塞模型中可通過抑制氧化應激和炎癥反應改善腦缺血再灌注損傷.
核因子NF?E2相關因子(nuclear factor erythroid 2?related factor 2,Nrf2)是近年來發現的一種基因轉錄因子,對氧化應激非常敏感.Nrf2通路主要通過調節血紅素氧合酶?1(heme oxygenase?1,HO?1)在內的一系列抗氧化酶基因的表達,從而發揮抗氧化作用.氫鹽水和氫氣吸入可能是通過激活Nrf2/ARE信號,使HO?1的抗氧化酶基因表達上調,從而發揮抗氧化作用,減輕腦缺血再灌注損傷.
3.6 抗內質網應激作用Bai等[30]研究富氫鹽是否可以減輕新生小鼠缺血缺氧性腦損傷以及觀察到的保護作用是否和減輕內質網應激有關時發現,富氫鹽治療可顯著改善腦水腫,降低梗死體積.此外,富氫鹽可以通過減少葡萄糖調節蛋白78和C/EBP同源蛋白表達水平以及下調轉錄因子,明顯減輕缺氧誘導的內質網應激反應.
氫氣作為一種醫用氣體在預防和治療中的應用研究很有前景[39].氫氣對腦損傷的保護機制包括抗炎、抗凋亡、調節自噬、調控線粒體能量變化、選擇性抗氧化、抗內質網應激等,在腦損傷保護中起重要作用.目前,國際上在氫氣對腦損傷保護機制的研究方面已開展了臨床實驗,但臨床效果尚不確切,并且氫氣分子機制及最佳應用濃度尚不十分清楚.雖然氫氣作為一種易燃易爆的氣體,在儲存和運輸方面有一定的困難,且其安全性也在一定程度上限制了臨床應用,但已有學者應用66.7%的氫氣吸入成功改善了大鼠腦缺血再灌注損傷[38].這為氫氣的深入研究和臨床應用提供了進一步的可能.
[1]Ohsawa I,Ishikawa M,Takahashi K,et al.Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals[J].Nat Med,2007,13(6):688-694.
[2]Ichihara M,Sobue S,Ito M,et al.Beneficial biological effects and the underlyingmechanismsofmolecularhydrogen?comprehensive review of 321 original articles[J].Med Gas Res,2015,5:12.
[3]Zhao L,Wang YB,Qin SR,et al.Protective effect of hydrogen?rich saline on ischemia/reperfusion injury in rat skin flap[J].J Zhejiang Univ?Sci B,2013,14(5):382-391.
[4]Cai J,Kang Z,Liu K,et al.Neuroprotective effects of hydrogen saline in neonatal hypoxia?ischemia rat model[J].Brain Res,2009,1256:129-137.
[5]Weaver J,Liu KJ.Does normobaric hyperoxia increase oxidative stress in acute ischemic stroke?A critical review of the literature[J].Med Gas Res,2015,5:11.
[6]Kiirika LM,Schmitz U,Colditz F.The alternative Medicago truncatula defense proteome of ROS?defective transgenic roots during early microbial infection[J].Front Plant Sci,2014,5:341.
[7]Eghwrudjakpor PO,Allison AB.Oxidative stress following traumatic brain injury:enhancement of endogenous antioxidant defense systems and the promise of improved outcome[J].Niger J Med,2010,19(1):14-21.
[8]von Bernhardi R,Tichauer JE,Eugenín J.Aging?dependent changes of microglial cells and their relevance for neurodegenerative disorders[J].J Neurochem,2010,112(5):1099-1114.
[9]Algra SO,Groeneveld KM,Schadenberg AW,et al.Cerebral ischemia initiates an immediate innate immune response in neonates during cardiac surgery[J].J Neuroinflammation,2013,10:24.
[10]Muroi C,Bellut D,Coluccia D,et al.Systemic interleukin?6 concentrations in patients with perimesencephalic non?aneurysmal subarachnoid hemorrhage[J].J Clin Neurosci,2011,18(12):1626-1629.
[11]Mellerg?rd P,?neman O,Sj?gren F,et al.Differences in cerebral extracellular response of interleukin?1β,interleukin?6,and interleukin?10 after subarachnoid hemorrhage or severe head trauma in humans[J].Neurosurgery,2011,68(1):12-19.
[12]Wang P,Zeng T,Zhang CL,et al.Lipid peroxidation was involved in the memory impairment of carbon monoxide?induced delayed neuron damage[J].Neurochem Res,2009,34(7):1293-1298.
[13]Hugyecz M,Mracskó E,Hertelendy P,et al.Hydrogen supplemen?ted air inhalation reduces changes of prooxidant enzyme and gap junc?tion protein levels after transient global cerebral ischemia in the rat hippocampus[J].Brain Res,2011,1404:31-38.
[14]Hong Y,Guo S,Chen S,et al.Beneficial effect of hydrogen?rich saline on cerebral vasospasm after experimental subarachnoid hemor?rhage in rats[J].J Neurosci Res,2012,90(8):1670-1680.
[15]Ge P,Zhao J,Li S,et al.Inhalation of hydrogen gas attenuates cognitive impairment in transient cerebral ischemia via inhibition of oxidative stress[J].Neurol Res,2012,34(2):187-194.
[16]Ono H,Nishijima Y,Adachi N,et al.A basic study on molecular hydrogen(H2)inhalation in acute cerebral ischemia patients for safety check with physiological parameters and measurement of blood H2 level[J].Med Gas Res,2012,2(1):21.
[17]Ohta S.Molecular hydrogen as a novel antioxidant:overview of the advantages of hydrogen for medical applications[J].Methods Enzymol,2015,555:289-317.
[18]Spulber S,Edoff K,Hong L,et al.Molecular hydrogen reduces LPS?induced neuroinflammation and promotes recovery from sickness behaviour in mice[J].PLoS One,2012,7(7):e42078.
[19]Li J,Wang C,Zhang JH,et al.Hydrogen?rich saline improves memory function in a rat model of amyloid?beta?induced Alzheimer's disease by reduction of oxidative stress[J].Brain Res,2010,1328:152-161.
[20]Qiu J,Xu J,Zheng Y,et al.High?mobility group box 1 promotes metalloproteinase?9 upregulation through Toll?like receptor 4 after cerebral ischemia[J].Stroke,2010,41(9):2077-2082.
[21]Zhang J,Takahashi HK,Liu K,et al.Anti?high mobility group box?1 monoclonal antibody protects the blood?brain barrier from ischemia?induced disruption in rats[J].Stroke,2011,42(5):1420-1428.
[22]Manaenko A,Lekic T,Ma Q,et al.Hydrogen inhalation ameliorated mast cell?mediated brain injury after intracerebral hemorrhage in mice[J].Crit Care Med,2013,41(5):1266-1275.
[23]Liu Y,Liu W,Sun X,et al.Hydrogen saline offers neuroprotection by reducing oxidative stress in a focal cerebral ischemia?reperfusion rat model[J].Med Gas Res,2011,1(1):15.
[24]Wang C,Li J,Liu Q,et al.Hydrogen?rich saline reduces oxidative stress and inflammation by inhibit of JNK and NF?κB activation in a rat model of amyloid?beta?induced Alzheimer's disease[J].Neurosci Lett,2011,491(2):127-132.
[25]Li Q,Yu P,Zeng Q,et al.Neuroprotective Effect of Hydrogen?Rich Saline in Global Cerebral Ischemia/Reperfusion Rats:Up?Regulated Tregs and Down?Regulated miR?21,miR?210 and NF?κB Expression[J].Neurochem Res,2016,41(10):2655-2665.
[26]Ji Q,Hui K,Zhang L,et al.The effect of hydrogen?rich saline on the brain of rats with transient ischemia[J].J Surg Res,2011,168(1):e95-e101.
[27]Nie Y,Han BM,Liu XB,et al.Identification of MicroRNAs involved in hypoxia?and serum deprivation?induced apoptosis in mes?enchymal stem cells[J].Int J Biol Sci,2011,7(6):762-768.
[28]Lei P,Li Y,Chen X,et al.Microarray based analysis of microRNA expression in rat cerebral cortex after traumatic brain injury[J].Brain Res,2009,1284:191-201.
[29]Chio CC,Lin JW,Cheng HA,et al.MicroRNA?210 targets antiapop?totic Bcl?2 expression and mediates hypoxia?induced apoptosis of neu?roblastoma cells[J].Arch Toxicol,2013,87(3):459-468.
[30]Bai X,Liu S,Yuan L,et al.Hydrogen?rich saline mediates neuro?protection through the regulation of endoplasmic reticulum stress and autophagy under hypoxia?ischemia neonatal brain injury in mice[J].Brain Res,2016,1646:410-417.
[31]Nagatani K,Wada K,Takeuchi S,et al.Effect of hydrogen gas on the survival rate of mice following global cerebral ischemia[J].Shock,2012,37(6):645-652.
[32]Sun Q,Cai J,Zhou J,et al.Hydrogen?rich saline reduces delayed neurologic sequelae in experimental carbon monoxide toxicity[J].Crit Care Med,2011,39(4):765-769.
[33]Wang W,Tian L,Li Y,et al.Effects of hydrogen?rich saline on rats with acute carbon monoxide poisoning[J].J Emerg Med,2013,44(1):107-115.
[34]Zweier JL,Flaherty JT,Weisfeldt ML.Direct measurement of free radical generation following reperfusion of ischemic myocardium[J].Proc Natl Acad Sci U S A,1987,84(5):1404-1407.
[35]Ohta S.Molecular hydrogen is a novel antioxidant to efficiently reduce oxidativestresswithpotentialfortheimprovementof mitochondrial diseases[J].Biochim Biophys Acta,2012,1820(5):586-594.
[36]Chen C,Chen Q,Mao Y,et al.Hydrogen?rich saline protects against spinal cord injury in rats[J].Neurochem Res,2010,35(7):1111-1118.
[37]Shen L,Wang J,Liu K,et al.Hydrogen?rich saline is cerebropro?tective in a rat model of deep hypothermic circulatory arrest[J].Neurochem Res,2011,36(8):1501-1511.
[38]Cui J,Chen X,Zhai X,et al.Inhalation of water electrolysis?de?rived hydrogen ameliorates cerebral ischemia?reperfusion injury in rats?A possible new hydrogen resource for clinical use[J].Neuro?science,2016,335:232-241.
[39]Ohta S.Recent progress toward hydrogen medicine:potential of molecular hydrogen for preventive and therapeutic applications[J].Curr Pharm Des,2011,17(22):2241-2252.
Research progress of protective mechanism of hydrogen on brain injury
ZHAN Ji?Chun1,2,ZHAO Ming?Yi2,LI Liu2,Idris Ahmed Sheikh2,ZHAO Ling?Ling2
1Xinjiang Medical University,Urumqi 830000,China;2The Third Xiangya Hospital of Central South University,Changsha 410013,China
Hydrogen is a medical gas for treatment of brain injury.Easy preparation,low cost,rapid onset,powerful permeability,non?toxicity,absence of residue,which are characteristics that make hydrogen become a promising application for clinical appli?cation.Brain injury is a kind of disease that structure and function of the brain were destroyed because of the vascular factors and the direct or indirect effects of external forces.The pathogenesis is related to many factors.This paper reviews the research progress of protective mechanism of hydrogen on brain injury through regu?lating inflammation,apoptosis,autophagy,mitochondrial energy changes,oxidative stress and endoplasmic reticulum stress.
hydrogen;brain injury;protective mechanism
R741
A
2095?6894(2017)03?22?04
2016-12-19;接受日期:2017-01-06
中南大學湘雅三醫院重點學科建設項目;國家自然科學基金(81500231);湖南省自然科學基金(2015JJ6118);中南大學湘雅三醫院“新湘雅人才工程”(JY201524)
詹紀春.研究方向:兒童神經系統疾病.E?mail:707259742@qq.com
趙玲玲.主任醫師,教授,博士研究生導師.E?mail:llzhao2011@qq.com