999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

對一道求三角形內角平分線夾角題的探究

2017-02-07 16:43:24巨明杰李紅紅
新課程·中旬 2016年10期
關鍵詞:探究

巨明杰+李紅紅

一、問題的提出

《義務教育數學課程標準》明確提出了學生要理解三角形角平分線的含義,探索并證明三角形、多邊形的內角和。筆者在現行華東師大版七年級數學下冊第九章“三角形”的教學中,發現教材、教輔無不涉及“已知三角形的一個內角,求另兩個內角角平分線夾角”的問題。

如圖1所示,在△ABC中,∠A=α,點O是∠ABC與∠ACB的平分線BF和CE的交點,求∠BOC.

解∵BF和CE分別是∠ABC與∠ACB的平分線,

∴∠OBC=∠ABC,∠OCB=∠ACB.

∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°-∠α)=90°-∠α.

∴∠BOC=180°-(∠OBC+∠OCB)=180°-(90°-∠α)=90°+∠α.

該題是在已知三角形一個內角的情況下,求出了另兩個內角平分線的夾角。我們逐步引導學生將求兩內角平分線的夾角改為一內一外角或兩外角角平分線的夾角;或將三角形改為多邊形的情況作了深入探究,發現了其中的規律,激發了學生的學習興趣,在教學中收到了較好的效果。現介紹如下,僅供同仁們參考。

二、問題的探究

1.將內角平分線改為外角平分線

情形一:求三角形的一條內角平分線與一條外角平分線的夾角

如圖2,在△ABC中,∠A=α,點O是∠ABC與外角∠ACD的平分線BO和CO的交點,求∠BOC.

解∵BO和CO分別是∠ABC與∠ACD的平分線,

∴∠OBC=∠ABC,∠OCD=∠ACD.

∵2∠OCD=2∠OBC+∠α,

∴2(∠OCD-∠OBC)=∠α.

又∵∠BOC=∠OCD-∠OBC,即2∠BOC=∠α.

∴∠BOC=∠α.

情形二:求三角形的兩條外角平分線的夾角

如圖3,在△ABC中,∠A=α,點O是三角形兩外角∠DBC與∠ECB的平分線BO和CO的交點,求∠BOC.

解∵BO和CO分別是∠DBC與∠ECB的平分線,

∴∠OBC=∠DBC,∠OCB=∠ECB

∵2(∠OBC+∠OCB)=360°-(180°-∠α),

又∵∠BOC=180°-(∠OBC+∠OCB),

∴2(180°-∠BOC)=180°+∠α,

∴2∠BOC=180°-∠α.∴∠BOC=90°-∠α.

2.將三角形改為多邊形

(1)四邊形的情形

情形一:如圖4,在四邊形ABCD中,點O是兩內角∠ABC與∠DCB的平分線BO和CO的交點,證明:∠BOC=(∠A+∠D).

證明∵BO和CO分別是∠ABC與∠DCB的角平分線,

∴∠OBC=∠ABC,∠OCB=∠DCB.

∴2(∠OBC+∠OCB)=360°-(∠A+∠D).

∴2(180°-∠BOC)=360°-(∠A+∠D),

∴360°-2∠BOC=360°-(∠A+∠D),∴∠BOC=(∠A+∠D)

情形二:如圖5,在四邊形ABCD中,點O是內角∠ABC與外角∠DCE平分線BO和CO的交點,證明:∠BOC=(∠A+∠D)-90°.

證明∵BO和CO分別是∠ABC與∠DCE的角平分線,

∴∠OBC=∠ABC,∠OCE=∠DCE.

180°-∠DCE+2∠OBC=360°-(∠A+∠D)

180°-2(∠OCE-∠OBC)=360°-(∠A+∠D),

又∵∠OCE-∠OBC=∠BOC.

∴180°-2∠BOC=360°-(∠A+∠D),即2∠BOC=(∠A+∠D)-180°,

∴∠BOC=(∠A+∠D)-90°.

情形三:如圖6,在四邊形ABCD中,點O是兩外角∠EBC與∠FCB平分線BO和CO的交點,證明:∠BOC=180°-(∠A+∠D).

證明∵BO和CO分別是∠EBC與∠FCB的角平分線,

∴180°-2∠OBC+180°-2∠OCB=360°-(∠A+∠D),

又∵∠OCB+∠OBC=180°-∠BOC,

即360°-2(180°-∠BOC)=360°-(∠A+∠D),

∴∠BOC=180°-(∠A+∠D).

(2)五邊形的情形

情形一:如圖7,在五邊形ABCDE中,點O是兩內角∠ABC與∠BCD平分線和BO和CO的交點,則∠BOC=(∠A+∠D+∠E)-90°.

情形二:如圖8,在五邊形ABCDE中,點O是內角∠ABC與外角∠DCF平分線和BO和CO的交點,則∠BOC=(∠A+∠D+∠E)-180°.

情形三:如圖9,在五邊形ABCDE中,點O是兩外角∠FBC與∠GCB平分線BO和CO的交點,則∠BOC=270°-(∠A+∠D+∠E).

此情形一、情形二、情形三類似四邊形三種情形的證法,望讀者自證。

(3)n邊形的情形

通過上面的探究,我們發現多邊形相鄰的內、外角平分線夾角與其余角的和有一定的關系。即對于任意一個n(n≥3)邊形A1,A2…An,其:

①相鄰兩內角平分線的夾角

∠A2OA3=(A1+A4+A5…An)-(n-4)·90°;

②一內角與相鄰一外角平分線的夾角

∠A2OA3=(A1+A4+A5…An)-(n-3)·90°;

③相鄰兩外角平分線的夾角

∠A2OA3=(n-2)·90°-(A1+A4+A5…An).

以上內容的探究過程主要運用角平分線的性質以及多邊形內角和定理。借此平臺與同行們交流,希望通過對此問題的探究使得我們對教材的研究能夠更深入一些。

該文在寫作過程中得到了天水師范學院數學與統計學院齊邦交老師的悉心指導,在此表示衷心的感謝!

猜你喜歡
探究
ETC發行方數據分析與挖掘的應用探究
開放探究,創新應用
一道探究題的解法及應用
一道IMO預選題的探究
中等數學(2021年11期)2021-02-12 05:11:46
探究下神峪村“由亂到治”之路
今日農業(2019年14期)2019-09-18 01:21:42
探究式學習在國外
快樂語文(2018年13期)2018-06-11 01:18:16
一道IMO預選題的探究及思考
中等數學(2018年11期)2018-02-16 07:47:42
P=Fvcosα應用探究
對一個猜想的探究
對公路運輸的探究
中國商論(2016年33期)2016-03-01 01:59:34
主站蜘蛛池模板: 国产精品对白刺激| 亚洲最大福利网站| 国产一区成人| 三级欧美在线| 欧美午夜视频| 福利小视频在线播放| 欧美成人精品一级在线观看| 波多野结衣中文字幕一区| 日韩 欧美 小说 综合网 另类| 婷婷亚洲天堂| 亚洲色偷偷偷鲁综合| 国产本道久久一区二区三区| 成年人福利视频| 成人av专区精品无码国产| 欧美成人a∨视频免费观看| 91久久国产综合精品女同我| 大香伊人久久| 欧美中文字幕无线码视频| 中文字幕亚洲电影| 国产成人1024精品下载| 欧美精品黑人粗大| 欧美无遮挡国产欧美另类| 老司国产精品视频| 色老二精品视频在线观看| av一区二区三区高清久久| 久久久国产精品免费视频| 欧美成人午夜视频| 中文国产成人精品久久| 青草视频久久| 国产精品网拍在线| 夜精品a一区二区三区| 国产午夜福利片在线观看| 久久久久国产一区二区| 亚洲精品视频在线观看视频| 四虎国产精品永久一区| 亚洲人成网站在线观看播放不卡| 亚洲人成电影在线播放| jizz在线免费播放| 国产在线视频导航| 亚洲国产成人久久77| 老司国产精品视频91| 国产精品嫩草影院av| 国产美女精品一区二区| 香蕉视频国产精品人| 色屁屁一区二区三区视频国产| 911亚洲精品| 亚洲一区二区三区香蕉| 色国产视频| 日本伊人色综合网| 欧美97欧美综合色伦图| 欧美午夜性视频| 另类综合视频| 国产精品黑色丝袜的老师| 欧美综合区自拍亚洲综合天堂| 99精品一区二区免费视频| 无码精品国产VA在线观看DVD| 欧美日韩国产在线人成app| 国产欧美专区在线观看| 九色视频线上播放| www.99在线观看| 国产一在线| www.亚洲一区| 麻豆精品在线播放| 久久亚洲综合伊人| 天天综合网在线| 日本AⅤ精品一区二区三区日| 在线无码九区| 欧美日韩动态图| 狠狠色婷婷丁香综合久久韩国| 久久中文字幕2021精品| 99九九成人免费视频精品| 亚洲精品777| 97成人在线观看| 美女无遮挡被啪啪到高潮免费| 久久狠狠色噜噜狠狠狠狠97视色 | 试看120秒男女啪啪免费| 国产永久免费视频m3u8| 99热这里只有精品5| 色综合成人| 第九色区aⅴ天堂久久香| 久久久久夜色精品波多野结衣| 久久性妇女精品免费|