999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

ACE抑制肽構效關系及其酶法制備的研究進展

2017-03-03 03:29:58張蘭威程大友
食品科學 2017年3期

林 凱,韓 雪,張蘭威,2,*,譙 飛,程大友

(1.哈爾濱工業大學化工與化學學院,黑龍江 哈爾濱 150090;2.中國海洋大學食品科學與工程學院,山東 青島 266003)

ACE抑制肽構效關系及其酶法制備的研究進展

林 凱1,韓 雪1,張蘭威1,2,*,譙 飛1,程大友1

(1.哈爾濱工業大學化工與化學學院,黑龍江 哈爾濱 150090;2.中國海洋大學食品科學與工程學院,山東 青島 266003)

高血壓是一種全球性的公共健康問題。血管緊張素轉換酶(angiotensin converting enzyme,ACE)作為一種二肽縮肽酶,通過腎素-血管緊張素系統和激肽釋放酶-激肽系統(kallikrein-kinin system,KKS)對血壓進行調節。近年來,已有許多從各種食源蛋白中獲得ACE抑制肽的研究報道。相比于化學合成藥物,食源性蛋白獲得的ACE抑制肽在治療高血壓方面更具安全性和溫和性。許多研究已經探討了食源性降壓肽的構效關系,尤其是多肽一級序列對活性的影響。目前,最常用于制備ACE抑制肽的方式是酶催化水解蛋白,包括使用單酶或復合酶對蛋白進行水解。本文將主要對ACE抑制肽構效關系和酶法制備ACE抑制肽的研究進展進行綜述,以期為獲得優良的ACE抑制肽產品提供理論指導。

血管緊張素轉換酶抑制肽;降壓機制;構效關系;酶法制備

高血壓作為一種慢性疾病是導致許多疾病的誘因,如中風、心肌梗塞、心力衰竭、動脈瘤和晚期腎病等[1]。血管緊張素Ⅰ轉換酶(angiotensin Ⅰ-converting enzyme,ACE,EC 3.4.15.1)在血壓調節系統腎素-血管緊張素系統(renin-angiotensin system,RAS)和激肽釋放酶-激肽系統(kallikrein-kinin system,KKS)中起著重要作用[2]。ACE能夠催化血管緊張素-Ⅰ轉變成致使血管收縮的血管緊張素Ⅱ,同時將具有使血管舒張作用的緩激肽失活,從而導致血壓升高。因此,抑制ACE活性能夠提高緩激肽的濃度并降低血管緊張素Ⅱ的產生,從而能夠有效地降低血壓并且預防和治療高血壓及其相關疾病[3-4]。目前,化學合成的ACE抑制藥物在臨床方面具有顯著的降壓效果,如卡托普利(半抑制濃度(50% inhibitory concentration,IC50)=23 nmol/L)、依那普利(IC50=1.2 nmol/L)和賴諾普利(IC50=1.2 nmol/L)[5]。但該類藥物通常會導致味覺失調、咳嗽和皮疹等副作用[3]。因此尋找一種無毒性、天然的、經濟可行的替代物成為了必然趨勢。最早報道天然的ACE抑制肽是從蛇毒液中分離得到的[6]。大量研究表明,天然蛋白中富含各種功能肽,通過酶解法將生物活性多肽從蛋白體中水解釋放已被廣泛研究,其中ACE抑制肽的制備獲得了廣泛的關注[7]。目前,ACE抑制肽已從豌豆[8]、羽扇豆[9]、裙帶菜[10]、大豆[11]、小球藻[12]和牦牛乳酪蛋白[13-14]等許多蛋白源中通過酶解作用分離純化得到。本文將從ACE抑制肽的降壓機制、構效關系及酶法制備ACE抑制肽的方法方面進行討論綜述。

1 ACE概述

人體中含有兩種ACE:體細胞ACE(somatic ACE,sACE)[15]和睪丸細胞ACE(testis ACE,tACE)[16-17],其均為同一基因編碼,長度為21 kb,含有26 個外顯子和25 個內含子。較長的sACE由1~12號和14~26號外顯子翻譯表達,較短的tACE由13~26號外顯子翻譯表達[18]。sACE是一種單分子結構的膜結合糖蛋白,由1 306 個氨基酸殘基組成,其分為4 個特征區域,分別為信號肽(甲硫氨酸(methionine,Met)1~丙氨酸(alanine,Ala)29)、功能域(亮氨酸(leucine,Leu)30~精氨酸(arginine,Arg)1256)、跨膜結構(纈氨酸(valine,Val)1257~絲氨酸(serine,Ser)1277)、胞內區(谷氨酰胺(glutamine,Gln)1278~Ser1306)[19],功能域又分割成兩個同源結構域,分別含有612個和600個氨基酸殘基,兩個同源結構域通過15個氨基酸序列連接。每個同源結構域均含有Zn2+結合模體HEXXH(H代表組氨酸(histidine,His);E代表谷氨酸(glutamate,G l u),X代表任意氨基酸殘基)催化活性位點(圖1),其中His、Gln和一分子H2O形成四面體配位結構與Zn2+配位[20]。盡管兩個催化位點都具有催化水解血管緊張素-Ⅰ和緩激肽的功能,但是似乎只有C端結構域在調節血壓方面起作用,研究也證明C端結構域是主要的血管緊張素-Ⅰ的催化位點[21]。具有功能活性的sACE的天然構象是以螺旋結構為其優勢構象,立體結構中含有61個α螺旋、17個β折疊和14個β轉角,在半胱氨酸(cysteine,Cys)157~Cys165、Cys757~Cys763、Cys957~Cys975、Cys1143~Cys1155處含有4個二硫鍵維持空間構型穩定,其3D結構如圖2所示。同樣,tACE是一種低分子質量膜結合糖蛋白,含有732個氨基酸殘基,除N端的36個氨基酸殘基是其特有之外,其余與sACE的C末端右半部分結構相同[22]。

圖1 sACE和tACE一級結構示意圖[[2233]]Fig.1 Schematic representation for the primary structure of sACE and tACE[23]

圖2 人ACE晶體結構[[1199]]Fig.2 Crystal structure of human ACE[19]

2 ACE抑制肽降壓機制

ACE是一種二肽羧肽酶,屬于鋅金屬蛋白酶,需要鋅離子和氯離子維持其活性[24]。ACE在RAS和KKS中起著重要作用,其中RAS為升壓系統,KKS為降壓系統,二者在血壓調節方面互為拮抗體系。ACE能將RAS中由腎素分解釋放出的無活性十肽——血管緊張素-Ⅰ的C末端的二肽(His-Leu),切除生成具有使血管收縮功能的血管緊張素-Ⅱ,致使血管平滑肌收縮。同時,促進醛固酮的分泌并導致水鈉滯留,從而引起血壓迅速升高[25]。降壓系統KKS中舒緩肽能夠增加前列腺素和NO的生成,導致血管舒張并降低外周血管阻力從而降低血壓[26]。然而ACE能夠切除KKS中緩激肽C末端的二肽(苯丙氨酸(phenylalanine,Phe)-Arg)使其失活[27],導致該系統處于抑制狀態。綜合這兩者的作用致使血壓迅速升高[28]。ACE作用機制如圖3所示。

圖3 ACE在RAS和KKS中的調節Fig.3 Regulatory function of ACE in the RAS and KKS

因此如果能夠抑制ACE的活性,就能夠實現降壓效果。不同抑制肽的結構會導致不同的ACE抑制類型。研究表明大多數ACE抑制肽屬于競爭性抑制[29],其能夠與ACE活性位點結合以阻止底物與其結合。但也有研究發現ACE抑制肽為非競爭性抑制[30-31],其與底物結合位點之外的結合位點相結合,形成酶-抑制劑復合物,從而導致ACE構象改變,阻止其催化生成血管緊張素-Ⅱ[32]。通過以上兩種抑制形式抑制ACE活性,從而降低血壓。

3 ACE抑制肽構效關系

圖4 ACE-賴諾普利、依那普利拉、卡托普利-酶復合物活性位點結合示意圖[44][44]Fig.4 Schematic of ACE active sites in the form of enzyme-lisinopril, enalaprilat and captopril complexes[44]

sACE多肽鏈由接頭片段鏈接兩個金屬肽酶結構域,分別是C端結構域和N端結構域,這兩個結構域除了在多糖含量[33]和所需氯離子的最大激活濃度[34]不同外,展現了高度的序列相似性及相同的空間構象。ACE的C端活性位點呈現凹槽結構并在末端具有“帽子”結構,用于蓋住活性位點通道[35]。其結構域催化部位含有3 個催化活性位點,分別為S1、S1’和S2’,這些催化位點均具有明顯的疏水性,圖4為ACE與3 種典型ACE抑制藥物賴諾普利、依那普利拉和卡托普利活性位點結合示意圖。由于ACE的C端結構域是疏水性環境,所以抑制肽中疏水性氨基酸的含量,決定了其是否具有較高的ACE抑制活性[36],并且S1、S1’和S2’具有其各自的親和殘基,所以抑制肽的活性很大程度上依賴于其C末端的倒數3 個氨基酸殘基的種類。研究表明,當ACE抑制肽C末端倒數3 個氨基酸殘基中含有色氨酸(tryptophan,Trp)、Tyr、Phe和Pro時,該抑制肽具有較高的ACE抑制活性[37]。除此之外,在具有ACE抑制活性的肽的N末端也經常發現含有Ile和Val[38]。更精確的構效關系研究發現,當C末端倒數第二個氨基酸為脂肪族氨基酸(如Val、Ile、Ala)、堿性和芳香族氨基酸(如Tyr、Phe)時[39],或C末端氨基酸為芳香族氨基酸(Trp、Tyr、Phe)、脂肪族氨基酸(Ile、Ala、Leu、Met)時[40]多肽更具ACE抑制活性。然而研究也發現當C末端倒數第二個氨基酸為Pro或C末端氨基酸為Glu時卻很大程度上降低了肽的ACE抑制活性[41]。Wu Jianping等[42]通過對制備的二肽和三肽考察了其ACE抑制活性,驗證了對于二肽結構中當氨基酸殘基帶有芳香環并且側鏈具有疏水性時,如含有Phe、Tyr和Trp時具有較高的抑制活性。對于三肽,最有效的抑制結構是C末端為芳香族氨基酸殘基,中間為帶正電荷氨基酸殘基,N末端為疏水性氨基酸殘基。同時,對于3 個結構域均有各自專一親和的氨基酸殘基,如S1親和芳香族氨基酸和Pro,S1’親和Ala、Val和Leu,S2’親和Ile[43]。

4 酶法制備ACE抑制肽

由于多肽序列整合在蛋白質分子中不具有生物活性,然而經酶催化水解作用使其釋放出來后,這些多肽即能展現其特異的生物活性[45]。目前,制備生物活性肽最常用的方法是蛋白酶催化水解原料蛋白質,其優點在于反應條件溫和、綠色安全、水解程度可控和能夠制備特定生物活性肽等優點[7]。在水解過程中,蛋白酶按其特異的酶切位點將蛋白質分子酶切形成不同長短和序列的多肽,并且形成各異的功能特性。酶法水解蛋白制備ACE抑制肽可以使用單一酶或復合酶作用蛋白,其中利用復合酶水解蛋白可采用順序加入或同時加入的方式進行水解[46]。

4.1 單酶水解制備ACE抑制肽

目前,常用于水解蛋白制備ACE抑制肽的酶有胰蛋白酶(EC 3.4.21.4)、胰凝乳蛋白酶(EC 3.4.21.1)、蛋白酶K(EC 3.4.21.64)、木瓜蛋白酶(EC 3.4.22.2)、堿性蛋白酶(3.4.21.62)、胃蛋白酶(3.4.23.1)和嗜熱菌蛋白酶(EC 3.4.24.27)等[47]。由于每種蛋白酶具有其特異的酶切位點,因此根據ACE抑制肽分子結構特點選擇合適的酶進行蛋白水解,能夠更有效地獲得ACE抑制肽。

Mao Xueying等[13]利用堿性蛋白酶水解牦牛奶酪蛋白制備了ACE抑制肽,研究發現在水解4 h時,水解物具有最高的ACE抑制活性。對該組分進行10 kD和6 kD超濾處理后發現,具有高ACE抑制活性物質集中在低于6 kD水解物中,對其進行分離純化測序后發現兩條新的ACE抑制肽,分別為PPEIN和PLPLL,IC50值分別為(0.29±0.01)mg/mL和(0.25±0.01)mg/mL。構效關系研究認為,當多肽C末端為疏水性氨基酸時能夠有效提高其與ACE的結合和抑制活性,PLPLL多肽符合這一結構特征。但對于仍具有較高ACE抑制活性的PPEIN并不具有該結構特征。但Gobbetti等[48]的研究可以解釋這一結果,研究發現酪蛋白源的多肽中疏水性氨基酸占比大于60%時,該多肽即具有較高的抑制活性。目前已有許多利用堿性蛋白酶水解食源性蛋白獲得生物活性肽的報道[49-51]。堿性蛋白酶屬于絲氨酸S8胞內蛋白酶族,其有廣泛的特異性酶切位點,能夠對Phe、Leu、Trp和Tyr鏈接肽鍵的C末端進行酶切[52]。由于堿性蛋白酶特有的酶切特性,其酶解產生的肽C末端常帶有疏水性氨基酸,這種結構符合具有高ACE抑制活性肽的特點。同時蛋白的水解程度也是影響多肽是否具有高ACE抑制活性的重要因素[53],研究發現堿性蛋白酶能夠獲得較短的肽段,而相較與長肽,短肽更具有潛在的ACE抑制活性[54]。同時研究發現,經堿性蛋白酶水解獲得的ACE抑制肽具有抗腸胃酶消化的特性,能夠被小腸直接吸收,在體內展現ACE抑制活性從而有效治療高血壓[55]。di Bernardini等[56]利用木瓜蛋白酶水解牛胸肉肌質蛋白,37 ℃條件下水解24 h后,發現經3 kD超濾滲透液的ACE抑制率達40.64%(蛋白質量濃度為1.48 mg/mL),遠高于未經超濾處理的水解液的ACE抑制率49.82%(蛋白質量濃度為12.68 mg/mL)。通過質譜分析在小于3 kD的水解液中鑒定出6種多肽。根據構效關系分析這6種多肽可知,INDPFIDLHYM和RGDLGIEIPAEKVF的C末端具有堿性氨基酸Met和Phe;INPNSLFDIQVK和RGDLGIEIPAEKVF在C末端倒數第二個氨基酸均具有Val;GGWQMEEADDWLR和GWQMEEADDWLR在末端位置含有Leu,這些結構特點均使得3 kD的透過液具有較高的ACE抑制活性。Li Huan等[57]也利用木瓜蛋白酶對豌豆蛋白進行水解,同樣獲得了較高ACE抑制活性的多肽。木瓜蛋白酶也是被經常用作水解蛋白生產ACE抑制肽的一種蛋白酶,其具有廣泛的特異性酶切位點,例如Leu和Gly等堿性氨基酸,這些堿性氨基酸具有疏水性側鏈,能夠有效促進具有ACE抑制肽的產生[55]。WuShangguang等[58]使用中性蛋白酶水解蜥魚肌肉蛋白,通過一系列純化方式得到了RVCLP多肽,其IC50值為175 μmol/L。該多肽C末端的疏水性氨基酸Pro是使其具有較高ACE抑制活性的重要原因。目前,已有利用胰蛋白酶水解酪蛋白生產出具有ACE抑制活性的十二肽,并已將其作為降壓功能食品添加劑[59]。胰蛋白酶的特異性酶切位點主要傾向于堿性氨基酸,同時在C末端也會產生帶正點氨基酸肽段,這兩者均增加了其ACE抑制活性[60]。因此利用蛋白酶水解蛋白制備ACE抑制肽時,需要考慮酶的特異性酶切位點和其酶切活性。He Rong等[61]利用蛋白酶水解油菜籽蛋白制備ACE抑制肽時發現,使用堿性蛋白酶、嗜熱菌蛋白酶和蛋白酶K相較于風味蛋白酶能有產生更多低分子質量肽段,主要是由于這3 種酶具有更高的內切酶活性,同時獲得的小分子肽也使得其具有更高的ACE抑制活性。近年來,也有使用嗜熱菌蛋白酶[62]、胰凝乳蛋白酶[55]和胃蛋白酶[63]水解蛋白制備ACE抑制肽的報道。這些蛋白酶均能水解產生較高ACE抑制活性的多肽,主要的共同點也是能夠在多肽C末端特異性酶切產生疏水性氨基酸或者芳香族氨基酸,而根據具有ACE抑制活性的肽結構分析,這些C末端氨基酸能夠有效提高ACE抑制肽抑制活性。因此在利用蛋白酶進行水解蛋白制備ACE抑制肽時,根據具有高活性ACE抑制肽的結構特點考查蛋白酶的特異性酶切位點和酶切活性,能夠有效提高ACE抑制肽的制備。表1列舉近年來了利用單酶水解不同蛋白源制備ACE抑制肽的研究,從已得到的ACE抑制肽序列可以發現,在C端序列中均含有疏水性氨基酸,其可以與疏水性的ACE催化活性位點更具親和性,從而具有ACE抑制活性。

表1 單酶水解不同蛋白源制備的ACE抑制肽Table1 Preparation of ACE peptides derived from different proteins using a single enzyme

4.2 復合酶水解制備ACE抑制肽

單酶水解蛋白制備ACE抑制肽時,由于酶所固有的酶切位點而使其獲得的ACE抑制肽具有一定的局限性。目前,已有采用兩種或兩種以上的蛋白酶順次或同時水解蛋白制備ACE抑制肽的研究。由于各種蛋白酶具有不同的酶切位點,多種酶對蛋白進行復合水解可以進行互補切割,從而得到單一酶無法獲得的新型ACE抑制肽。

Yamada等[71]使用了堿性蛋白酶+中性蛋白酶+胰蛋白酶同時加入的方式水解牛乳酪蛋白制備ACE抑制肽。體外實驗發現該復合酶水解物ACE抑制活性IC50值為74 μg/mL,同時該水解物利用灌胃原發性高血壓鼠(spontaneously hypertensive rats,SHRs)進行體內實驗,發現連續28 d灌胃使得SHRs收縮壓(systolic bloodpressure,SBP)增長速率降低。對該水解物進行了純化分離,獲得了αs2-酪蛋白源的新型三肽MKP,其IC50值為0.12 μg/mL。體內實驗發現,MKP可以瞬時明顯降低SHRs的SBP,具有良好的降壓活性。對于該三肽MKP結構分析可知,其N端和C端為疏水性氨基酸Met和Pro,中間為帶正電荷氨基酸Lys,因此該三肽能夠易于與ACE結合,從而具備良好的ACE抑制活性。Li Peng等[72]使用胃蛋白酶和胰蛋白酶順序水解的方式對開心果提取蛋白進行了水解,并分離純化得到具有較高ACE抑制活性的五肽ACKEP(IC50=126 μmol/L)。同時計算模擬了該五肽與ACE結合的機制,研究發現ACKEP的C末端的脯氨酸殘基與賴諾普利和依那普利C末端結構相同,并且脯氨酸殘基中咪唑環與ACE活性中心氨基酸殘基更具親和特性[73],從而導致該活性肽與ACE結合及抑制其活性方面具有顯著效果。Rui等[74]使用堿性蛋白酶+風味蛋白酶和堿性蛋白酶+木瓜蛋白酶組合順次加入的方式對菜豆蛋白進行水解制備ACE抑制肽進行了研究。結果發現,使用堿性蛋白酶+木瓜蛋白酶水解得到的水解產物相比于堿性蛋白酶+風味蛋白酶水解得到的水解產物具有更高的ACE抑制活性。這主要是由于堿性蛋白酶與木瓜蛋白酶酶切位點互補,獲得更多ACE抑制肽。而當加入風味蛋白酶后,雖然增加了蛋白水解度,但同時卻降低了水解物的ACE抑制活性,其原因可能是由于風味蛋白酶繼續降解了具有活性的肽段使其失活。首先,在使用復合酶水解蛋白制備ACE抑制肽時,單一考察蛋白水解度不能全面反映ACE抑制肽活性的增強或減弱。其次使用復合酶水解時,選擇恰當的蛋白酶對產生高ACE抑制活性多肽也是至關重要。風味蛋白酶作為一種外肽酶,容易切斷多肽末端疏水氨基酸殘基,而根據構效關系分析,末端疏水性氨基酸殘基是決定該多肽是否具有ACE抑制活性的關鍵因素[14]。因此,風味蛋白的后續加入致使具有ACE抑制活性的多肽結構受到破壞,從而降低整體抑制活性。Ambigaipalan等[75]采用復合酶順次加入的方法對椰棗子蛋白提取物進行水解制備ACE抑制肽,獲得的水解物的ACE抑制活性大小依次為堿性蛋白酶+嗜熱菌蛋白酶<堿性蛋白酶+風味蛋白酶<風味蛋白酶+嗜熱菌蛋白酶<堿性蛋白酶+風味蛋白酶+嗜熱菌蛋白酶。由此可知,雖然復合酶水解可以獲得單酶水解所無法獲得的新型ACE抑制肽,但是由于多種酶具有各自的酶切位點,所以在酶切過程中存在將已產生具有ACE抑制活性的肽繼續水解而使其失活的現象。Pedroche等[76]在使用堿性蛋白酶+風味蛋白酶順次水解鷹嘴豆蛋白制備ACE抑制肽時,同樣發現使用風味蛋白酶使得水解物的ACE抑制活性下降的現象。因此,在使用復合酶進行水解時,應考慮各種蛋白酶酶切位點的交叉性,確保已產生具有ACE抑制活性結構的多肽不被進一步破壞從而降低其生物活性。隨著對ACE抑制肽廣泛的研究以及各種蛋白一級序列數據庫的完善,利用計算機模擬復合酶水解蛋白產生ACE抑制肽對實際實驗具有較好的指導作用。目前,模擬酶切蛋白分析活性肽的數據庫主要有ProtParam、Blast、ExPASyPeptideCutter和BIOPEP。已有報道利用模擬酶切分析各種食源性蛋白獲得各類活性肽如ACE抑制肽、抗凝血肽、抗氧化肽和二肽基肽酶抑制肽的研究[77-81]。Lafarga等[82]利用BIOPEP數據庫選定了5種酶即菠蘿蛋白酶、嗜熱菌蛋白酶、胃蛋白酶、無花果蛋白酶和木瓜蛋白酶,對豬肉蛋白包括血紅蛋白、膠原蛋白和血清白蛋白進行模擬酶切預測分析。分析結果表明豬肉蛋白是生產生物活性肽良好的來源,能夠產生較多在治療高血壓方面起到重要作用的ACE、腎素和二肽基肽酶抑制肽。因此,在使用復合酶水解蛋白制備ACE抑制肽方面,如果進行先期計算模擬水解,能在提高抑制肽抑制活性和抑制肽產量方面均有良好的先期指導作用,避免了在ACE抑制肽篩選純化工作量大的缺點,將酶解位點、蛋白一級序列和最終獲得具有高ACE抑制活性肽結構之間建立直接聯系,消除酶解過程中的盲目性和不確定性。表2列舉近年利用復合酶水解不同蛋白源制備ACE抑制肽的信息。

表2 復合酶水解不同蛋白源制備的ACE抑制肽Table2 Preparation of ACE peptides derived from different proteins using a combination of different enzymes

目前,使用復合酶水解蛋白制備ACE抑制肽還處于簡單的酶組合階段,并沒有考慮對復合酶的酶切位點進行先期理論設計,以避免對活性肽段的重復切割問題。因此,在使用復合酶水解制備ACE抑制肽時,在確保分離純化得到較高ACE抑制肽的同時,應充分利用已建立起來的模擬酶切數據庫,保證獲得更多有活性的ACE抑制活性肽段。利用計算機計算模擬酶切過程將成為未來復合酶酶解蛋白制備生物活性肽的關注熱點。

5 ACE抑制肽體內活性的評價

目前測定蛋白水解物或肽的降壓活性通常采用體外ACE抑制活性進行評價,但體外ACE抑制活性的評價結果還需通過體內抑制活性進行進一步驗證[92]。ACE抑制肽體內活性主要使用SHRs進行評價,主要考察其SBP和舒張壓的變化情況。Kontani等[93]從大米蛋白水解物中分離純化得到的ACE抑制肽IHRF有效地降低了SHRs的SBP。當以5 mg/kg(以體質量計,下同)劑量灌胃7 h后SBP下降了18 mmHg,以15 mg/kg劑量灌胃后SBP下降了39 mmHg。研究表明該抑制肽在體內也展現了抑制活性。García-Tejedor等[94]驗證了不同給藥量(3、7、10 mg/kg)的乳鐵蛋白源的兩種多肽(DPYKLRP和LRP)在體內抑制活性,研究發現這兩種抑制肽在體內展現的抑制活性與給藥量呈正相關性。此外,通過構建小腸上皮細胞模型,考察ACE抑制肽穿過小腸黏膜的吸收、轉運和代謝的情況,可以間接對ACE抑制肽能否在體內發揮活性進行評價[95]。Caco-2源于人結腸癌細胞,能夠形成與人小腸上皮細胞相類似的微絨毛結構,同時表達出與小腸上皮細胞相同的特征酶類[96]。VPP和IPP是由瑞士乳桿菌發酵乳中分離出具有ACE抑制活性的肽,祝倩等[97]通過Caco-2細胞模擬小腸吸收細胞分析了其對VPP和IPP的吸收轉運機制,研究發現VPP和IPP屬于旁路運輸的小腸轉運途徑,具有較高的生物利用度,能夠在體能發揮降壓活性。Ding Long等[98]也建立了Caco-2細胞模型,評價了蛋清中獲得的ACE抑制肽TNGIIR的轉運機制,研究發現該抑制肽能夠以完整的狀態穿過Caco-2細胞單分子層,其運輸方式也屬于旁路運輸,表明該抑制肽具有抗消化作用的能力并且能夠直接在體內發揮降壓作用。因此,除了體外測定多肽的ACE抑制活性外,體內生物活性的評價及其抗消化特性和轉運機制也是鑒定多肽是否具有ACE抑制活性的重要指標。

6 結 語

盡管利用可食用蛋白源制備具有降壓功能的ACE抑制肽已經引起關注,但其結構特性及其抑制肽構效關系還需進一步深入研究,為發現新型ACE抑制肽提供基礎。在選擇復合酶進行水解時,利用計算機進行模擬水解,考察酶切位點的互補性與交叉性,最大限度獲得高活性、大量的ACE抑制肽是該研究領域的新熱點。同時,為保障最終實現高效產業化生產,在利用蛋白酶催化水解蛋白制備ACE抑制肽過程中的可控定點水解,特異性高效制備ACE抑制活性肽等方面也將成為該研究領域的新方向。

[1] LIN L, LV S, LI B. Angiotensin-Ⅰ-converting enzyme (ACE)-inhibitory and antihypertensive properties of squid skin gelatin hydrolysates[J]. Food Chemistry, 2012, 131(1): 225-230. DOI:10.1016/ j.foodchem.2011.08.064.

[2] ONDETTI M, RUBIN B, CUSHMAN D. Design of specif i c inhibitors of angiotensin converting enzyme: new class of orally active antihypertensive agents[J]. Science, 1977, 196: 441-444. DOI:10.1126/ science.191908.

[3] BOUGATEF A, NEDJAR-ARROUME N, RAVALLEC-PL R, et al. Angiotensin Ⅰ-converting enzyme (ACE) inhibitory activities of sardinelle (Sardinellaaurita) by-products protein hydrolysates obtained by treatment with microbial and visceral fish serine proteases[J]. Food Chemistry, 2008, 111(2): 350-356. DOI:10.1016/ j.foodchem.2008.03.074.

[4] ERDMANN K, CHEUNG B W, SCHR?DER H. The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease[J]. The Journal of Nutritional Biochemistry, 2008, 19(10): 643-654. DOI:10.1016/j.jnutbio.2007.11.010.

[5] YU Y, HU J, MIYAGUCHI Y, et al. Isolation and characterization of angiotensin I-converting enzyme inhibitory peptides derived from porcine hemoglobin[J]. Peptides, 2006, 27(11): 2950-2956. DOI:10.1016/j.peptides.2006.05.025.

[6] FERREIRA S H, BARTELT D C, GREENE L J. Isolation of bradykinin-potentiating peptides from Bothrops jararac avenom[J]. Biochemistry, 1970, 9(13): 2583-2593. DOI:10.1021/bi00815a005.

[7] PHELAN M, AHERNE A, FITZGERALD R J, et al. Casein-derived bioactive peptides: biological effects, industrial uses, safety aspects and regulatory status[J]. International Dairy Journal, 2009, 19(11):643-654. DOI:10.1016/j.idairyj.2009.06.001.

[8] TERASHIMA M, BABA T, IKEMOTO N, et al. Novel angiotensinconverting enzyme (ACE) inhibitory peptides derived from boneless chicken leg meat[J]. Journal of Agricultural and Food Chemistry, 2010, 58(12): 7432-7436. DOI:10.1021/jf100977z.

[9] BOSCHIN G, SCIGLIUOLO G M, RESTA D, et al. ACE-inhibitory activity of enzymatic protein hydrolysates from lupin and other legumes[J]. Food Chemistry, 2014, 145(7): 34-40. DOI:10.1016/ j.foodchem.2013.07.076.

[10] SUETSUNA K, MAEKAWA K, CHEN J R. Antihypertensive effects of Undaria pinnatifida (wakame) peptide on blood pressure in spontaneously hypertensive rats[J]. The Journal of Nutritional Biochemistry, 2004, 15(5): 267-272. DOI:10.1016/ j.jnutbio.2003.11.004.

[11] KUBA M, TANA C, TAWATA S, et al. Production of angiotensin I-converting enzyme inhibitory peptides from soybean protein with Monascus purpureus acid proteinase[J]. Process Biochemistry, 2005, 40(6): 2191-2196. DOI:10.1016/j.procbio.2004.08.010.

[12] KO S C, KANG N, KIM E A, et al. A novel angiotensin I-converting enzyme (ACE) inhibitory peptide from a marine Chlorella ellipsoidea and its antihypertensive effect in spontaneously hypertensive rats[J]. Process Biochemistry, 2012, 47(12): 2005-2011. DOI:10.1016/ j.procbio.2012.07.015.

[13] MAO X Y, NI J R, SUN W L, et al. Value-added utilization of yak milk casein for the production of angiotensin-Ⅰ-converting enzyme inhibitory peptides[J]. Food Chemistry, 2007, 103(4): 1282-1287. DOI:10.1016/j.foodchem.2006.10.041.

[14] JIANG J, CHEN S, REN F, et al. Yak milk casein as a functional ingredient: preparation and identif i cation of angiotensin-Ⅰ-converting enzyme inhibitory peptides[J]. Journal of Dairy Research, 2007, 74(1):18-25. DOI:10.1017/S0022029906002056.

[15] FABRIS B, CHEN B, PUPIC V, et al. Inhibition of angiotensinconverting enzyme (ACE) in plasma and tissue[J]. Journal of Cardiovascular Pharmacology, 1990, 15(Suppl 2): 6-13. DOI:10.1097/00005344-199000152-00003.

[16] MENARD J, PATCHETT A A. Angiotensin-converting enzyme inhibitors[J]. Advnces in Protein Chemistry, 2001, 56(17): 13-75. DOI:10.1016/S0065-3233(01)56002-7.

[17] SPYROULIAS G A, GALANIS A S, PAIRAS G, et al. Structural features of angiotensin-Ⅰ converting enzyme catalytic sites:conformational studies in solution, homology models and comparison with other zinc metallopeptidases[J]. Current Topics in Medicinal Chemistry, 2004, 4(4): 403-429. DOI:10.2174/1568026043451294.

[18] HUBERT C, HOUOT A M, CORVOL P, et al. Structure of the angiotensin Ⅰ-converting enzyme gene. Two alternate promoters correspond to evolutionary steps of a duplicated gene[J]. Journal of Biological Chemistry, 1991, 266(23): 15377-15383.

[19] CONSORTIUM U. Activities at the universal protein resource (UniProt)[J]. Nucleic Acids Research, 2014, 42(11): 7486. DOI:10.1093/nar/gku469.

[20] SOUBRIER F, ALHENC-GELAS F, HUBERT C, et al. Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning[J]. Proceedings of the National Academy of Sciences, 1988, 85(24): 9386-9390. DOI:10.1073/pnas.85.24.9386.

[21] JUNOT C, GONZALES M F, EZAN E, et al. RXP 407, a selective inhibitor of the N-domain of angiotensin I-converting enzyme, blocks in vivo the degradation of hemoregulatory peptide acetyl-Ser-Asp-Lys-Pro with no effect on angiotensin I hydrolysis[J]. Journal of Pharmacology and Experimental Therapeutics, 2001, 297(2): 606-611.

[22] RIORDAN J F. Angiotensin-I-converting enzyme and its relatives[J]. Genome Biology, 2003, 4(8): 225. DOI:10.1186/gb-2003-4-8-225.

[23] TURNER A J, HOOPER N M. The angiotensin-converting enzyme gene family: genomics and pharmacology[J]. Trends in Pharmacological Sciences, 2002, 23(4): 177-183. DOI:10.1016/S0165-6147(00)01994-5.

[24] LEE S H, QIAN Z J, KIM S K. A novel angiotensin Ⅰ converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats[J]. Food Chemistry, 2010, 118(1): 96-102. DOI:10.1016/ j.foodchem.2009.04.086.

[25] QUIST E E, PHILLIPS R D, SAALIA F K. Angiotensin converting enzyme inhibitory activity of proteolytic digests of peanut (Arachis hypogaea L.) flour[J]. LWT-Food Science and Technology, 2009, 42(3): 694-699. DOI:10.1016/j.lwt.2008.10.008.

[26] JOHNSTON C I. Renin-angiotensin system: a dual tissue and hormonal system for cardiovascular control[J]. Journal of Hypertension, 1992, 10(7): 13-26. DOI:10.1097/00004872-199212007-00002.

[27] ASOODEH A, YAZDI M M, CHAMANI J. Purification and characterisation of angiotensin Ⅰ converting enzyme inhibitory peptides from lysozyme hydrolysates[J]. Food Chemistry, 2012, 131(1): 291-295. DOI:10.1016/j.foodchem.2011.08.039.

[28] PIHLANTO-LEPPALA A. Bioactive peptides derived from bovine whey proteins: opioid and ace-inhibitory peptides[J]. Trends in Food Science andTechnology, 2000, 11(9): 347-356. DOI:10.1016/S0924-2244(01)00003-6.

[29] POKORA M, ZAMBROWICZ A, D?BROWSKA A, et al. An attractive way of egg white protein by-product use for producing of novel anti-hypertensive peptides[J]. Food Chemistry, 2014, 151(4):500-505. DOI:10.1016/j.foodchem.2013.11.111.

[30] BALTI R, NEDJAR-ARROUME N, BOUGATEF A, et al. Three novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) using digestive proteases[J]. Food Research International, 2010, 43(4): 1136-1143. DOI:10.1016/ j.foodres.2010.02.013.

[31] SAIGA A, OKUMURA T, MAKIHARA T, et al. Action mechanism of an angiotensin Ⅰ-converting enzyme inhibitory peptide derived from chicken breast muscle[J]. Journal of Agricultural and Food Chemistry, 2006, 54(3): 942-945. DOI:10.1021/jf0508201

[32] SHEIH I C, FANG T J, WU T K. Isolation and characterisation of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide from the algae protein waste[J]. Food Chemistry, 2009, 115(1): 279-284. DOI:10.1016/j.foodchem.2008.12.019.

[33] ANTHONY C S, CORRADI H R, SCHWAGER S L, et al. The Ndomain of human angiotensin-I-converting enzyme the role of N-glycosylation and the crystal structure in complex with an N domain-specific phosphinic inhibitor, RXP407[J]. Journal of Biological Chemistry, 2010, 285(46): 35685-35693. DOI:10.1074/jbc. M110.167866.

[34] CORRADI H R, SCHWAGER S L, NCHINDA A T, et al. Crystal structure of the N domain of human somatic angiotensin I-converting enzyme provides a structural basis for domain-specific inhibitor design[J]. Journal of Molecular Biology, 2006, 357(3): 964-974. DOI:10.1016/j.jmb.2006.01.048.

[35] GEORGIADIS D, BEAU F, CZARNY B, et al. Roles of the two active sites of somatic angiotensin-converting enzyme in the cleavage of angiotensin I and bradykinin insights from selective inhibitors[J]. Circulation Research, 2003, 93(2): 148-154. DOI:10.1161/01. RES.0000081593.33848.FC.

[36] WU J, ALUKO R E, NAKAI S. Structural requirements of sngiotensinⅠ-converting enzyme inhibitory peptides: quantitative structureactivity relationship modeling of peptides containing 4-10 amino acid residues[J]. QSAR & Combinatorial Science, 2006, 25(10): 873-880. DOI:10.1002/qsar.200630005.

[37] HOROVITZ Z P. Angiotensin converting enzyme inhibitors:mechanisms of action and clinical implications[M]. German: Baltimore and Munich, 1981: 156.

[38] CHEUNG H S, WANG F L, ONDETTI M A, et al. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence[J]. Journal of Biological Chemistry, 1980, 255(2): 401-407.

[39] KOHMURA M, NIO N, KUBO K, et al. Inhibition of angiotensinconverting enzyme by synthetic peptides of human β-casein[J]. Agricultural and Biological Chemistry, 1989, 53(8): 2107-2114. DOI:10.1080/00021369.1989.10869621.

[40] JANG A, JO C, KANG K S, et al. Antimicrobial and human cancer cell cytotoxic effect of synthetic angiotensin-converting enzyme (ACE) inhibitory peptides[J]. Food Chemistry, 2008, 107(1): 327-336. DOI:10.1016/j.foodchem.2007.08.036.

[41] CUSHMAN D, PLU??EC J, WILLIAMS N, et al. Inhibition of angiotensin-converting enzyme by analogs of peptides from Bothrops jararaca venom[J]. Experientia, 1973, 29(8): 1032-1035. DOI:10.1007/BF01930447.

[42] WU J P, ALUKO R E, NAKAI S. Structural requirements of angiotensinⅠ-converting enzyme inhibitory peptides: quantitative structure-activity relationship study of di-and tripeptides[J]. Journal of Agricultural and Food Chemistry, 2006, 54(3): 732-738. DOI:10.1021/jf051263l.

[43] JUNG W K, MENDIS E, JE J Y, et al. Angiotensin Ⅰ-converting enzyme inhibitory peptide from yellowf i n sole (Limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats[J]. Food Chemistry, 2006, 94(1): 26-32. DOI:10.1016/ j.foodchem.2004.09.048.

[44] GUERRERO L, CASTILLO J, QUI?ONES M, et al. Inhibition of angiotensin-converting enzyme activity by flavonoids: structureactivity relationship studies[J]. PLoS ONE, 2012, 7(11): e49493. DOI:10.1371/journal.pone.0049493.

[45] ZHANG Y, SUN W, ZHAO M, et al. Improvement of the ACE-inhibitory and DPPH radical scavenging activities of soya protein hydrolysates through pepsin pretreatment[J]. International Journal of Food Science & Technology, 2015, 50(10): 2175-2182. DOI:10.1111/ ijfs.12856.

[46] ALUKO R E. Antihypertensive peptides from food proteins[J]. Annual Review of Food Science and Technology, 2015, 6(1): 235-262. DOI:10.1146/annurev-food-022814-015520.

[47] KETNAWA S, RAWDKUEN S. Enzymatic method for ACE inhibitory peptide derived from aquatic resources: areview[J]. International Journal of Biology, Pharmacy and Allied Sciences, 2013, 2: 469-494.

[48] GOBBETTI M, FERRANTI P, SMACCHI E, et al. Production of angiotensin-Ⅰ-converting-enzyme-inhibitory peptides in fermented milks started by lactobacillus delbrueckiisubsp. bulgaricus SS1 and Lactococcus lactis subsp. cremoris FT4[J]. Applied and Environmental Microbiology, 2000, 66(9): 3898-3904. DOI:10.1128/AEM.66.9.3898-3904.2000.

[49] LEE J K, HONG S, JEON J K, et al. Purif i cation and characterization of angiotensin I converting enzyme inhibitory peptides from the rotifer, Brachionus rotundiformis[J]. Bioresource Technology, 2009, 100(21):5255-5259. DOI:10.1016/j.biortech.2009.05.057.

[50] LI G H, WAN J Z, LE G W, et al. Novel angiotensin Ⅰ-converting enzyme inhibitory peptides isolated from alcalasehydrolysate of mung bean protein[J]. Journal of Peptide Science, 2006, 12(8): 509-514. DOI:10.1002/psc.758.

[51] WIJESEKARA I, QIAN Z J, RYU B, et al. Purif i cation and identif i cation of antihypertensive peptides from seaweed pipef i sh (Syngnathus schlegeli) muscle protein hydrolysate[J]. Food Research International, 2011, 44(3):703-707. DOI:10.1016/j.foodres.2010.12.022.

[52] GOMEZ-GUILLEN M C, GIMENZ B, LOPEZ-CABALLERO M E, et al. Functional and bioactive properties of collagen and gelatin from alternative sources: a review[J]. Food Hydrocolloids, 2011, 25(8):1813-1827. DOI:10.1016/j.foodhyd.2011.02.007.

[53] BYUN H G, KIM S K. Purif i cation and characterization of angiotensinⅠ converting enzyme (ACE) inhibitory peptides from Alaska pollack (Theragra chalcogramma) skin[J]. Process Biochemistry, 2001, 36(12): 1155-1162. DOI:10.1016/S0032-9592(00)00297-1.

[54] SAITO Y, WANEZAKI K, KAWATO A, et al. Structure and activity of angiotensin Ⅰ converting enzyme inhibitory peptides from sake and sake lees[J]. Bioscience, Biotechnology, and Biochemistry, 1994, 58(10): 1767-1771. DOI:10.1271/bbb.58.1767.

[55] MARRUFO-ESTRADA D M, SEGURA-CAMPOS M R, CHELGUERRERO L A, et al. Defatted Jatrophacurcas flour and protein isolate as materials for protein hydrolysates with biological activity[J]. Food Chemistry, 2013, 138(1): 77-83. DOI:10.1016/ j.foodchem.2012.09.033.

[56] di BERNARDINI R, MULLEN A M, BOLTON D, et al. Assessment of the angiotensin-Ⅰ-converting enzyme (ACE-Ⅰ) inhibitory and antioxidant activities of hydrolysates of bovine brisket sarcoplasmic proteins produced by papain and characterisation of associated bioactive peptidic fractions[J]. Meat Science, 2012, 90(1): 226-235. DOI:10.1016/j.meatsci.2011.07.008.

[57] LI H, ALUKO R E. Identification and inhibitory properties of multifunctional peptides from pea protein hydrolysate[J]. Journal of Agricultural and Food Chemistry, 2010, 58(21): 11471-11476. DOI:10.1021/jf102538g.

[58] WU S G, FENG X Z, LAN X D, et al. Purif i cation and identif i cation of angiotensin-I converting enzyme (ACE) inhibitory peptide from lizard fish (Saurida elongata) hydrolysate[J]. Journal of Functional Foods, 2015, 13: 295-299. DOI:10.1016/j.jff.2014.12.051.

[59] NIHON K S. Nikkei biotechnology annual report[R]. Japan: Nihon Keizai Shinbunsha, 1997.

[60] OTTE J, SHALABY S M, ZAKORA M, et al. Angiotensin-converting enzyme inhibitory activity of milk protein hydrolysates: effect of substrate, enzyme and time of hydrolysis[J]. International Dairy Journal, 2007, 17(5): 488-503. DOI:10.1016/j.idairyj.2006.05.011.

[61] HE R, ALASHI A, MALOMO S A, et al. Antihypertensive and free radical scavenging properties of enzymatic rapeseed protein hydrolysates[J]. Food Chemistry, 2013, 141(1): 153-159. DOI:10.1016/ j.foodchem.2013.02.087.

[62] IKEDA A, ICHINO H, KIGUCHIYA S, et al. Evaluation and identification of potent angiotensin-Ⅰ converting enzyme inhibitory peptide derived from dwarf gulper shark (Centrophorus atromarginatus)[J]. Journal of Food Processing and Preservation, 2015, 39(2): 107-115. DOI:10.1111/jfpp.12210.

[63] ZHANG Y, OLSEN K, GROSSI A, et al. Effect of pretreatment on enzymatic hydrolysis of bovine collagen and formation of ACE-inhibitory peptides[J]. Food Chemistry, 2013, 141(3): 2343-2354. DOI:10.1016/j.foodchem.2013.05.058.

[64] HE R, MALOMO S A, ALASHI A, et al. Purif i cation and hypotensive activity of rapeseed protein-derived renin and angiotensin converting enzyme inhibitory peptides[J]. Journal of Functional Foods, 2013, 5(2): 781-789. DOI:10.1016/j.jff.2013.01.024.

[65] MUGURUMA M, AHHMED A M, KATAYAMA K, et al. Identification of pro-drug type ACE inhibitory peptide sourced from porcine myosin B: evaluation of its antihypertensive effects in vivo[J]. Food Chemistry, 2009, 114(2): 516-522. DOI:10.1016/ j.foodchem.2008.09.081.

[66] SAMARAKOON K W, KWON O N, KO J Y, et al. Purification and identification of novel angiotensin-I converting enzyme (ACE) inhibitory peptides from cultured marine microalgae (Nannochloropsis oculata) protein hydrolysate[J]. Journal of Applied Phycology, 2013, 25(5): 1595-1606. DOI:10.1007/s10811-013-9994-6.

[67] LIM C W, KIM Y K, YEUN S M, et al. Purification and characterization of angiotensin-1 converting enzyme (ACE)-inhibitory peptide from the jellyf i sh, Nemopilema nomurai[J]. African Journal of Biotechnology, 2016, 12(15): 1888-1893. DOI:10.5897/AJB11.2677.

[68] ZAREI M, FORGHANI B, EBRAHIMPOUR A, et al. In vitro and in vivo antihypertensive activity of palm kernel cake protein hydrolysates:sequencing and characterization of potent bioactive[J]. Industrial Crops and Products, 2015, 76: 112-120. DOI:10.1016/j.indcrop.2015.06.040.

[69] WU H, XU N, SUN X, et al. Hydrolysis and purification of ACE inhibitory peptides from the marine microalga Isochrysis galbana[J]. Journal of Applied Phycology, 2015, 27(1): 351-361. DOI:10.1007/ s10811-014-0347-x.

[70] MIRZAEI M, MIRDAMADI S, EHSANI M R, et al. Purification and identification of antioxidant and ACE-inhibitory peptide from Saccharomyces cerevisiae protein hydrolysate[J]. Journal of Functional Foods, 2015, 19: 259-268. DOI:10.1016/j.jff.2015.09.031.

[71] YAMADA A, SAKURAI T, OCHI D, et al. Novel angiotensin I-converting enzyme inhibitory peptide derived from bovine casein[J]. Food Chemistry, 2013, 141(4): 3781-3789. DOI:10.1016/ j.foodchem.2013.06.089.

[72] LI P, JIA J, FANG M, et al. In vitro and in vivo ACE inhibitory of pistachio hydrolysates and in silico mechanism of identif i ed peptide binding with ACE[J]. Process Biochemistry, 2014, 49(5): 898-904. DOI:10.1016/j.procbio.2014.02.007.

[73] TERASHIMA M, OE M, OGURA K, et al. Inhibition strength of short peptides derived from an ACE inhibitory peptide[J]. Journal of Agricultural and Food Chemistry, 2011, 59(20): 11234-11237. DOI:10.1021/jf202902r.

[74] RUI X, BOYE J I, SIMPSON B K, et al. Angiotensin Ⅰ-converting enzyme inhibitory properties of Phaseolus vulgaris bean hydrolysates:effects of different thermal and enzymatic digestion treatments[J]. Food Research International, 2012, 49(2): 739-746. DOI:10.1016/ j.foodres.2012.09.025.

[75] AMBIGAIPALAN P, Al-KHALIFA A S, SHAHIDI F. Antioxidant and angiotensin Ⅰ converting enzyme (ACE) inhibitory activities of date seed protein hydrolysates prepared using Alcalase, Flavourzyme and Thermolysin[J]. Journal of Functional Foods, 2015, 18: 1125-1137. DOI:10.1016/j.jff.2015.01.021.

[76] PEDROCHE J, YUST M M, GIRóN-CALLE J, et al. Utilisation of chickpea protein isolates for production of peptides with angiotensin I-converting enzyme (ACE)-inhibitory activity[J]. Journal of the Science of Food and Agriculture, 2002, 82(9): 960-965. DOI:10.1002/ jsfa.1126.

[77] CHANG Y W, ALLI I. In silico assessment: Suggested homology of chickpea (Cicer arietinum L.) legumin and prediction of ACE-inhibitory peptides from chickpea proteins using BLAST and BIOPEP analyses[J]. Food Research International, 2012, 49(1): 477-486. DOI:10.1016/j.foodres.2012.07.006

[78] GU Y, MAJUMDER K, WU J. QSAR-aided in silico approach in evaluation of food proteins as precursors of ACE inhibitory peptides[J]. Food Research International, 2011, 44(8): 2465-2474.

[79] IWANIAK A, DZIUBA J. Analysis of domains in selected plant and animal food proteins-precursors of biologically active peptides-in silicoapproach[J]. Food Science and Technology International, 2009, 15(2): 179-191. DOI:10.1177/1082013208106320.

[80] IWANIAK A, DZIUBA J. Animal and plant proteins as precursors of peptides with ACE inhibitory activity: an in silico strategy of protein evaluation[J]. Food Technology and Biotechnology, 2009, 47(4): 441-449.

[81] LACROIX I M, LI-CHAN E C. Evaluation of the potential of dietary proteins as precursors of dipeptidyl peptidase (DPP)-Ⅳ inhibitors by an in silico approach[J]. Journal of Functional Foods, 2012, 4(2): 403-422. DOI:10.1016/j.jff.2012.01.008.

[82] LAFARGA T, O’CONNOR P, HAYES M. Identification of novel dipeptidyl peptidase-Ⅳ and angiotensin-Ⅰ-converting enzyme inhibitory peptides from meat proteins using in silico analysis[J]. Peptides, 2014, 59(9): 53-62. DOI:10.1016/j.peptides.2014.07.005.

[83] WANG C, TIAN J, WANG Q. ACE inhibitory and antihypertensive properties of apricot almond meal hydrolysate[J]. European Food Research and Technology, 2011, 232(3): 549-556. DOI:10.1007/ s00217-010-1411-7.

[84] MEMARPOOR-YAZDI M, ASOODEH A, CHAMANI J. Structure and ACE-inhibitory activity of peptides derived from hen egg white lysozyme[J]. International Journal of Peptide Research and Therapeutics, 2012, 18(4): 353-360. DOI:10.1007/s10989-012-9311-2.

[85] RAO S, SUN J, LIU Y, et al. ACE inhibitory peptides and antioxidant peptides derived from in vitro digestion hydrolysate of hen egg white lysozyme[J]. Food Chemistry, 2012, 135(3): 1245-1252. DOI:10.1016/ j.foodchem.2012.05.059.

[86] GU Y, WU J. LC-MS/MS coupled with QSAR modeling in characterising of angiotensin I-converting enzyme inhibitory peptides from soybean proteins[J]. Food Chemistry, 2013, 141(3): 2682-2690. DOI:10.1016/j.foodchem.2013.04.064.

[87] BOSCHIN G, SCIGLIUOLO G M, RESTA D, et al. Optimization of the enzymatic hydrolysis of lupin (Lupinus) proteins for producing ACE-inhibitory peptides[J]. Journal of Agricultural and Food Chemistry, 2014, 62(8): 1846-1851. DOI:10.1021/jf4039056.

[88] YANG Y, MARCZAK E D, YOKOO M, et al. Isolation and antihypertensive effect of angiotensin Ⅰ-converting enzyme (ACE) inhibitory peptides from spinach Rubisco[J]. Journal of Agricultural and Food Chemistry, 2003, 51(17): 4897-4902. DOI:10.1021/ jf4039056.

[89] WU Q, CAI Q F, TAO Z P, et al. Purif i cation and characterization of a novel angiotensin I-converting enzyme inhibitory peptide derived from abalone (Haliotis discus hannai Ino) gonads[J]. European Food Research and Technology, 2015, 240(1): 137-145. DOI:10.1007/ s00217-014-2315-8.

[90] GARCIA-MORENO P J, ESPEJO-CARPIO F J, GUADIX A, et al. Production and identification of angiotensin I-converting enzyme (ACE) inhibitory peptides from Mediterranean fi sh discards[J]. Journal of Functional Foods, 2015, 18: 95-105. DOI:10.1016/j.jff.2015.06.062.

[91] AISSAOUI N, ABIDI F, MARZOUKI M N. ACE inhibitory and antioxidant activities of red scorpionf i sh (Scorpaena notata) protein hydrolysates[J]. Journal of Food Science and Technology, 2015, 52(11): 7092-7102. DOI:10.1007/s13197-015-1862-8.

[92] VERMEIRSSEN V, van CAMP J, VERSTRAETE W. Bioavailability of angiotensin Ⅰ converting enzyme inhibitory peptides[J]. British Journal of Nutrition, 2004, 92(3): 357-366. DOI:10.1079/ BJN20041189.

[93] KONTANI N, OMAE R, KAGEBAYASHI T, et al. Characterization of Ile-His-Arg-Phe, a novel rice-derived vasorelaxing peptide with hypotensive and anorexigenic activities[J]. Molecular Nutrition & Food Research, 2014, 58(2): 359-364. DOI:10.1002/mnfr.201300334.

[94] GARCIA-TEJEDOR A, SANCHEZ-RIVERA L, CASTELLO-RUIZ M, et al. Novel antihypertensive lactoferrin-derived peptides produced by Kluyveromyces marxianus: gastrointestinal stability profile and in vivo angiotensin I-converting enzyme (ACE) inhibition[J]. Journal of Agricultural and Food Chemistry, 2014, 62(7): 1609-1616. DOI:10.1021/jf4053868.

[95] 祝倩, 郭宇星, 潘道東. 利用Caco-2細胞模型評價乳源ACE抑制肽小腸吸收機制的研究進展[J]. 食品科學, 2013, 34(9): 330-335. DOI:10.7506/spkx1002-6630-201309066.

[96] FOGH J, FOGH J M, ORFEO T. One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice[J]. Journal of the National Cancer Institute, 1977, 59(1): 221-226. DOI:10.1093/jnci/59.1.221.

[97] 祝倩, 郭宇星, 潘道東, 等. Caco-2細胞模型構建及抗高血壓肽VPP和IPP小腸吸收機制研究[J]. 食品科學, 2014, 35(15): 226-231. DOI:10.7506/spkx1002-6630-201415046.

[98] DING L, WANG L, YU Z, et al. Digestion and absorption of an egg white ACE-inhibitory peptide in human intestinal Caco-2 cell monolayers[J]. International Journal of Food Sciences and Nutrition, 2016, 67(2): 111-116. DOI:10.3109/09637486.2016.1144722.

Progress in Structure-Activity Relationship and Enzymatic Preparation of ACE Inhibitory Peptides

LIN Kai1, HAN Xue1, ZHANG Lanwei1,2,*, QIAO Fei1, CHENG Dayou1
(1. School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China; 2. College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China)

Hypertension is a considerable public health problem worldwide. Angiotensin-Ⅰ converting enzyme (dipeptidylcarboxypeptidase, EC 3.4.15.1, ACE) plays a critical role in regulating blood pressure through the renninangiotensin system (RAS) and kallikrein-kinnin system (KKS). Recently, numerous studies aimed at alleviating hypertension have focused on the generation and isolation of ACE-inhibitory peptides from various food sources. A number of studies have reported the structure-activity relationship of food protein-derived antihypertensive peptides, especially the effect of the primary structure on the potency. Compared with synthetic chemical drugs, ACE inhibitory peptides derived from food proteins are considered to be safer and milder. Nowadays, one of the most widely used techniques to liberate ACE inhibitory peptides is enzymatic hydrolysis. This technique involves one or more proteases at the optimum temperature and pH conditions. In this review, in order to provide a theoretical guidance for the preparation of high-quality ACE inhibitory peptides, we review recent reports on the structure-activity relationship and enzymatic preparation of ACE inhibitory peptides.

angiotensin-Ⅰ converting enzyme inhibitors; antihypertensive mechanism; structure-activity relationship; enzymatic preparation

10.7506/spkx1002-6630-201703042

TS201.2

A

1002-6630(2017)03-0261-10

林凱, 韓雪, 張蘭威, 等. ACE抑制肽構效關系及其酶法制備的研究進展[J]. 食品科學, 2017, 38(3): 261-270. DOI:10.7506/spkx1002-6630-201703042. http://www.spkx.net.cn

LIN Kai, HAN Xue, ZHANG Lanwei, et al. Progress in structure-activity relationship and enzymatic preparation of ACE inhibitory peptides[J]. Food Science, 2017, 38(3): 261-270. (in Chinese with English abstract)

10.7506/spkx1002-6630-201703042. http://www.spkx.net.cn

2016-03-31

“十二五”農村領域國家科技計劃項目(2013BAD18B05-05);國家乳品加工技術研發分中心開放課題(HL2015-1)作者簡介:林凱(1989—),男,博士研究生,研究方向為乳品科學與發酵工程。E-mail:linkai@hit.edu.cn

*通信作者:張蘭威(1961—),男,教授,博士,研究方向為乳品科學。E-mail:zhanglw@hit.edu.cn

主站蜘蛛池模板: 伊人色综合久久天天| 99在线国产| 操美女免费网站| 日韩福利视频导航| 又黄又爽视频好爽视频| 亚洲精品在线观看91| 久久久黄色片| 操美女免费网站| 国产第四页| 国产精品页| 成人永久免费A∨一级在线播放| 天堂成人在线| 色成人综合| 久久黄色小视频| 日本免费精品| 毛片最新网址| 日韩免费视频播播| 欧美日本不卡| 国产在线视频福利资源站| 宅男噜噜噜66国产在线观看| 亚洲欧美在线综合图区| 欧美黄色网站在线看| 九色视频线上播放| 欧美成人一区午夜福利在线| 天天躁夜夜躁狠狠躁躁88| 国内精品九九久久久精品| 亚洲综合第一区| 中国黄色一级视频| 欧美啪啪一区| 免费jizz在线播放| AV无码国产在线看岛国岛| 亚洲二区视频| 高清大学生毛片一级| 国产不卡网| 97色伦色在线综合视频| 91精品在线视频观看| 一级爱做片免费观看久久 | 伊人激情综合网| 尤物午夜福利视频| 91青青视频| 亚洲精品动漫| 国产精品视频免费网站| 久久午夜夜伦鲁鲁片无码免费 | 超清人妻系列无码专区| 亚洲精品色AV无码看| 欧美日韩国产在线播放| 国产一级毛片在线| 高清视频一区| 国产成人AV男人的天堂| 91在线一9|永久视频在线| 五月六月伊人狠狠丁香网| 日本免费精品| 亚洲三级色| 最新日本中文字幕| 九九香蕉视频| 日本妇乱子伦视频| 亚洲综合久久一本伊一区| 日韩国产高清无码| 日本手机在线视频| 99在线视频免费观看| 国产在线观看人成激情视频| 日本免费一区视频| 亚洲AV成人一区国产精品| 国产欧美日韩免费| www.99在线观看| 热思思久久免费视频| 67194亚洲无码| 日韩色图在线观看| 小13箩利洗澡无码视频免费网站| 欧美日韩成人在线观看| 免费一极毛片| 99热这里只有精品2| 亚洲国产91人成在线| 国产一级无码不卡视频| 中文字幕2区| 在线观看无码a∨| 中文字幕欧美成人免费| 久久国产亚洲偷自| 激情六月丁香婷婷| 免费人成又黄又爽的视频网站| 亚洲a免费| 麻豆精品在线|