邢 巖,王 旭,楊 丹,張志美
(1.通化師范學(xué)院,通化 134002;2.東北大學(xué),沈陽(yáng) 110819)
基于十八區(qū)段的PMSM高性能轉(zhuǎn)矩控制
邢 巖1,王 旭2,楊 丹2,張志美2
(1.通化師范學(xué)院,通化 134002;2.東北大學(xué),沈陽(yáng) 110819)
傳統(tǒng)直接轉(zhuǎn)矩控制采用6扇區(qū)的圓形磁鏈控制,扇區(qū)邊界處電壓矢量對(duì)定子磁鏈的作用效果不對(duì)稱(chēng)的問(wèn)題,導(dǎo)致磁鏈和轉(zhuǎn)矩脈動(dòng)大,而且在考慮定子電阻壓降時(shí),電壓矢量選擇表存在誤差。針對(duì)上述問(wèn)題,推導(dǎo)了定子電壓矢量對(duì)磁鏈的控制公式,分別分析了忽略和考慮定子電阻壓降影響時(shí)的定子磁鏈性能,提出了十八區(qū)段控制方法及改進(jìn)的電壓矢量選擇表。比較傳統(tǒng)直接轉(zhuǎn)矩控制和十八區(qū)段直接轉(zhuǎn)矩控制的系統(tǒng)性能,結(jié)果表明十八區(qū)段直接轉(zhuǎn)矩控制在保持算法簡(jiǎn)單、動(dòng)態(tài)響應(yīng)迅速的基礎(chǔ)上,能夠有效地降低磁鏈和轉(zhuǎn)矩脈動(dòng)。
永磁同步電動(dòng)機(jī);直接轉(zhuǎn)矩控制;磁鏈和轉(zhuǎn)矩脈動(dòng);十八區(qū)段
直接轉(zhuǎn)矩控制因具有魯棒性強(qiáng),動(dòng)態(tài)響應(yīng)快,不需要旋轉(zhuǎn)坐標(biāo)系變換模型簡(jiǎn)單,實(shí)現(xiàn)內(nèi)部轉(zhuǎn)矩閉環(huán)時(shí)不需要轉(zhuǎn)子位置信息[1-3]等優(yōu)點(diǎn)而受到越來(lái)越多的關(guān)注[4]。1986年DTC策略首次在感應(yīng)電機(jī)控制系統(tǒng)中提出[5],之后直接轉(zhuǎn)矩控制策略受到廣泛重視,國(guó)內(nèi)外學(xué)者對(duì)DTC策略進(jìn)行了深入研究,促進(jìn)了DTC的理論發(fā)展和實(shí)際應(yīng)用[6-10]。
直接轉(zhuǎn)矩控制摒棄了解耦的思想,把磁鏈空間分成6個(gè)扇區(qū),采用滯環(huán)比較器控制磁鏈和轉(zhuǎn)矩,實(shí)現(xiàn)了對(duì)磁鏈和轉(zhuǎn)矩的直接控制。滯環(huán)比較器的應(yīng)用使得控制系統(tǒng)動(dòng)態(tài)響應(yīng)快,對(duì)參數(shù)依賴(lài)少,但它需要用到定子磁鏈的位置信息。當(dāng)定子電阻隨電機(jī)溫度變化帶來(lái)測(cè)量誤差時(shí),會(huì)導(dǎo)致定子磁鏈扇區(qū)選擇不準(zhǔn)確,影響電動(dòng)機(jī)控制系統(tǒng)的性能。本文詳細(xì)闡述了DTC系統(tǒng)中定子磁鏈性能,提出十八區(qū)段控制方法、相應(yīng)的電壓矢量選擇表及其實(shí)現(xiàn)方法。理論分析和仿真實(shí)驗(yàn)表明十八區(qū)段方法磁鏈增量在區(qū)段分界處基本對(duì)稱(chēng),可以有效減小磁鏈和轉(zhuǎn)矩脈動(dòng)。
直接轉(zhuǎn)矩控制中對(duì)定子磁鏈和電磁轉(zhuǎn)矩的控制是在α-β兩相靜止坐標(biāo)系下實(shí)現(xiàn)的,永磁同步電機(jī)在α-β兩相靜止坐標(biāo)系下的電壓方程可寫(xiě)成:

(1)
式中:us為定子空間電壓矢量,在不同的時(shí)刻,us分別代表空間電壓矢量U1,U2,U3,U4,U5,U6;is為定子電流;ψs為定子磁鏈;Rs為定子電阻。
忽略定子電阻壓降時(shí),得到定子電壓與定子磁鏈的關(guān)系式:
(2)
假定控制系統(tǒng)采樣周期為T(mén),將式(2)離散化可得:

(3)
式(3)描述了一個(gè)采樣周期內(nèi)空間電壓矢量us對(duì)定子磁鏈?zhǔn)噶康淖饔茫瑘D1為其對(duì)應(yīng)的矢量圖表示形式,圖中θuψ為施加的空間電壓矢量與定子磁鏈?zhǔn)噶恐g的夾角;Δδ為負(fù)載角變化量。

圖1 電壓矢量對(duì)磁鏈?zhǔn)噶康挠绊?/p>
進(jìn)一步給出空間矢量與磁鏈變化幅度間的定量關(guān)系式,即一個(gè)采樣周期內(nèi),在us的作用下磁鏈幅值的變化量:
在θ1扇區(qū),逆時(shí)針?lè)较蛐D(zhuǎn)時(shí),施加電壓矢量U2或U3分別控制幅值|ψs|增加或減小,記定子磁鏈?zhǔn)噶颗cU2的夾角為θuψ1∈(30° , 90°),與U3的夾角為θuψ2∈(90° , 150°),電壓空間矢量幅值為|us|,根據(jù)式(4)一個(gè)周期內(nèi)定子磁鏈變化量:

(5)

(6)
式中:θuψ1和θuψ2分別為定子磁鏈?zhǔn)噶喀譻與U2,U3的夾角為θuψ2以扇區(qū)中心線為中心。根據(jù)上述關(guān)系,畫(huà)出θ1扇區(qū)內(nèi),分別選擇電壓矢量時(shí)磁鏈幅值變化曲線,如圖2所示。

(a)磁鏈幅值增加(b)磁鏈幅值減小
圖2 傳統(tǒng)DTC定子磁鏈變化曲線
圖2中,θ表示則磁鏈ψs與θ1扇區(qū)中心線(即電壓矢量U1)的夾角,θ∈(-30° , 30°)。
考慮定子電阻壓降影響時(shí),由式(1)得:

(7)
式中:Es為定子反電勢(shì)矢量。設(shè)系統(tǒng)采樣周期為T(mén),將式(7)離散化可得:

(8)
進(jìn)一步得到定子反電勢(shì)矢量與磁鏈變化幅度之間的定量關(guān)系式:

(9)
式中:θeψ為定子反電動(dòng)勢(shì)矢量和定子磁鏈?zhǔn)噶恐g的夾角。
而定子電壓矢量和定子反電勢(shì)矢量的夾角:

(10)
綜上所述,可得到考慮夾角γ的影響時(shí)定子電壓矢量對(duì)定子磁鏈幅值的作用效果,如圖3所示。圖3中角α為定子磁鏈?zhǔn)噶颗c扇區(qū)邊界線之間的夾角。

圖3 電壓矢量對(duì)磁鏈幅值的影響
傳統(tǒng)DTC電壓矢量中,當(dāng)定子磁鏈ψs位于θ1扇區(qū)時(shí),選擇空間電壓矢量U3為減小磁鏈增加轉(zhuǎn)矩,選擇空間電壓矢量U5為減小磁鏈減小轉(zhuǎn)矩[11-12]。實(shí)際上,當(dāng)ψs位于圖3中ψs1位置時(shí),如果α角小于γ角,那么U3的作用是增加磁鏈增加轉(zhuǎn)矩。同樣,當(dāng)ψs位于圖3中ψs2位置時(shí),如果α角小于γ角,那么空間電壓矢量U5的作用效果是增加定子磁鏈幅值減小電磁轉(zhuǎn)矩。其他扇區(qū)的分析及結(jié)論相同,即很難選出一個(gè)電壓矢量,使得無(wú)論定子磁鏈處于一個(gè)扇區(qū)內(nèi)的任何位置,都可以對(duì)定子磁鏈起到減小的作用。
綜上所述,考慮定子電阻壓降時(shí),對(duì)于傳統(tǒng)的6扇區(qū)分區(qū)方法,沒(méi)有一個(gè)定子電壓矢量,可以在一個(gè)扇區(qū)內(nèi)始終控制定子磁鏈幅值減小。也就是說(shuō),傳統(tǒng)直接轉(zhuǎn)矩控制的電壓矢量選擇表在某些情況下是錯(cuò)誤的,電機(jī)低速運(yùn)行時(shí)定子電阻壓降Rsis所占比例較大,這種錯(cuò)誤尤為明顯。
此外,由圖2可以看出,一個(gè)扇區(qū)內(nèi)定子電壓矢量對(duì)定子磁鏈的作用是不對(duì)稱(chēng)的,在扇區(qū)邊界線附近尤為明顯。例如,當(dāng)θ∈(-30°, -10°)時(shí),一個(gè)周期內(nèi),磁鏈增加幅度很少,而磁鏈減小幅度很大,θ越小時(shí)這個(gè)差異越大。這將導(dǎo)致定子磁鏈在一個(gè)扇區(qū)內(nèi)非均勻變化,磁鏈軌跡偏離理想圓,從而引起電流的畸變,影響系統(tǒng)性能。表1給出了定子磁鏈位于θi扇區(qū)時(shí),施加電壓矢量Ui+1和Ui+2引起的定子磁鏈幅值變化范圍。

表1 扇區(qū)θi內(nèi)磁鏈變化范圍表
3.1 十八區(qū)段直接轉(zhuǎn)矩控制
由前面的分析可以看出,傳統(tǒng)直接轉(zhuǎn)矩控制的電壓矢量選擇表在某些情況下是錯(cuò)誤的,電機(jī)低速運(yùn)行時(shí),這種錯(cuò)誤更加明顯。而且每個(gè)扇區(qū)內(nèi)定子電壓矢量對(duì)定子磁鏈的作用效果不對(duì)稱(chēng),引起磁鏈脈動(dòng)和電流畸變。
針對(duì)上述問(wèn)題,本文提出了十八區(qū)段直接轉(zhuǎn)矩控制方法。即將傳統(tǒng)DTC的一個(gè)扇區(qū)細(xì)分成3個(gè)小區(qū)段,整個(gè)定子磁鏈空間分成18個(gè)區(qū)段(θ1,θ2, …,θ18),每個(gè)區(qū)段為20°,如圖4所示。根據(jù)定子電壓對(duì)磁鏈和轉(zhuǎn)矩的作用效果和圖1可以推出十八區(qū)段的電壓矢量選擇表,如表2所示。

圖4 定子磁鏈空間細(xì)分為18個(gè)區(qū)段示意圖

表2 十八區(qū)段電壓矢量選擇表
根據(jù)表2,當(dāng)定子磁鏈?zhǔn)噶刻幱趫D3中ψs1位置(α<γ)時(shí),選擇U4減小磁鏈增加轉(zhuǎn)矩;當(dāng)定子磁鏈?zhǔn)噶刻幱趫D3中ψs2位置(α>γ)時(shí),選擇U3減小磁鏈減小轉(zhuǎn)矩,即表2中θ2區(qū)段和θ18區(qū)段對(duì)應(yīng)的電壓矢量。糾正了傳統(tǒng)直接轉(zhuǎn)矩中,當(dāng)ψs位于圖3中ψs1和ψs2位置并且α<γ時(shí),選擇U3減小磁鏈增加轉(zhuǎn)矩,選擇U5減小磁鏈減小轉(zhuǎn)矩的錯(cuò)誤。
3.2 磁鏈控制性能的分析
采用表2的電壓矢量選擇方法,考慮逆時(shí)針?lè)较蜻\(yùn)行時(shí),根據(jù)式(11)和式(12)作出一個(gè)區(qū)段內(nèi)磁鏈幅值增加量和減小量的曲線,如圖5所示。

(11)

(12)

(a)磁鏈幅值增加(b)磁鏈幅值減小
圖5 十八區(qū)段DTC磁鏈幅值變化曲線
十八區(qū)段方法中將原始的60°扇區(qū)劃分為3個(gè)20°的區(qū)段,六扇區(qū)細(xì)分為18個(gè)區(qū)段。由圖5可以看出,重新劃分的每個(gè)小區(qū)段中磁鏈增加量和減小量基本對(duì)稱(chēng)。以定子磁鏈處于原始θ1扇區(qū)為例,此時(shí)θ∈(-30° , 30°),分別列出θ∈(-30° , -10°),θ∈(-10° , 10°),θ∈(10° , 30°)這3個(gè)區(qū)段時(shí),施加相應(yīng)空間電壓矢量時(shí)磁鏈增加和減小的范圍,如表3所示。用同樣的方法分析其余15個(gè)區(qū)段,其定子磁鏈幅值變化范圍與上述3個(gè)區(qū)段相同。

表3 扇區(qū)θ1內(nèi)磁鏈變化范圍
對(duì)照表1和表3可知,與傳統(tǒng)DTC方法相比,十八區(qū)段劃分方法,對(duì)空間電壓矢量的選擇更加細(xì)致、合理,有效解決了傳統(tǒng)六扇區(qū)劃分方法中扇區(qū)邊界處磁鏈增加幅度和減小幅度不平衡的問(wèn)題。
為了驗(yàn)證所提出的新型直接轉(zhuǎn)矩控制方法的有效性,本文對(duì)傳統(tǒng)DTC和十八區(qū)段DTC進(jìn)行了仿真實(shí)驗(yàn),為了模擬實(shí)際電機(jī)運(yùn)行,使用固定步長(zhǎng)仿真算法中的ode4(Runge-Kutta)龍格-庫(kù)塔算法,步長(zhǎng)值設(shè)置為1×10-6s。電機(jī)參數(shù):PN=1 kW,ωN=1 500 r/min,Rs=2.857 Ω,Ls=8.5 mH,p=2,ψf=0.175 Wb,J=0.000 8 kg·m2,B=0.000 1 N·m·s。仿真條件:系統(tǒng)參考轉(zhuǎn)速為1 200 r/min,參考定子磁鏈為0.2 Wb,負(fù)載轉(zhuǎn)矩為1 N·m,轉(zhuǎn)矩比較器滯環(huán)寬度為0.1 N·m,磁鏈比較器滯環(huán)寬度為0.01 Wb。
圖6和圖7分別為相同條件下傳統(tǒng)DTC方法和十八區(qū)段DTC方法的仿真波形,包括轉(zhuǎn)速波形、定子磁鏈波形、轉(zhuǎn)矩波形和定子電流波形。從圖6(a)和圖7(a)中可以看出,兩種控制方法中電機(jī)轉(zhuǎn)速均在0.2 s內(nèi)達(dá)到參考值1 200 r/min,之后穩(wěn)定運(yùn)行于參考值,可見(jiàn)十八區(qū)段DTC保持了動(dòng)態(tài)響應(yīng)快這一優(yōu)點(diǎn)。對(duì)比圖6(b)和圖7(b),十八區(qū)段DTC對(duì)扇區(qū)的劃分更加精細(xì),因此磁鏈脈動(dòng)大幅度降低,定子磁鏈運(yùn)行軌跡更接近理想磁鏈圓,并且實(shí)際磁鏈圓的環(huán)寬變窄。由于定子磁鏈控制準(zhǔn)確,定子磁鏈脈動(dòng)降低,電磁轉(zhuǎn)矩脈動(dòng)也相應(yīng)減小,如圖7(c)所示。十八區(qū)段DTC系統(tǒng)的三相定子電流波形如圖7(d)所示,可以看出三相定子電流對(duì)稱(chēng),與圖6(d)相比,圖7(d)中定子電流諧波含量少,脈動(dòng)小,波形曲線較細(xì),控制系統(tǒng)性能有所提高。

(a)電機(jī)轉(zhuǎn)速波形(b)定子磁鏈波形(c)電磁轉(zhuǎn)矩波形(d)定子電流波形
圖6 傳統(tǒng)直接轉(zhuǎn)矩控制仿真波形

(a)電機(jī)轉(zhuǎn)速波形(b)定子磁鏈波形(c)電磁轉(zhuǎn)矩波形(d)定子電流波形
圖7 基于十八區(qū)段的直接轉(zhuǎn)矩控制仿真波形
從前面的對(duì)比可以看出,所提出的十八區(qū)段DTC方法具有與傳統(tǒng)DTC相同的響應(yīng)速度,但是磁鏈和轉(zhuǎn)矩脈動(dòng)明顯降低,電流諧波含量明顯減少。對(duì)2種控制方法中電機(jī)A相定子電流波形進(jìn)行傅里葉分析。由于電機(jī)穩(wěn)定運(yùn)行時(shí)的轉(zhuǎn)速為1 200 r/min,因此定子電流基波頻率為40 Hz。分析時(shí)采用從2.05 s開(kāi)始的10個(gè)周期波形,結(jié)果如圖8所示。

(a)傳統(tǒng)直接轉(zhuǎn)矩控制(b)基于十八區(qū)段的直接轉(zhuǎn)矩控制
圖8 不同控制策略時(shí)定子電流輸出諧波
為了方便對(duì)比分析,表4給出兩種DTC方法系統(tǒng)性能的比較結(jié)果。

表4 兩種控制方法系統(tǒng)性能比較
本文詳細(xì)分析了傳統(tǒng)直接轉(zhuǎn)矩控制中定子磁鏈性能,指出電壓矢量選擇表存在的問(wèn)題及磁鏈和磁鏈/轉(zhuǎn)矩脈動(dòng)產(chǎn)生原因,提出了十八區(qū)段直接轉(zhuǎn)矩控制方法,推導(dǎo)了十八區(qū)段控制法電壓矢量選擇表和磁鏈幅值變化范圍,從理論上分析十八區(qū)段DTC系統(tǒng)的性能。文中給出了相同條件下傳統(tǒng)DTC和十八區(qū)段DTC方式的轉(zhuǎn)速曲線、定子磁鏈軌跡、轉(zhuǎn)矩曲線和定子電流波形,實(shí)驗(yàn)結(jié)果表明十八區(qū)段DTC方法能夠有效的減小磁鏈和轉(zhuǎn)矩脈動(dòng),提高電流正弦性,改善系統(tǒng)控制性能。
[1] ZHONG L,RAHMAN M F,HU Y W,et al.A direct torque controller for permanent magnet synchronous motor drives[J].IEEE Transactions on Energy Conversion,1999,14(3):637-642.
[2] MOHAMED A R I.A novel direct instantaneous torque and flux control with an ADALINE-based motor model for a high performance DD-PMSM[J].IEEE Transactions on power electronics, 2007,22(5):2042-2049.
[3] 邢巖,王旭,劉巖,等.一種新型永磁同步電機(jī)定子磁鏈觀測(cè)器[J].東北大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,34(6):766-769.
[4] ANDTEESCU G D,PITIC C I,BLAABJERG F,et al.Combined flux observer with signal injection enhancement for wide speed range sensorless direct torque control of ipmsm drives[J].IEEE Transactions on Energy Conversion,2008,23(2) :393-402.
[5] TAKAHASHI I,NOGUCHI T.A new quick-response and high-efficiency control strategy of an induction motor[J].IEEE Transactions on Industry Applications,1986,22(5):820-827.
[6] YAMAMOTO Y,YOSHIDA Y,ASHIKAGA T.Sensorless control of PM motor using full order flux observer[J].IEEE Transactions on Industry Applications,2004,124(8):743-749.
[7] 王旭,邢巖,劉巖,等.永磁同步電機(jī)無(wú)速度傳感器直接轉(zhuǎn)矩控制系統(tǒng)研究[J].東北大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,33(5):618-621.
[8] RAHMAN M F,HAQUE M E,TANG L,et al.Problems associated with the direct torque control of an interior permanent-magnet synchronous motor drive and their remedies[J].IEEE Transactions on Industry Electronics,2004,51(4):799-809.
[9] CORLEY M J,LORENZ R D.Rotor position and velocity estimation for permanent magnet synchronous machine at standstill and high speed[C]//Industry Applications Conference.IEEE,1996:36-41.
[10] ZHONG L,RAHMAN M F,HU W Y,et al.Analysis of direct torque control in permanent magnet synchronous motor drives[J].IEEE Trans on power electronics,1997,12(3):528-536.
[11] ZHENG L,F(xiàn)LETCHER J E. A novel direct torque control scheme for a sensorless five-phase induction motor drive[J].IEEE Transactions on Industry Electronics,2007,58(2) :503-513.
[12] ORTEGA C,ARIAS A.Inproved waveform quality in the direct torque control of matrix-converter-fed PMSM drives[J].IEEE Transactions on Industry Electronics,2007,57(6) :2101-2110.
High Performance Torque Control of Permanent Magnet Synchronous Motor Based on Eighteen-Section Control
XINGYan1,WANGXu2,YANGDan2,ZHANGZhi-mei2
(1.Tonghua Normal University,Tonghua 134001,China;2.Northeastern University,Shenyang 110819,China)
Traditional direct torque control (DTC) uses six-section circle-flux. The effect of voltage vectors on stator flux is asymmetrical when the stator flux is near the section line, and results in large ripples. When the voltage of stator resistance was considered, the select table of voltage vectors has defect. To deal with the problems mentioned above, the flux formula was deducted in the paper to analyze the performance of stator flux when neglect or consider the voltage of stator resistance, and eighteen-section control method and the improved voltage select table was presented. The performance of these two section control methods was compared. The results prove that the method presented in this paper can decrease flux and torque ripples effectively, besides its simple arithmetic and quickly dynamic-response.
permanent magnet synchronous motor(PMSM); direct torque control; flux and torque ripples; eighteen-section
2016-05-12
吉林省教育廳科學(xué)研究計(jì)劃項(xiàng)目(吉教科合字[2016]244號(hào),245號(hào))
TM341;TM351
A
1004-7018(2017)02-0069-04
邢巖(1986-),女,博士,講師。