楊尊儒, 白興蘭, 謝永和
(1.浙江海洋大學 船舶與海洋工程學院,浙江 舟山 316022; 2. 浙江海洋大學 浙江省近海海洋工程技術重點實驗室,浙江 舟山 316022)
基于ABAQUS串列立管碰撞的有限元分析
楊尊儒1,2, 白興蘭1,2, 謝永和1,2
(1.浙江海洋大學 船舶與海洋工程學院,浙江 舟山 316022; 2. 浙江海洋大學 浙江省近海海洋工程技術重點實驗室,浙江 舟山 316022)
以兩串列立管碰撞為研究對象,運用有限元分析軟件ABAQUS,考慮水耦合作用研究串列立管的局部碰撞行為。通過模擬立管碰撞前的靜態彎曲和動態碰撞過程,將靜態分析的結果導入動態分析步中,從單一因素方面分析碰撞速度、立管夾角、內壓對立管碰撞應力的影響,并將考慮水耦合作用和不考慮水耦合作用的應力變化情況進行了對比分析。結果表明:在給定工況下,兩立管發生多次碰撞,考慮水耦合作用時,立管碰撞產生的應力較小。在分別考慮和不考慮水耦合時,碰撞速度、夾角、內壓對立管應力變化的影響是不同的,初始碰撞產生的應力隨碰撞速度的增大而增大,存在某一適當的夾角和內壓值,使立管較為安全,可以避免立管遭受撞擊而發生破壞,為立管群的排列布置提供參考。
海洋立管;碰撞;重啟動分析;水耦合;有限元分析
海洋立管連接海上浮式平臺及水下生產系統,與淺水立管相比,深水立管處于更復雜的環境中,已經成為了整個深水油氣開發裝備的關鍵部件。為了適應不同的開發需要,立管以各式各樣的變化緊密排列。在浮體運動、環境載荷和內流共同作用下,相鄰立管運動失諧導致立管之間具有不同的運動響應,進而引起兩立管發生碰撞,在碰撞區域產生凹陷損傷。損傷區的局部變形與整體彎曲的相互作用可能會嚴重影響立管的極限承載能力和變形,從而降低立管的使用壽命。
馬強等[1]將深水立管理想化為自由圓管,采用任意拉格朗日-歐拉(ALE)耦合方法模擬被撞管與水的相互作用,利用有限元程序MSC/DYTRAN對立管間的碰撞過程進行了模擬,該方法沒有考慮碰撞前的彎曲以及運動管與水的耦合作用。立管間碰撞是導致立管失效的重要因素, LEIRA等[2]運用CFD模擬兩立管的碰撞行為,指出深水立管間的碰撞區域是相對穩定的。 WILMSHURST等[3]運用ABAQUS對立管的局部碰撞進行數值仿真,得出碰撞區域的接觸力、應力和應變等結構響應,且與試驗結果吻合的較好,表明ABAQUS研究立管局部碰撞問題是可靠的。陳云水等[4]利用有限元軟件ABAQUS從單純的動態碰撞角度對SPAR平臺下的鋼懸鏈線立管( Steel Catenary Riser, SCR)進行了局部碰撞數值模擬,得到內壓、速度、夾角對立管碰撞的影響,但并未考慮碰撞前的彎曲變形及水耦合對局部碰撞的影響。閻巖等[5]運用ABAQUS模擬了頂張式立管(Top Tensioned Risers, TTRs)碰撞前的彎曲變形和動態碰撞兩個過程,重點分析了碰撞前的彎曲變形對碰撞結果的影響,同樣未考慮水耦合作用。
本文擬運用ABAQUS對深水兩串列立管局部碰撞進行三維數值模擬,通過設置Standard和Explicit兩個分析步,分別模擬兩立管碰撞前的靜態彎曲過程和后續的動態碰撞過程。通過重啟動分析,實現兩個分析步的數據傳遞;采用耦合的歐拉-拉格朗日(Coupling Euler-Lagrange, CEL)算法在立管碰撞過程中考慮水耦合作用,運用顯示動力求解器分析不同條件下立管碰撞過程中結構的響應,分析碰撞速度、立管夾角、內壓對立管應力的影響。
1.1 立管碰撞的基本理論
立管碰撞屬于低速度大能量的瞬態撞擊問題,采用瞬態動力學的基本方程對碰撞過程進行分析[6]:

(1)

結構動態響應的求解采用直接積分法的顯示算法[7],適用于像結構碰撞這樣響應時間短、時間增量步較小的動力學分析。顯式算法的特點是使用上一時刻已計算得到的中間結果和遞推算法進行下一步的計算,其解的穩定條件為:
(2)
式中:ωn、Tn分別為系統的最高階固有振動頻率、最小固有振動周期。
在ABAQUS中,通過設置接觸算法來模擬上下游立管碰撞的相互作用。主從面算法[8]是最早用來求解接觸問題的搜索算法,是有限元算法中使用較為廣泛的接觸算法之一。該算法起初是由HALLQUIST 等[8]提出的,后來很多學者對這種算法進行了改善。目前,平衡的主控-從屬算法是比較精確的算法,相互接觸的兩表面分別定義為主、從控表面。在每個時間步求解時,采用全面的、徹底的搜索,以保證每一個接觸對上與從屬節點相距最近的主控面上的面。
1.2 CEL算法
CEL算法是將單純的拉格朗日和歐拉算法有機結合起來的真正意義上的流固耦合算法,它最早是由NOH[9]提出來的。拉格朗日算法能夠清晰地描述物體界面,但當所描述的物體發生大變形時,由于有限元網格的運動與物體質點的運動重合而使網格嚴重扭曲,將嚴重影響計算的收斂性;而歐拉算法中有限元網格在空間上固定不動,因此不會出現網格大變形問題,但是它很難給出精確的物體界面[10]。而CEL算法結合了兩者的優點,采用拉格朗日網格離散立管,采用歐拉網格離散水域,立管與水域的接觸面用拉格朗日域邊界來描述,這樣就可以解決了物體界面描述與網格大變形問題。
2.1 立管有限元模型
選取兩根長為9 m的裸管作為研究對象[11],立管采用拉格朗日殼體單元模擬,本構模型為理想彈塑性模型,材料為API-X80,模型參數具體見表1。流體部分采用歐拉體模擬,建立了一個13 m×13 m×13 m的正方體(如圖1所示),上部3 m定義為空域,剩余部分為水域,兩串列立管位于水域內,環境參數見表2。

表1 立管模型參數Tab.1 The parameter of riser model

表2 水環境參數Tab.2 Parameters of water environment

圖1 串列立管及水域的有限元模型Fig.1 Numerical model of serial risers
2.2 數據傳遞與網格劃分
將碰撞的兩串列立管作為變形體處理,實際立管碰撞前儲存了一定的彎曲變形能,因此有限元分析包括靜態彎曲和動態碰撞。在靜態分析中,設置碰撞位置與內表面約束耦合,立管兩端鉸支,分別施加60 kN·m和130 kN·m的彎矩(彎矩通過Orcaflex對立管進行整體碰撞分析獲得,為碰撞前瞬間端部彎矩)。利用重啟動功能,將靜態分析的結果包括應力和網格,導入到動態分析的第一個時間增量步;在相互作用設置中取消耦合約束,設置接觸約束屬性,重新設置邊界條件,將被撞管設置為剛性固定,為運動管設置預定義速度場,時間步長設為0.06 s,最大時間增量步長為0.001 s。
深水立管在碰撞過程中,實際上只有小部分區域參與了碰撞,研究者通過一系列TTRs碰撞試驗得出:碰撞區域長度與立管抗彎剛度、有效直徑和壁厚等因素有關[12]。為了保證精度,選取兩管中心橫截面沿軸向上下各1 m作為碰撞長度,并對碰撞區域進行網格加密。設定單元類型為四節點殼單元(S4R),網格劃分后共有節點3 996個,單元3 960個。水域采用歐拉單元進行劃分網格,設定單元類型為八節點線性單元歐拉減縮積分實體單元(EC3D8R),網格劃分后共有節點287 496個,單元274 625個,如圖1所示。
將立管從開始接觸到最終分離的過程稱為一個碰撞過程,而一個碰撞過程可能存在多次碰撞。分析時間從1.0 s開始,表示在Standard中有1.0 s的靜力分析,導入Explicit中做動態碰撞分析。分別對考慮和不考慮水耦合作用兩種情況下立管的局部碰撞進行數值模擬,從單因素方面分析速度、內壓、夾角對被撞管接觸單元(1800#)應力的影響。其中碰撞速度取為1 m/s、碰撞夾角為15°、立管內壓1.6 MPa、摩擦因數為0.2。因為摩擦因數對裸管的影響較小[11],本文不考慮其變化對立管應力的影響。
3.1 碰撞速度對應力的影響
圖2、圖3分別為不考慮、考慮水耦合情況下,不同碰撞速度時立管應力的時程曲線,碰撞速度分別取1 m/s、3 m/s、5 m/s、7 m/s。由圖2可知:不同的碰撞速度,應力時程曲線變化趨勢相同,出現6個應力峰值,這說明整個碰撞過程中發生了6次碰撞。其中最激烈的一次發生在1.023 s左右,產生的應力分別達到165 MPa、252 MPa、435 MPa、552 MPa,可見應力峰值隨碰撞速度增加而增大。立管在相互作用的過程中,如果發生碰撞,則只發生在最初的若干毫秒,隨后沖擊能沿著碰撞點周圍的徑向擴展從而使立管發生多次接觸,使得接觸時間變長[13]。

圖2 不考慮水耦合、不同碰撞速度時立管應力時程曲線Fig.2 Time histories of stress under different impact velocities without riser-water coupling
圖3為考慮水耦合的情況下立管的應力變化情況,趨勢不盡相同。由于水的阻力存在,應力峰值小了很多。當碰撞速度為7 m/s時,應力在碰撞初始時刻驟然增加至128 MPa,當碰撞速度較大時,初次碰撞對立管損傷產生的影響較大,且隨碰撞速度增加而增大,應引起重視。整個碰撞過程應力與碰撞速度并不是單調遞增的關系,沖擊能的擴展引起多次接觸將會對水域產生影響,從而引起應力的變化。如在1.03~1.056 s時,速度3 m/s時的立管應力大于速度為5 m/s時的應力。因此在實際水域中立管發生碰撞,并非碰撞速度越大,立管應力就一定越大。

圖3 考慮水耦合、不同碰撞速度下的立管應力時程曲線Fig.3 Time histories of stress under different impact velocities with riser-water coupling
3.2 立管夾角對應力的影響
碰撞時立管并不都是平行的或垂直的,常見的是立管之間成一定夾角,從而發生正碰撞或斜碰撞。分別選取碰撞夾角為15°、30°、45°和60°,得到不考慮水耦合、考慮水耦合時立管應力的時程曲線,如圖4和5所示,考慮水耦合情況下應力值遠小于不考慮水耦合情況下的應力值。圖4為不考慮水耦合的情況,碰撞夾角為15°、30°、60°下的應力時程曲線基本重合,出現多次應力極值,最大應力峰值為209 MPa,出現在1.036 s;當碰撞角度為45°時,應力變化比較緩和,應力值普遍要小,因此碰撞夾角為45°最安全,陳云水等[4,11]也得到同樣的結論。
圖5為考慮水耦合的情況,應力變化趨勢相似,隨角度的增加應力變化并不顯著,45°時應力最小,這與前面的結論一致。圖6表示最大應力隨夾角的變化情況。從整體趨勢來看,不管是考慮水耦合還是不考慮水耦合,隨著角度的增大,最大應力都出現先增大,到一定角度又逐漸減小而后又增大的趨勢。還可以看出,相對不考慮水耦合的情況,考慮水耦合時立管的應力峰值變化較小。因為角度不同說明兩立管在水域中的相對位置不同,所受的水阻力將發生較大變化,從而影響立管的應力變化。

圖4 不考慮水耦合、不同夾角下的立管應力時程曲線Fig.4 Time histories of stress under different intersection angles without riser-water coupling

圖5 考慮水耦合、不同夾角下的應力變化曲線Fig.5 Time histories of stress under different intersection angles with riser-water coupling

圖6 不同碰撞角度的應力峰值Fig.6 Maximum stress curves under different intersection angles
3.3 內壓對應力的影響
立管主要用來輸送油氣資源,那么立管的內部存在內壓,就會對立管的碰撞產生影響。本文模擬了立管碰撞時三個不同的內壓值,分別為1.6 MPa、2.0 MPa、2.8 MPa,引起的應力變化情況,如圖7和8所示,隨著內壓的增大,立管應力先逐漸減小,到某一內壓時又逐漸增大。不考慮水耦合時,內壓為1.6 MPa、2.0 MPa、2.8 MPa時應力時程曲線基本重合,最大應力峰值為

圖7 不考慮水耦合、不同內壓下的應力時程曲線Fig.7 Time histories of stress under different internal pressure without riser-water coupling
248 MPa,出現在1.036 s;內壓為2.4 MPa時,應力值普遍較小。從某種角度來講,盡管內壓的存在使立管管壁產生環向應力,但使立管徑向的作用力變小,因此適當的內壓值可以使立管遭受碰撞時內部有一定的抵抗力,小于或大于這個臨界值將可能導致立管易遭受破壞[11]。此外,內壓的存在還減小了沖擊在管壁上產生的凹陷變形,使得沖擊能量更多被用來產生整體變形,從而使立管更容易產生總體損傷。

圖8 考慮水耦合、不同內壓壓的應力時程曲線Fig.8 Time histories of stress under different internal pressure with riser-water coupling
為了能夠更真實反映深水串列立管的碰撞過程,引進了CEL算法,在仿真模擬中設置了靜態彎曲和動態碰撞兩個分析步,運用有限元軟件ABAQUS的重啟動功能實現數據傳遞。通過動態碰撞分析,可知:
(1)考慮水耦合作用下的應力值遠小于不考慮水耦合作用下的應力值,可見立管的設計是偏于安全的。
(2)碰撞速度越大,在碰撞最初產生的應力越大,因此應重視初次碰撞對立管產生的損傷。
(3)對于有一定幾何夾角的兩立管碰撞,不管是考慮水耦合還是不考慮水耦合,隨著角度的增大,最大應力都出現先增大,到一定角度又逐漸減小而后又增大的趨勢。當碰撞角度為45°時,應力最小,在其他條件一定的情況下,碰撞角度為45°較安全。
(4)內壓的存在使立管徑向力減小,存在某一適當的內壓可以使立管徑向不易破壞。
[ 1 ] 馬強,田榮濤.深水立管之間的碰撞過程數值仿真[J].中國工程機械學報,2007, 5(2): 177-181. MA Qiang, TIAN Rongtao. Digital collision simulation for deep-water risers [J]. Chinese Journal of Construction Machinery, 2007, 5(2): 177-181.
[ 2 ] LERIA B J. Probabilistic analysis and design in relation to riser-riser collision[C]. Kitakyushu, Japan: IOPEC, 2002: 26-31.
[ 3 ] WILMSHURST S R, CHAN H H, ELLINAS C P. Local riser impact: F E model validation using laboratory impact tests[R]. IOPEC2001,Stavanger, Norway, 2001: 254-260.
[ 4 ] 陳云水, 王德禹. SPAR平臺立管相互碰撞的有限元分析[J]. 振動與沖擊, 2007, 26(9): 115-119. CHEN Yunshui, WANG Deyu. Finite element analysis of the collision of rises in SPAR platform [J]. Journal of Vibration and Shock, 2007, 26(9): 115-119.
[ 5 ] 閻巖, 張崎, 黃一. 基于張力腿平臺的頂張緊式立管碰撞分析[J]. 上海船舶運輸科學研究所學報,2012, 35(1): 1-6. YAN Yan, ZHANG Qi, HUANG Yi. Analysis of collisions between top tension risers on a tension leg platform[J]. Journal of Shanghai Ship and Shipping Research Institute, 2012, 35(1): 1-6.
[ 6 ] 金偉良, 宋劍, 龔順風. 船舶與海洋平臺撞擊的荷載模擬[J]. 計算力學學報,2004, 21(1): 26-32. JIN Weiliang, SONG Jian, GONG Shunfeng. Simulation of impact load on ship-platform collision[J]. Chinese Journal of Computational Mechanics, 2004, 21(1): 26-32.
[ 7 ] 江丙云, 孔祥宏, 羅元元. ABAQUS工程實例詳解[M].北京:人民郵電出版社,2015.
[ 8 ] HALLQUIST J O, GOUDREAU G L, BENSON D J. Sliding interfaces with contact-impact in large-scale Lagrangian computation [J]. Computer Methods in Applied Mechanics and Engineering, 1985, 51(1/2/3): 107-137.
[ 9 ] NOH W F. CEL: A time-dependent two-space-dimensional coupled Eulerian-lagrangian code [M]// Methods in computational physics. New York: Academic Press, 1964: 117-179.
[10] 王懿,賈旭, 黃俊, 等. 基于CEL的船舶拋錨入泥深度分析[J].石油機械, 2014, 42(12): 44-47. WANG Yi, JIA Xu, HUANG Jun, et al. Analysis of penetration depth of dropped anchor based on CEL [J]. China Petroleum Machinery, 2014, 42(12): 44-47.
[11] 吳天龍. 海洋立管相互碰撞問題研究[D]. 蘭州:蘭州理工大學, 2014.
[12] LI Y , DENBY G M. The“colliding participating mass”: A novel technique to quantify riser collision [C]. New Orleans, LA: OMAE, 2000.
[13] 閆巖. 深水立管碰撞的數值模擬研究[D]. 大連:大連理工大學, 2010.
Finite element analysis on the collision between serial risers by using ABAQUS software
YANG Zunru1,2, BAI Xinglan1,2, XIE Yonghe1,2
(1. School of Naval Architecture and Ocean Engineering, Zhejiang Ocean University, Zhoushan 316022, China; 2. Key Laboratory of Offshore Engineering Technology of Zhejiang Province, Zhejiang Ocean University, Zhoushan 316022,China)
The collision between serial risers was studied using the restart analysis of finite element software ABAQUS to consider the coupling effect between the water and risers. In the study, the results of the static bending analysis were input into the dynamic analysis. The collision behavior between adjacent risers was analyzed under the situations with and without considering the riser-water coupling effect and the influences of single factors, such as the velocity, angle, and internal pressure were discussed. The stress responses in the collision process of adjacent risers were obtained. The results show that multiple times of collisions may happen between two serial risers under the given cases, and the stresses with considering the riser-water coupling are smaller than those without considering the coupling. The effects of impact velocity, angles and internal pressure on the stresses are different under the situations with and without considering the coupling. The stresses induced by the first collision increase with the increase of impact velocity. The results show that risers are safer when they are subjected to a certain internal pressure compared to bare risers. When the impact angle is 45 degree, the maximum stress is lower. Therefore, there are proper values of angle and internal pressure for the riser’s safety. The results provide a reference to the arrangement of risers group to avoid collision damage.
marine riser; collision; restart analysis; riser-water coupling; finite element analysis
國家自然科學基金(51679217);浙江省自然科學基金(LZ15E090001)
2015-09-07 修改稿收到日期:2016-02-21
楊尊儒 男,碩士生,1990年1月生
白興蘭 女,博士,副教授,碩士生導師,1980年8月生 E-mail: baixl0813@126.com
TU311.3
A
10.13465/j.cnki.jvs.2017.06.030